4,392 research outputs found

    Novel Microelectromechanical Systems Image Reversal Fabrication Process Based on Robust SU-8 Masking Layers

    Get PDF
    This paper discusses a novel fabrication process that uses a combination of negative and positive photoresists with positive tone photomasks, resulting in masking layers suitable for bulk micromachining high-aspect ratio microelectromechanical systems (MEMS) devices. MicroChem\u27s negative photoresist Nano™ SU-8 and Clariant\u27s image reversal photoresist AZ 5214E are utilized, along with a barrier layer, to effectively convert a positive photomask into a negative image. This technique utilizes standard photolithography chemicals, equipment, and processes, and opens the door for creating complementary MEMS structures without added fabrication delay and cost. Furthermore, the SU-8 masking layer is robust enough to withstand aggressive etch chemistries needed for fabrication research and development, bulk micromachining high-aspect ratio MEMS structures in silicon substrates, etc. This processing technique was successfully demonstrated by translating a positive photomask to an SU-8 layer that was then utilized as an etching mask for a series of trenches that were micromachined into a silicon substrate. In addition, whereas the SU-8 mask would normally be left in place after processing, a technique utilizing Rohm and Haas Microposit™ S1818 as a release layer has been developed so that the SU-8 masking material can be removed post-etching

    Novel Bonding technologies for wafer-level transparent packaging of MOEMS

    Get PDF
    Depending on the type of Micro-Electro-Mechanical System (MEMS), packaging costs are contributing up to 80% of the total device cost. Each MEMS device category, its function and operational environment will individually dictate the packaging requirement. Due to the lack of standardized testing procedures, the reliability of those MEMS packages sometimes can only be proven by taking into consideration its functionality over lifetime. Innovation with regards to cost reduction and standardization in the field of packaging is therefore of utmost importance to the speed of commercialisation of MEMS devices. Nowadays heavily driven by consumer applications the MEMS device market is forecasted to enjoy a compound annual growth rate (CAGR) above 13%, which is when compared to the IC device market, an outstanding growth rate. Nevertheless this forecasted value can drift upwards or downwards depending on the rate of innovation in the field of packaging. MEMS devices typically require a specific fabrication process where the device wafer is bonded to a second wafer which effectively encapsulates the MEMS structure. This method leaves the device free to move within a vacuum or an inert gas atmosphere.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    MOEMS deformable mirror testing in cryo for future optical instrumentation

    Full text link
    MOEMS Deformable Mirrors (DM) are key components for next generation instruments with innovative adaptive optics systems, in existing telescopes and in the future ELTs. These DMs must perform at room temperature as well as in cryogenic and vacuum environment. Ideally, the MOEMS-DMs must be designed to operate in such environment. We present some major rules for designing / operating DMs in cryo and vacuum. We chose to use interferometry for the full characterization of these devices, including surface quality measurement in static and dynamical modes, at ambient and in vacuum/cryo. Thanks to our previous set-up developments, we placed a compact cryo-vacuum chamber designed for reaching 10-6 mbar and 160K, in front of our custom Michelson interferometer, able to measure performances of the DM at actuator/segment level as well as whole mirror level, with a lateral resolution of 2{\mu}m and a sub-nanometric z-resolution. Using this interferometric bench, we tested the Iris AO PTT111 DM: this unique and robust design uses an array of single crystalline silicon hexagonal mirrors with a pitch of 606{\mu}m, able to move in tip, tilt and piston with strokes from 5 to 7{\mu}m, and tilt angle in the range of +/-5mrad. They exhibit typically an open-loop flat surface figure as good as <20nm rms. A specific mount including electronic and opto-mechanical interfaces has been designed for fitting in the test chamber. Segment deformation, mirror shaping, open-loop operation are tested at room and cryo temperature and results are compared. The device could be operated successfully at 160K. An additional, mainly focus-like, 500 nm deformation is measured at 160K; we were able to recover the best flat in cryo by correcting the focus and local tip-tilts on some segments. Tests on DM with different mirror thicknesses (25{\mu}m and 50{\mu}m) and different coatings (silver and gold) are currently under way.Comment: 11 pages, 12 Figure

    Imaging with two-axis micromirrors

    Get PDF
    We demonstrate a means of creating a digital image by using a two axis tilt micromirror to scan a scene. For each different orientation we extract a single grayscale value from the mirror and combine them to form a single composite image. This allows one to choose the distribution of the samples, and so in principle a variable resolution image could be created. We demonstrate this ability to control resolution by constructing a voltage table that compensates for the non-linear response of the mirrors to the applied voltage.Comment: 8 pages, 5 figures, preprin

    3D surface topography and reflectivity of anisotropic etched silicon micromirrors for BioMEMS

    Get PDF

    Fabrication of micromirrors with pyramidal shape using anisotropic etching of silicon

    No full text
    Gold micro-mirrors have been formed in silicon in an inverted pyramidal shape. The pyramidal structures are created in the (100) surface of a silicon wafer by anisotropic etching in potassium hydroxide. High quality micro-mirrors are then formed by sputtering gold onto the smooth silicon (111) faces of the pyramids. These mirrors show great promise as high quality optical devices suitable for integration into MOEMS systems

    Use of scanned detection in optical position encoders

    No full text
    Published versio

    Pyramidal micromirrors for microsystems and atom chips

    Get PDF
    Concave pyramids are created in the (100) surface of a silicon wafer by anisotropic etching in potassium hydroxide. High quality micromirrors are then formed by sputtering gold onto the smooth silicon (111) faces of the pyramids. These mirrors show great promise as high quality optical devices suitable for integration into micro-optoelectromechanical systems and atom chips. We have shown that structures of this shape can be used to laser-cool and hold atoms in a magneto-optical trap
    corecore