13 research outputs found

    Research issues in real-time database systems

    Get PDF
    Cataloged from PDF version of article.Today's real-time systems are characterized by managing large volumes of data. Efficient database management algorithms for accessing and manipulating data are required to satisfy timing constraints of supported applications. Real-time database systems involve a new research area investigating possible ways of applying database systems technology to real-time systems. Management of real-time information through a database system requires the integration of concepts from both real-time systems and database systems. Some new criteria need to be developed to involve timing constraints of real-time applications in many database systems design issues, such as transaction/query processing, data buffering, CPU, and IO scheduling. In this paper, a basic understanding of the issues in real-time database systems is provided and the research efforts in this area are introduced. Different approaches to various problems of real-time database systems are briefly described, and possible future research directions are discussed

    Research issues in real-time database systems. Survey paper

    Get PDF
    Today's real-time systems are characterized by managing large volumes of data. Efficient database management algorithms for accessing and manipulating data are required to satisfy timing constraints of supported applications. Real-time database systems involve a new research area investigating possible ways of applying database systems technology to real-time systems. Management of real-time information through a database system requires the integration of concepts from both real-time systems and database systems. Some new criteria need to be developed to involve timing constraints of real-time applications in many database systems design issues, such as transaction/query processing, data buffering, CPU, and IO scheduling. In this paper, a basic understanding of the issues in real-time database systems is provided and the research efforts in this area are introduced. Different approaches to various problems of real-time database systems are briefly described, and possible future research directions are discussed. © 1995

    Recovery algorithms for in-memory OLTP databases

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 63-66).Fine-grained, record-oriented write-ahead logging, as exemplified by systems like ARIES, has been the gold standard for relational database recovery. In this thesis, we show that in modern high-throughput transaction processing systems, this is no longer the optimal way to recover a database system. In particular, as transaction throughputs get higher, ARIES-style logging starts to represent a non-trivial fraction of the overall transaction execution time. We propose a lighter weight, coarse-grained command logging technique which only records the transactions that were executed on the database. It then does recovery by starting from a transactionally consistent checkpoint and replaying the commands in the log as if they were new transactions. By avoiding the overhead of fine-grained, page-level logging of before and after images (and substantial associated I/O), command logging can yield significantly higher throughput at run-time. Recovery times for command logging are higher compared to ARIES, but especially with the advent of high-availability techniques that can mask the outage of a recovering node, recovery speeds have become secondary in importance to run-time performance for most applications. We evaluated our approach on an implementation of TPC-C in a main memory database system (VoltDB), and found that command logging can offer 1.5x higher throughput than a main-memory optimized implementation of ARIES.by Nirmesh Malviya.S.M

    8th SC@RUG 2011 proceedings:Student Colloquium 2010-2011

    Get PDF

    8th SC@RUG 2011 proceedings:Student Colloquium 2010-2011

    Get PDF

    SharkDB: an in-memory storage system for large scale trajectory data management

    Get PDF
    corecore