
NORTH - HOILAND

Research Issues in Real-Time Database Systems
Survey Paper

(3ZGUR ULUSOY

Department of Computer Engineering and Information Science, Bilkent Unit~ersity,
Bilkent, Ankara 06533, Turkey

ABSTRACT

Today's real-time systems are characterized by managing large volumes of data.
Efficient database management algorithms for accessing and manipulating data are
required to satisfy timing constraints of supported applications. Real-time database
systems involve a new research area investigating possible ways of applying database
systems technology to real-time systems. Management of real-time information through
a database system requires the integration of concepts from both real-time systems and
database systems. Some new criteria need to be developed to involve timing constraints
of real-time applications in many database systems design issues, such as
transaction/query processing, data buffering, CPU, and IO scheduling. In this paper, a
basic understanding of the issues in real-time database systems is provided and the
research efforts in this area are introduced. Different approaches to various problems of
real-time database systems are briefly described, and possible future research directions
are discussed.

1. I N T R O D U C T I O N

There has recently been a great deal of interest in applying database
technology to the management of data in real-time systems. This has
resulted in the emergence of a new research area, called real-time database
systems (RTDBSs)~ RTDBSs have inherited many properties from both
real-time systems and database systems. Similar to a conventional real-time
system, transactions processed in an RTDBS are associated with timing
constraints, usually in the form of deadlines. Access requests of transac-
tions to data or other system resources are scheduled on the basis of the
timing constraints. What makes an RTDBS different from a real-time

INFORMATION SCIENCES 87, 123-151 (1995)
© Elsevier Science Inc. 1995 0020-0255/95/$9.50
655 Avenue of the Americas, New York, NY 10010 SSDI 0020-0255(95)00130-H

124 O. ULUSOY

system is the requirement of preserving the logical consistency of data in
addition to considering the timing constraints of transactions. The require-
ment of maintaining data consistency is the essential feature of a conven-
tional database system. However, the techniques used to preserve data
consistency in database systems are all based on transaction blocking and
transaction restart, which makes it virtually impossible to predict computa-
tion times and hence to provide schedules that guarantee deadlines in an
RTDBS. As a result, it becomes necessary to extend traditional database
management techniques with time-critical scheduling methods. While the
basic scheduling goal in a conventional database system is to minimize the
response time of transactions and to maximize throughput, an RTDBS
scheduler primarily aims to maximize the number of transactions that
satisfy their deadlines.

RTDBSs entered the computer science spotlight with the publication of
a Special Issue of the ACM SIGMOD Record [58] in 1988. The papers in
that issue described the role of database systems in real-time applications
and introduced some inspiring concepts. It was pointed out by the authors
that effective and efficient methods are necessary for the management of
large volumes of data maintained by real-time systems. Since then, the
results of a considerable number of works addressing various features of
RTDBSs have appeared in the literature.

The goals of this paper are to provide a basic understanding of the
issues in RTDBSs, to introduce the research efforts in this area, and to
suggest directions for future work. We organize the paper as follows. The
next section explores the issues related to transaction scheduling in RT-
DBSs. It provides an examination of techniques used in mapping timing
constraints into priorities, and describes priority-driven algorithms pro-
posed for IO scheduling, buffer management, and concurrency control.
Section 3 provides a brief description of approaches addressing various
issues of "distributed" RTDBSs. Recent research efforts to integrate active
database systems with RTDBSs are discussed in Section 4. Some architec-
tural considerations to obtain better performance in RTDBSs are de-
scribed in Section 5. The final section provides a brief summary of
concepts and possible future research directions.

2. SCHEDULING IN REAL-TIME DATABASE SYSTEMS

Although it seems essential for many time-critical applications to com-
bine scheduling methods from both real-time systems and database sys-
tems, this combination is not an easy task because of the distinct features

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 125

of these two systems. Ramamritham [52] discusses the characteristics of
real-time systems and database systems that are relevant to RTDBSs. Data
handled by real-time systems are usually characterized as being temporal;
i.e., data value is valid (up-to-date) only for a certain length of time. To
quantify the notion of temporal data, each data item can be associated
with a t,alid interval [60]. The actual state of the environment can only be
presented during the valid interval of data. Temporal consistency can be
achieved only if data items are accessed within their valid intervals. The
temporal consistency requirement of data together with the fast response
time requirements of the supported application establishes timing
constraints for the transactions processed in the system. The primary
scheduling goal in real-time systems is to satisfy the timing constraints of
transactions.

Traditional database systems, on the other hand, more usually maintain
persistent data. Transactions retrieving or updating shared data are re-
quired to preserve the logical consistency of the data (i.e., they must
execute in a logically correct manner). Typically, no timing constraints are
associated with transactions. The basic performance goal, in this case, is to
maximize throughput or to minimize the average response time of transac-
tions.

An RTDBS requires an integrated approach to consider data consis-
tency requirements and timing constraints together in scheduling transac-
tions. The remainder of this section provides a review of the recent work
on various aspects of transaction scheduling in RTDBSs.

2.1. PRIORITY ASSIGNMENT

A transaction T processed in an RTDBS is associated with the follow-
ing attributes:

• AT: Arrival time of T.
• DT: Deadline of T.
• ST: Slack time j of T.
• ET: Execution time of T.
• VT,: Value 2 of T.
• P~: Priority of T.

IThe slack time of a transaction is defined as the maximum length of time thc
transaction can be delayed and still satisfy its deadline.

2As will be discussed shortly, the value represents the importance of a transaction.

126 O. ULUSOY

The first four attributes are related by

D T = A r + E T + S ~. (1)

The deadline of a transaction indicates that it is required to complete
the transaction before a certain time in the future. A typical categorization
of transactions concerns the strictness of the deadlines assigned.

• Hard deadline transactions are associated with strict deadlines and the
correctness of transaction operations depends on the time at which
the results are produced [65]. The system must provide schedules that
guarantee deadlines. Nuclear power plants, air traffic control systems,
process control systems, and robotics are some examples of applica-
tions that usually process hard deadline transactions.

• Soft deadline transactions are scheduled based on their deadlines, and
satisfaction of deadlines is still the primary performance goal in
scheduling transactions; however, in this case, there is no guarantee
that all deadlines will be met. A soft deadline transaction is executed
until completion regardless of whether its deadline has expired or
not.

• Firm deadline transactions also do not carry strict deadlines, i.e.,
missing a deadline may not result in a catastrophe, but unlike soft
deadline transactions, they are aborted by the system once their
deadlines expire. Typically, no value will be imparted to the system if
a firm deadline transaction misses its deadline.

Real-world examples of applications supporting soft or firm deadline
transactions are provided in [4]. Banking systems and airline-reservation
systems usually process soft deadline transactions. When a customer
submits a transaction, if the system cannot generate a response to the
transaction within its deadline, the customer prefers getting the response
late to not getting it at all. Stock market trading is an example of
applications supporting firm deadline transactions. If, for instance, a
transaction is submitted to learn the current price of a particular stock, the
system should either return the result in a specified time period or not
perform the operation at all, because conditions in the stock market can
change very fast.

As stated before, the basic scheduling goal in a real-time application
environment is to meet transaction deadlines. The scheduler thus assigns a
priority to each transaction based on its deadline. Two of the most popular
priority assignment schemes based on transaction deadlines are as follows:

• Earliest Deadline First (EDF) : A transaction with an earlier deadline
has higher priority than a transaction with a later deadline.

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 127

• Least Slack First (LSF): The transaction with the least slack time has
the highest priority. When a transaction T arrives at the system, its
slack time S T can be evaluated using the other attributes of T [see
equation (1)]:

S r = D v - (AT+Er) .

The dynamic version of the LSF deadline assignment scheme requires
the evaluation of transaction priorities at each decision point [36]. Let
PTT(t) and ST(t) denote the processing time spent so far by T and
the slack time of T at time t, respectively. The slack time of T at
decision point t can be determined by the following formula:

sT(t) =DT- (t +ET- PT"T(t))

Abbott and Garcia-Molina [1, 4] evaluated the performance of these
priority assignment methods in an RTDBS. They observed that the EDF
scheme leads to better performance (i.e., fewer missed deadlines) under
light or moderate levels of concurrent transaction load. The schemes were
shown to perform the same in RTDBSs characterized by high loads of
transaction.

In a more recent work, Pang et al. [50] attempted to evaluate the
performance of the EDF scheme on RTDBSs with multiclass workloads,
where classes are distinguished by their transaction sizes. It was shown in
that work that EDF discriminates significantly against longer transactions
in attempting to minimize the number of late transactions. To overcome
that bias, they introduced a dynamic priority assignment policy, called
Adaptiue Earliest Virtual Deadline, which attempts to ensure that long
transactions are allocated a fair share of the system resources. This policy
uses a sequence of virtual deadlines for a transaction to control the pace at
which the transaction progresses toward meeting its deadline. It divides
the transactions into a "hit" group and a "miss" group. Transactions in the
hit group are given preferential access to resources to enhance the chances
that they will make their deadlines. The virtual deadlines assigned to the
transactions in the hit group are adjusted dynamically as the transactions
progress, and a transaction with an earlier virtual deadline is served before
one with a later virtual deadline. To overcome EDF's discriminatory
behavior, the progress of longer transactions are monitored more closely;
i.e., their virtual deadlines are adjusted more frequently.

Some applications may assign different values to transactions, where the
~,alue of a transaction reflects the return the application expects to receive

128 C). ULUSOY

if the transaction is completed before its deadline [31]. The scheduling goal
for such applications is to maximize the value realized by the completed
transactions. Biyabani et al. [8], Huang et al. [31], and Haritsa et al. [27]
discuss some methods to establish a priority ordering among transactions
that are distinguished by both values and deadlines. A key point consid-
ered in all those works is that value and deadline are two independent
characteristics of RTDBS transactions. A close deadline does not necessar-
ily imply a high value. Transactions with the same value may have different
deadlines, while transactions with the same deadline may have different
values.

A number of priority assignment algorithms considering both the values
and deadlines of transactions have been proposed. A range of trade-offs
between value and deadline has been covered in those algorithms. One
common algorithm gives equal weight to deadline and value in determin-
ing the priority of transactions. The priority of transaction T is specified by
PT = VT/D r. A variation of this algorithm uses the relative deadline
instead of the absolute deadline in assigning priorities. The relative dead-
line is defined as the difference of the transaction deadline and the
transaction arrival time; i.e., PT = V T / (D T - A T) . Haritsa et al. [27] intro-
duced a bucket algorithm that allows the trade-off between transaction
value and transaction deadline to be varied. The actual trade-off made
between values and deadlines is controlled by a parameter of the algo-
rithm.

In evaluating the system performance under various priority assignment
policies, different performance metrics were considered by different re-
searchers. The metric used in [8] combines the performance measurements
of all value classes in terms of the fraction of guaranteed deadlines. The
results presented in that work reveals that giving higher weight to deadline
than to value in determining priorities results in better performance at low
transaction loads. However, the situation is reversed under high levels of
load; i.e., value should be given higher weight. The transactions considered
in [31] are associated with soft deadlines; i.e., there is still some (but
diminishing) value for completing the transactions after their deadlines.
The primary metric involved in evaluations is the total value realized by all
transactions processed in the system. It is shown in that work that
considering values and deadlines together in assigning priorities provides a
substantial improvement in performance compared to policies that do not
combine those two attributes in formulating the priority. Another observa-
tion is that both the value" and deadline distributions strongly affect the
performance. The performance metric used in [27] is the total value
provided by transactions that complete before their deadlines. The trans-
action deadlines are considered to be firm; i.e., no value is realized if the

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 129

deadline is missed. The bucket algorithm proposed by the authors to assign
priorities was fond to perform well under all operating conditions when its
parameter is set appropriately. A performance improvement is provided by
this algorithm over the other priority assignment policies discussed above.

2.2. IO SCHEDULING

In conventional database systems, the time spent for disk 10 has been
characterized as a dominant factor in overall system behavior. While
modern microprocessor technology is advancing at an incredible rate
(speedups of 40 to 60 percent annually), performance improvements in
disk units are occurring at only about 7 to 10 percent annually [53]. As a
result, just like in conventional systems, an important candidate for perfor-
mance improvement in disk-resident RTDBSs is the IO subsystem. A
conventional disk scheduling algorithm such as the Shortest Seek Time First
or S C A N (Elet,ator) orders the sequence of IO requests to minimize the
average disk head seek time [17]. On the other hand, the disk scheduler in
an RTDBS primarily concerns the timing constraints of transactions in
processing data access request [3, 11, 14, 39].

As discussed in [52], one important issue in scheduling the IO requests
of an RTDBS transaction is the assignment of individual deadlines to the
requests on the basis of the transaction deadline. This issue has not been
addressed explicitly by the recent work performed on IO scheduling. We
suggest that this problem can be" seen as a different version of the serial
subtask deadline assignment problem studied in [37] (see Section 3.3). The
methods provided in that work can also be used to assign individual
deadlines to IO requests.

Abbott and Garcia-Molina [3] developed some variants of the tradi-
tional SCAN algorithm in order to meet the deadlines of individual
requests. Using simulation, one of the new algorithms, called FD-SCAN,
was shown to consistently have the best performance in a wide variety of
experiments. In this algorithm, the request with the earliest feasible
deadline is chosen as the target and determines the scanning direction. (A
deadline is feasible if it is estimated that it can be met.) If there is no
request with a feasible deadline, then simply the closest request is serviced.

In [2], Abbott and Garcia-Molina studied an IO architecture that
handles read and write request differently. The architecture assumes that
write operations of a transaction are always performed after the transac-
tion has committed. While a read request is assigned a priority based on
the timing constraint of the transaction that issued it, a write request is
assumed to have no explicit timing constraint; i.e., it is assigned the lowest

130 C). ULUSOY

priority. The rationale behind this policy is that giving high priority to a
write does not enhance the performance directly, since the transaction that
issued the write has already committed. An extension to this policy was
provided by Kim and Srivastava [39] on the basis of the priority inheri-
tance 3 rule. Assuming that a write lock is held until after the modified
data item is copied into the database, if a transaction is waiting for the
release of a write lock, the write request inherits the priority of the waiting
transaction to activate the transaction as soon as possible. Otherwise (if no
transaction is waiting), the write request gets the lowest priority among all
the IO requests in the queue.

Carey et al. [11] proposed a priority-based variant of the SCAN algo-
rithm. In this algorithm, disk requests are grouped on the basis of their
priority, and the requests in each group are ordered using the traditional
SCAN algorithm. On the completion of each request, if a disk request of a
higher priority is found waiting to be serviced, the scheduler switches to
service the requests in the higher priority group. The results of a simula-
tion study provided by the authors indicate that the proposed algorithm is
effective if it is used in conjunction with a priority-based buffer manage-
ment algorithm.

Although using the priority-based disk scheduling algorithms described
above helps IO requests meet their timing constraints, the overall IO
performance in terms of the average seek time can become worse since
some requests can receive very poor service. The algorithms provided in
[14] attempt to reduce the overall seek time while taking the timing
constraints into account in servicing the requests. In assigning request
priorities, both the location and the deadline of requests are considered. A
request very close to the disk arm can be assigned a high priority even if it
has a large deadline. The algorithms were shown to perform well in terms
of both the average seek time and the fraction of satisfied timing con-
straints.

2.3. BUFFER/MEMORYMANAGEMENT

The problem of priority scheduling at the buffers of a database manage-
ment system was first addressed by Carey et al. [11]. In that work, the
variants of two existing buffer management algorithms that include priority
considerations in buffer management decisions were presented. The first
algorithm, called Priority-LRU, is the prioritized version of the Global-LRU

3The priority inheritance method is discussed more extensively in the context of
concurrency control in Section 2.4.

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 131

algorithm. The algorithm organizes the buffer pool into priority levels,
where each level consists of pages whose owners have the same priority.
The pages within each level are arranged in the LRU order. When a page
needs to be replaced, the least recently used page of the lowest priority is
chosen as the victim. The second algorithm, called Priority-DBMIN, is an
extension of the DBMIN buffer management policy [15]. In this policy, a
set of buffers, called a "locality set," is allocated to each transaction for
each file accessed by it. An optimizer provides the optimum size of each
locality set and the optimum replacement policy to be used within each
locality set. The priority-DBMIN algorithm allows a transaction to enter
the system only if its optimally sized locality sets can be allocated. Other-
wise, the lower priority transactions in the system are suspended until
sufficient buffers become available for the new transaction. Using simula-
tion, both algorithms were shown to be effective in enabling the system to
achieve its performance goals. It was also shown that Priority-DBMIN
dominates Priority-LRU in cases where buffer contention is a factor.

Jauhari et al. [35] suggest that although Priority-DBMIN was shown to
outperform Priority-LRU, it is more difficult to implement due to the
overhead of added system complexity. They proposed an easier-to-imple-
ment priority-based buffer management algorithm, called Priority Hints,
and conducted simulation experiments to explore its performance. In
the proposed algorithm, all the buffers owned by a transaction are orga-
nized into a "transaction set." Transaction sets are arranged in priority
order. Two types of buffers can exist in a transaction set: the buffers
containing fixed (i.e., currently being processed) pages, and the buffers
containing unfixed favored (i.e., likely to be accessed) pages. When a
replacement is required, nonfavored pages are considered first. If no
nonfavored page exists, the most recently unfixed favored page of the
lowest-priority transaction is chosen as the replacement victim. The idea of
maintaining the favored pages in the most recently used (MRU) order is
based on a discussion provided in [15], which states that MRU is a better
approach than LRU when choosing replacement victims from a set of
favored pages that are being repeatedly accessed. Performance experi-
ments provided in [35] show that buffer management can have a very
significant effect on the performance of a priority-oriented database sys-
tem. For most workloads, the proposed algorithm (Priority Hints) was
shown to perform as well as Priority-DBMIN, and better than Priority-
LRU.

Abbott and Garcia-Molina [3] presented and evaluated two new buffer
management techniques to be used in scheduling IO requests with dead-
lines. On the basis of the IO architecture they provided in [2] (as discussed
in the preceding section), read and write requests are treated separately by

132 O. ULUSOY

the proposed techniques. Read requests are assumed to be issued by
uncommitted transactions and receive service in accordance with the
timing constraints of the transactions that issued them. Write requests, on
the other hand, do not have explicit timing constraints because they are
processed after the commitment of transactions. Read requests are
buffered in a separate queue from write requests. The first buffer manage-
ment policy proposed, called Space Threshold maintains a minimum amount
of free space in the write buffer at all times (the amount is determined by
the threshold parameter of the policy), so that each new write request can
be placed in the buffer. Read requests are always preferred to write
requests as long as the threshold is not exceeded. A write request is
serviced only if the space threshold has been exceeded or there exists no
read request in the system. The second buffer management policy, called
Time Threshold, creates an artificial deadline D W for the action of writing
the contents of a buffer slot to disk. The strictness of D W reflects the
urgency of emptying a buffer slot; i.e., D w gets closer as a greater portion
of the buffer becomes full. A write request is serviced only if D W is
smaller than the earliest read deadline or there are no read requests.
Through simulation, both Space Threshold and Write Threshold methods
were shown to be effective in meeting read deadlines [3].

Pang et al. [51] presented a memory management algorithm to schedule
real-time queries that require large amounts of computational memory
(e.g., external sorting or join algorithms). The algorithm provides admis-
sion control and memory allocation of queries based on their timing
constraints. The number of queries that can be admitted to memory at any
time is controlled by dynamically choosing a target multiprogramming level
to balance the demands on the system's memory, CPU, and disks. Then,
the amount of memory assigned to each of the admitted queries is
determined. One of the following two strategies is employed in memory
allocation: the Max strategy, which assigns to each query either its maxi-
mum required memory or no memory at all, and the MinMax strategy,
which assigns to low-priority queries their minimum required memory and
to high-priority ones their maximum requirements. The workload charac-
teristics of the system are considered in choosing one of these two
strategies. The performance of the algorithm was studied using simulation
under query workloads that perform hash joins or external sorts. The
algorithm was shown to work well under overload situations and fluctuat-
ing workloads.

2.4. CONCURRENCY CONTROL

Concurrency control in database systems is used to control the interac-
tion among concurrently executing transactions in order to maintain the

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 133

consistency of the database [41]. Implementation of concurrency control
protocols in RTDBSs is difficult due to the conflicting requirements of
meeting deadlines and maintaining data consistency. The RTDBS re-
searchers, in general, assume the existence of two distinct application
environments (one characterized by hard deadline transactions and the
other processing soft or firm deadline transactions), and target one of the
environments in their study. We therefore review the current work on
concurrency control in two separate parts. In the first part, we summarize
the work performed considering an application environment in which the
data consistency requirement is modified since the deadline requirement
cannot be relaxed. In such environments, getting timely but partially
incorrect information can be preferable to getting correct but late infor-
mation [57]. In the second part of this section, we examine the concurrency
control approaches intended for environments where maintaining data
consistency is more crucial than satisfying deadlines. Schedulers should not
violate the data consistency requirement while observing the timing con-
straints of transactions.

Concurrency Control with Hard Deadline Transactions

With the current database technology it is extremely difficult to satisfy
"hard" timing constraints of transactions processed in an RTDBS. This
difficulty comes from the unpredictability of transaction response times.
Each transaction operation accessing a data item takes a variable amount
of time due to concurrency control and disk IO [65]. In this section, we
review some methods that can be used to handle the consistency and
timeliness issues together in processing hard deadline transactions in
RTDBSs.

Serializability is a widely accepted correctness criterion for concurrency
control in database systems. Serializable schedules provide correct results
and leave the database consistent. However, serializability is not a suitable
technique to implement in scheduling hard deadline transactions because
of the limitation of concurrency allowed by serializable executions. Exist-
ing concurrency control protocols ensuring serializability are based on
either one of two techniques: blocking transactions and restarting transac-
tions. Both techniques are inappropriate for time-critical scheduling.
Blocking can cause priority inversion; i.e., a high-priority transaction (e.g.,
with an urgent deadline) can be blocked by a lower-priority transaction
[54]. Aborting and then restarting a transaction, on the other hand, causes
a waste of processing time and other system resources already used by that
transaction.

The consistency model presented in [45, 71] is an attempt at the
relaxation of strict serializability rules. The model is an extension of the

134 C). ULUSOY

imprecise computation model 4 to transaction processing in RTDBSs. In the
proposed model, timing constraints are satisfied by sacrificing database
consistency temporarily to some degree. External data consistency is de-
fined in contrast to internal data consistency as maintained by conven-
tional database systems. The external consistency constraint requires that
the data used by a transaction reflect the physical environment at the time;
this is in contrast to internal consistency, which requires that all data must
meet some predefined constraints in the database. The model is based on
the assumption that for most RTDBS applications, a timely and externally
consistent result is more desirable than an out-of-date though internally
consistent response. For instance, the trace of an unidentified object
detected by an on-board system is externally consistent but may not be
internally consistent before it is interpreted and filtered by the system.

The study of Hou et al. [30, 48, 49] also involves development of a
transaction processing model to facilitate timely executions that satisfy
strict deadlines. They provide a query evaluation methodology that uses
statistical and heuristic time control strategies to process queries within
fixed deadlines. Different degrees of accuracy (approximation) of the
responses to the queries can be achieved using that methodology.

All the methods discussed so far can provide timely executions while
maintaining data consistency to some extent. An extreme approach that
can be acceptable in some application environments is to completely
eliminate consistency checks while processing transactions. As suggested
by Singhal [57], in applications where it is more important to get partially
incorrect information quickly than to wait for correct information, a
possible approach may be not to exercise any concurrency control and
periodically examine the database for inconsistencies and restore it to a
consistent state.

Concurrency Control with Soft~Firm Deadline Transactions

A substantial amount of research in RTDBSs has been devoted to
development of concurrency control protocols that meet soft / f i rm dead-
line requirements of transactions. The general approach taken in that
research has been extending traditional concurrency-control techniques
(that provide a serialization order among conflicting transactions) by
applying time-critical scheduling methods to observe timing constraints of

4 In the imprecise computation model, if a transaction does not have enough time to
complete its execution, it is allowed to produce imprecise (i.e., incomplete) results from
its operations [46].

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 135

transactions. A number of lock-based, optimistic and timestamp-ordering
concurrency control protocols have been proposed so far. All those proto-
cols aim to minimize the number of transactions that miss their deadlines.

Two main approaches to the lock-based real-time concurrency control
have been the Priority Inheritance (PI) and the Priority Abort (PA). They
are both time-cognizant extensions of the conventional two-phase locking
(2PL) protocol. Variations of these approaches have been the basis for the
other lock-based concurrency-control protocols.

PI was proposed by Sha et al. [54, 55] to overcome the problem of
priority inversion. This scheme ensures that when a transaction blocks
higher-priority transactions, it is executed at the highest priority of the
blocked transactions; in other words, it inherits the highest priority. Due to
the inherited priority, the transaction can be executed faster resulting in
reduced blocking times for high-priority transactions.

PA prevents priority inversion by aborting low-priority transactions
whenever necessary [1]. In resolving a data lock conflict, if the transaction
requesting the lock has higher priority than the transaction that holds the
lock, the latter transaction is aborted and the lock is granted to the former
one. Otherwise, the lock-requesting transaction is blocked by the higher-
priority lock-holding transaction. A high-priority transaction never waits
for a lower-priority transaction. This condition prevents deadlocks if we
assume that the real-time priority of a transaction does not change during
its lifetime and that no two transactions have the same priority.

The performances of these two approaches have been studied by some
researchers either using simulation (e.g., [2, 4, 28, 68]) or on an RTDBS
testbed (e.g., [33, 34]). Although in all those works both schemes were
found to perform better (i.e., satisfy more deadlines) than the conventional
2PL protocol, the results obtained for the comparative performances of
the schemes do not completely agree. It was observed by Huang et al. [33,
34], Haritsa et al. [28], and Ulusoy and Belford [68] that the performance
provided by PI cannot reach the level achieved by PA. Remember that PA
never blocks high-priority transactions, but instead aborts low-priority
transactions when necessary. It also eliminates the possibility and cost of
deadlocks. The authors thus conclude that aborting a low-priority transac-
tion is preferable in RTDBSs to blocking a high-priority one, even though
aborts lead to a waste of resources. The results presented by Abbott and
Garcia-Molina [2, 4], on the other hand, indicate that no protocol is the
best under all conditions; the comparative performance of the schemes
depends on some other factors they considered, such as the type of load,
and the priority policy. Under continuous and steady load, the perfor-
mance of PI was observed to be better than that of PA. This result is
different from what the other researchers obtained in their experiments.

136 O. ULUSOY

The difference is probably due to the different assumptions made and
different execution models used in evaluations.

Huang et al. [33] developed a combined priority abort and priority
inheritance protocol, called conditional priority inheritance, to capitalize on
the advantages of both schemes. The protocol attempts to reduce the
blocking times with respect to PI, and to reduce the abort rate with respect
to PA. When a transaction T is blocked by a lower priority transaction T',
if T' is near completion, it inherits the priority of T; otherwise, T' is
aborted. The protocol assumes that the length of a transaction (i.e., the
number of data items accessed by the transaction) is known in advance.
The protocol has a threshold parameter h. At the time of a data conflict, if
the remaining number of data items to be accessed by the lock-holding
transaction is less than or equal to threshold h, then PI is applied;
otherwise, PA is used. The experiments run by the authors show that the
conditional priority inheritance protocol performs well for a wide range of
system workloads.

An extension to PI is the priority ceiling protocol, proposed by Sha et al.
[54, 55], which bounds the blocking time of high-priority transactions to no
more than one transaction execution time. It eliminates the deadlock
problem from PI and attempts to reduce the blocking delays of high-prior-
ity transactions. The "priority ceiling" of a data item is defined as the
priority of the highest-priority transaction that may have a lock on that
item. In order to obtain a lock on a data item, the protocol requires that a
transaction T must have a priority strictly higher than the highest-priority
ceiling of data items locked by the transactions other than T. Otherwise,
transaction T is blocked by the transaction that holds the lock on the data
item of the highest-priority ceiling. The performance of the protocol was
examined in [56] using simulation. The results obtained revealed that the
protocol performs poorly when the database is not memory resident.
However, a significant improvement was observed in the performance
when intention IO was used to prefetch data items accessed by transac-
tions. A variant of the priority ceiling protocol, proposed by Chen and Lin
[13], enables the scheduler to dynamically determine the priority ceiling of
each data item. Son and Chang [59] investigated methods to apply the
priority ceiling protocol as a basis for real-time locking protocol in a
distributed environment.

In a more recent work, Ulusoy [66] provided a new concurrency control
protocol, called data-priority-based locking protocol, to prove that the real-
time performance provided by PA, which appears to be a good locking
protocol, can be further improved if the data access requirements of
transactions are known in advance. Similar to the priority ceiling protocol,
the proposed protocol is based on prioritizing data items; each data item

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 137

carries a priority equal to the highest priority of all transactions currently
in the system that include the data item in their access lists. In order to
obtain a lock on a data item D, the priority of a transaction T must be
equal to the priority of D. Otherwise (if the priority of T is less than that
of D), transaction T is blocked by the transaction that is responsible for
the priority of D. Suppose that T has the same priority as D, but D has
already been locked by a lower-priority transaction T' before T arrives at
the system and adjusts the priority of D. T' is aborted at the time T needs
to lock D. Some of the transaction aborts and the resulting resource waste
experienced in PA can be prevented by employing data-priority-based
locking protocol. Consider the following scenario: suppose that two trans-
actions T x and T~, have conflicting accesses on item D, and transaction T,
has higher priority. Under the new protocol, if T~ tries to lock data item D
before 7~, does, the lock request of T, is not accepted. Under protocol PA.
T~. would get the lock on D, but would be aborted when the higher-priority
transaction Tx requests D. As a result, the processing time spent by T,.
would be simply wasted. This wasted time might have been used to help
another transaction meet its deadline. Expectations about the performance
of data-priority-based locking protocol were confirmed by experimental
results [66, 68].

Examples of other lock-based concurrency control protocols developed
for RTDBSs include those provided by Agrawal et al. [5] and by Son et al.
[61]. The protocols presented in [5] were motivated by the observation that
the blocking behavior of locking, protocols can greatly degrade the perfor-
mance of RTDBSs. A new relationship between locks, called ordered
sharing, is used in the protocols to eliminate blocking of read and write
operations at the expense of a possible delay at transaction commitment.
This delay is exploited by allowing other transactions to run within the
slacks of delayed transactions. In order to commit, a delayed transaction
tha: reaches its deadline may have to abort a lower-priority transaction
that has not yet completed. The protocols aim to improve the overall
system performance by exploiting any available slack in a transaction. It
was shown through simulation that the proposed protocols can perform
better than the priority abort protocol PA.

A rather complex locking protocol was introduced by Son et al. [61] to
be used in RTDBSs. In this protocol, the serialization order of active
transactions is adjusted dynamically, making it possible for high-priority
transactions to be executed before lower-priority transactions, while
lower-priority transactions may not have to be aborted in resolving data
conflicts. The problem of concurrency control is decomposed to two
subproblems, namely read-write synchronization and write-write synchro-
nization, and read-write conflicts are resolved by 2PL while write-write

138 O. ULUSOY

conflicts are resolved by the Thomas write rule. 5 The authors provided the
results of simulation experiments examining the performance of the proto-
col under a wide range of workloads and data access patterns.

Some variants of the optimistic concurrency control protocol [42] have
also been developed and evaluated for RTDBSs. Haritsa et al. [25] studied
the relative performance of lock-based and optimistic concurrency tech-
niques in the context of an RTDBS. PA was used as the representative
lock-based protocol to be compared against the broadcast commit variant
of the optimistic protocol. In the broadcast commit protocol, the validation
check for a committing transaction is performed against the other active
transactions and the transactions that are in conflict with the committing
transaction are aborted. Although this protocol does not make use
of transaction priorities in resolving data conflicts, it was shown to outper-
form the priority-based locking protocol PA over a wide range of system
utilization. The observation was that transaction blocking in lock-based
protocols results in unpredictable delays causing transactions to miss their
deadlines. The authors later developed an optimistic protocol, called
WAIT-50, which allows for the use of priorities to improve decision making
in resolving conflicts [26]. The protocol uses a "50 percent" rule as follows:
If half or more of the transactions conflicting with a committing transac-
tion are of higher priority, the transaction is made to wait for the
high-priority transactions to complete; otherwise, it is allowed to commit
while the conflicting transactions are aborted. While the transaction is
waiting, it is possible that it will be restarted due to the commit of one of
the conflicting transactions with higher priority. WAIT-50 protocol was
shown to provide significant performance gains over the broadcast commit
protocol.

Huang et al. [32] implemented and evaluated a set of optimistic proto-
cols on an RTDBS testbed. The optimistic scheme was found to perform
better than the locking scheme only under low data contention. When data
contention was high, the situation was reversed due to the overhead of
large number of transaction restarts. Those experimental results do not
agree with the simulation results of Haritsa et al. [25, 26]. The differences
are contributed to the different types of systems involved in evaluations
and the different degree of protocol implementation [32].

The priority inversion problem that was defined for locking protocols
can also exist in an RTDBS that maintains data consistency through use of
a timestamp-ordering concurrency control protocol. It is possible that a

5The Thomas write rule ignores a write request that has arrived late, rather than
rejecting it [7].

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 139

high-priority transaction T is aborted at its access to a data item, since a
lower priority transaction T' carrying a .timestamp higher than the time-
stamp of T has accessed that data item previously. Ulusoy [66, 68]
proposed a time-cognizant concurrency control protocol that attempts to
control the priority inversion problem of the timestamp-ordering scheme.
In the basic timestamp-ordering protocol, scheduling decisions for conflict-
ing operations are all based on the timestamp values assigned to transac-
tions at startup time [7]. Each transaction is assigned a timestamp based on
its submission (or resubmission) time to the system. One possible way to
make use of priorities of transactions during scheduling is to involve the
priorities in the timestamp assignment procedure. The new protocol cate-
gorizes the transactions into timestamp groups based on their arrival
times. The time is divided into intervals of a certain length and the
transactions that arrive at the system within the same interval are placed
in the same timestamp group. The basic idea is to schedule the transac-
tions of the same timestamp group based on their real-time priorities.
Each transaction is assigned a two-level timestamp made up of a group
timestamp and a real-time timestamp. The transactions within the same
timestamp group are assigned the same group timestamp, which is the
arrival time of the first transaction in that group. Real-time timestamps of
transactions within the same group are determined based on the real-time
priorities of transactions. The transaction with the highest priority obtains
the largest real-time timestamp, so it cannot be aborted by any other
transaction in the same group in the case of a data access conflict.
Real-time timestamps are used in ordering the access requests of the
transactions from the same group, while the group timestamp is used in
ordering the transactions from different groups. It was observed through
simulation experiments that the proposed protocol improves the real-time
performance of the basic timestamp-ordering protocol especially under
high load and high data conflict conditions; however, the improvement is
not enough to bring its performance up to that of the priority-based
locking protocols.

A hybrid protocol that is a combination of optimistic concurrency
control and timestamp-ordering was proposed by Son et al. [62]. The
protocol uses optimistic concurrency control with broadcast commit to
take the advantage of the early detection and resolution of nonserializable
executions. The protocol also employs dynamic timestamp allocation [6]
(i.e., a transaction gradually builds its serialization order whenever a data
conflict occurs) and timestamp intervals [10] (i.e., each transaction is
assigned a timestamp interval instead of a single timestamp value, and the
timestamp interval of each transaction is adjusted each time the transac-
tion performs a read or a write operation). Transaction priorities are

140 O. ULUSOY

considered in deciding which transaction should be aborted if a data
conflict is detected during the validation of a transaction. No results
regarding the performance of the protocol have been provided by the
authors.

A recent work by Hong et al. [29] introduced a cost conscious approach
to concurrency control in RTDBSs. The cost conscious approach includes
the cost of aborted transactions in priority calculation, so that the effects
of transaction abort and restart overhead are considered in resolving
conflicts among transactions. The dynamic priority assignment protocol
provided adapts to changes in the system load to reduce the number of
transaction restarts. Using simulation, it was shown that the performance
of a concurrency control protocol that involves restarts in scheduling
decisions can be improved by using the cost conscious approach.

O'Neil et al. [47] proposed a two-phase scheduling approach to provide
more predictable transaction executions in RTDBSs. They introduced two
algorithms both having two phases of transaction execution. In the first
algorithm, called the optimistic algorithm, after performing all data access
operations in the first phase, a validation step determines whether the
serializability is ensured by the execution of those operations. If so, the
transaction commits; otherwise, the second phase of transaction execution
starts. In the second algorithm, called the skeleton execution algorithm, the
first phase performs only calculations needed to evaluate variables used to
determine the data items accessed. In the second phase of both algorithms,
a real-time scheduling method is employed for transaction execution.

Performance impact of maintaining multiple versions ~' of data in RT-
DBSs was studied by Kim and Srivastava [39]. They proposed several
multiple-version concurrency control protocols that aim to reduce data
contention and thus to increase the degree of concurrency in an RTDBS
environment. The protocols are all based on the multiple-version 2PL
protocol [7]. The authors claim that maintaining multiple versions may not
add much to the cost of execution, because the versions may be used
anyway by the recovery algorithm. The experimental results obtained using
a detailed simulation model show that the protocols can provide an
improvement over the single-version concurrency control protocols devel-
oped for RTDBSs.

DiPippo and Wolfe [19] developed a semantic concurrency control
technique on a real-time object~oriented database system model. The
semantic concurrency control technique is capable of supporting logical

61n a system with multiple versions of data, each write operation on a data item
produces a new version rather than overwriting it.

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 141

consistency, temporal consistency, and the trade-offs between them. The
technique utilizes the user-defined compatibility function of an object to
determine the trade-off and to define correctness for that object. In order
to invoke a method on an object, a transaction requests a semantic lock. In
processing the semantic lock request, the compatibility function of the
object and a set of conditions are evaluated.

3. DISTRIBUTED REAL-TIME DATABASE SYSTEMS

Distributed databases fit more naturally in the decentralized structures
of many RTDBS applications that are inherently distributed (e.g, the stock
market, banking, command and control systems, and airline reservation
systems). Distributed database systems provide shared data access capabili-
ties to transactions; i.e., a transaction is allowed to access data items stored
at remote sites. While scheduling transactions in a distributed RTDBS,
besides observing the timing constraints, the global consistency of the
distributed database should also be preserved, as well as the local consis-
tency at each data site [70]. To achieve this goal, it is the exchange of
messages that carry scheduling information between the data sites where
the transaction is being executed is required. The communication delay
introduced by message exchanges constitutes a substantial overhead for
the response time of a distributed transaction. Thus, guaranteeing the
response times of transactions (i.e., satisfying the timing constraints), is
more difficult in a distributed RTDBS than that in a single-site RTDBS.
This section provides a brief overview of the recent work that has ad-
dressed various aspects of distributed RTDBSs.

3.1. REPLICA TION

In a replicated database system, copies of data can be stored redundantly
at multiple sites. The potential of data replication for high data availability
and improved read performance is crucial to RTDBSs. On the other hand,
data replication introduces its own problems. Access to a data item is no
longer controlled exclusively by a single site; instead the access control is
distributed across the sites, each storing a copy of the data item. It is
necessary to ensure that mutual consistency of the replicated data is
provided; in other words, replicated copies must behave like a single copy.
This can be made possible by preventing conflicting accesses on the
different copies of the same data item, and by making sure that all data
sites eventually receive all updates [21]. Multiple-copy updates lead to a

142 (~. ULUSOY

considerable overhead due to the communication required among the data
sites holding the copies.

The impact of storing multiple copies of data on satisfying timing
constraints of RTDBS transactions was investigated by Ulusoy [69]. A
detailed performance model of a distributed RTDBS is employed in that
work to evaluate the effects of various workload parameters and design
alternatives on system performance. The primary performance issue con-
sidered is the satisfaction of transaction deadlines; more specifically, an
answer to the following question is sought: "does replication of data always
aid in satisfying timing constraints of transactions?" Various experiments
are conducted to identify the conditions under which data replication can
help real-time transactions satisfy their timing constraints. Different appli-
cation types are considered in evaluating the effects of the degree of data
replication. Reach application is distinguished by the type (query versus
update) and data access distribution (local versus remote) of the processed
transactions. It was observed that replication is not attractive for update-
oriented real-time applications due to the overhead of synchronizing
updates on multiple copy data items. On the other hand, unless the
majority of the transactions are of the update-type or the system load is
high, it seems preferable to store multiple copies (but not too many) of
data. The effects of site failures were also examined to estimate how much
replication is needed to provide a reliable processing environment for
real-time transactions of different applications.

Son and Kouloumbis [63] proposed a new replication control algorithm
for distributed RTDBSs. The algorithm integrates real-time scheduling
with data replication control. It employs epsilon serializability as the
correctness criterion to provide more concurrency to real-time transac-
tions. Real-time scheduling features are involved in responding to timing
requirements of transactions. A token-based synchronization scheme is
used to control replication. The performance issues of the algorithm were
not addressed by the authors.

Lin and Lin [44] proposed some techniques to enhance the availability
of replicated real-time databases. They suggest that a transaction charac-
terized with a strict deadline should be able to execute even if the most
up-to-date data copies are not available, so that the mutual consistency
requirement can be relaxed for distributed RTDBSs that process hard
deadline transactions. They also introduced the user q u o r u m scheme to
increase the availability in a partitioned RTDBS. The scheme is different
from traditional quorum protocols in that it gives access rights to a
partition with a majority of users rather than a partition with a majority of
data copies.

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 143

3.2. DISTRIBUTED CONCURRENCY CONTROL

In a distributed database system, a scheduler at each site is responsible
for controlling concurrent accesses to data items stored at that site. Access
requests of both local and remote transactions are ordered together on the
basis of the concurrency control protocol being executed. Distributed
versions of the time-cognizant concurrency control protocols (see Section
2.4) need to be executed in distributed RTDBS environments.

The performance of distributed lock-based concurrency control proto-
cols was studied by Ulusoy both in nonreplicated [67] and replicated [69]
RTDBS environments. The distributed version of the priority-abort proto-
col PA was observed to perform better than the distributed priority
inheritance protocol PI under various conditions in a nonreplicated RT-
DBS [67]. However, the difference between the performance results of
protocols is not as large as that observed in a single-site RTDBS [68]. The
results obtained with a replicated RTDBS, on the other hand, show that
PA can beat PI only under query-based application environments and
when the level of data replication is low [69]. These two different sets of
results lead to the conclusion that restart-based protocols (like PA) are
superior to blocking-based protocols (like PI) as long as the overhead of
transaction aborts is not high. As the data become more distributed and
replicated, the increased overhead of transaction aborts causes PA to
perform worse than PI.

3.3. SUBTASK DEADLINE ASSIGNMENT

Kao and Garcia-Molina [37, 38] addressed the issue of the subtask
deadline assignment in a distributed environment. A typical global transac-
tion processed in a distributed system possesses subtasks (i.e., subtransac-
tions) to be executed on various system sites. A single value of an
end-to-end global deadline might not truly reflect the urgency of each
individual subtask. The subtask deadlines should be earlier than the
end-to-end global deadline so as to speed up the progress of the global
transaction. Kao and Garcia-Molina suggested and evaluated heuristic
scheduling policies for the subtask deadline assignment problem. The
problem was reduced to two subproblems: one deals with serial subtasks
(where a global transaction consists of a number of serially executing
subtasks), and the other one with parallel subtasks (where a global
transaction involves parallel execution of subtasks at different nodes).

The serial subtask problem was studied in [37]. Several ways of breaking
up an end-to-end deadline into intermediate virtual deadlines that can

144 O. ULUSOY

better reflect the urgency of each subtask were discussed. One of the
proposed schemes, called equalflexibility, tries to estimate the total amount
of slack time a global transaction has and divides this slack among the
subtasks proportional to their execution times. Each subtask thus has the
same slack-to-execution-time ratio (flexibility). Although this method re-
quires an estimate on execution times, it was shown that this estimation
does not have to be very accurate.

The parallel subtask problem and the combined effect of serial and
parallel subtask problems were studied in [38]. When a global transaction
is divided into a number of subtasks for parallel processing, it is very likely
that one or more subtasks run into a busy component and become tardy.
This will cause the whole global transaction to miss its deadline. One
scheduling heuristic proposed is based on the observation that the more
subtasks of a global transaction has, the poorer is its chance of meeting its
deadline. The amount of time that the transaction is allowed to finish is
divided by a value that is proportional to the number of the transaction's
subtasks. The larger the number of subtasks is, the earlier are the virtual
deadlines assigned to the subtasks. The heuristic was shown to be quite
effective for the parallel subtask problem. Combining the deadline assign-
ment strategies proposed for both the serial and parallel subtasks, it was
shown that the real-time behavior of distributed transactions can be
significantly improved.

3.4. COMMITMENT

The effects of a distributed transaction on the data must be visible at all
sites in all or nothing fashion. The so-called atomic commitment property
can be provided by a commit protocol that coordinates the subtransactions
such that either all of them or none of them commit. In conventional
distributed database systems, the standard approach to ensuring the atom-
icity property of distributed transactions is to use the two-phase commit
(2PC) protocol [7]. It is suggested by Soparkar et al. that the unpredictabil-
ity and the cost of 2PC protocol makes it unsuitable for RTDBSs. Their
work in [64] is basically an investigation of possible methods to make a
commit protocol adaptive in the sense that under different loading condi-
tions the system can dynamically change to a different commitment strat-
egy. In case of time delays o r transient overloads, commitment protocols
that relax the atomicity property can be adopted by local sites. The authors
also suggest use of the concept of compensation for recovering from the
failures of RTDBS transactions (i.e., if a transaction commits erroneously,
a compensating transaction is used to perform a semantic undo). It is
stated that compensation is attractive for RTDBSs because a compensa-

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 145

tion process may be deferred to be executed during periods of light system
load, while traditional undo operations need to be performed immediately.

4. ACTIVE REAL-TIME DATABASE SYSTEMS

Conventional database systems are in general passit~e; i.e., transactions
are executed only when they are explicitly initiated by a user or an
application program. However, some application areas, such as automated
manufacturing, air traffic control, and battle management require the
underlying database system to be actit.,e. An acti~'e database system is
characterized by conditions defined on the states of the database that need
to be evaluated when predefined ecents occur, and specified actions that
must be performed once the conditions hold [20].

If the application supported by an active database system requires
timely response to critical situations, the specified actions must be exe-
cuted subject to some timing constraints. Involvement of timing constraints
in active databases was considered in the HiPAC (High Performance
ACtive Database System) project [12, 16]. Three basic concepts explored in
this project are active database management, timing constraints, and
contingency plans. Contingency plans are defined as alternate actions that
can be invoked whenever the system determines that it cannot complete an
action within its deadline. A knowledge model was developed for the
project that provides primitives for defining condition-action rules and
timing constraints, control mechanisms for efficient rule searching, and
support for the execution model primitives. The execution model intro-
duces a generalized transaction model that provides correct execution of
specified actions and user transactions together in a timely manner.

Korth et al. [40] introduced a new approach to the modeling of an active
RTDBS. In this approach, timing constraints are associated with the states
of the database rather than directly with transactions. A set of consistency
constraints are also defined for the database. If a change in the database
state violates a consistency constraint, a transaction is triggered to restore
the consistency within a specified deadline. The deadline is determined by
the timing constraint defined on that state.

5. ARCHITECTURAL CONSIDERATIONS

5.1. INTEGRATION WITH OPERATING SYSTEMS

Some of the basic functions performed by a database management
system are also performed by an operating system. As Graham suggests

146 C). ULUSOY

[22], real-time applications cannot afford wasteful duplication of these
functions. An integration of basic building blocks of operating systems and
RTDBSs is thus necessary. The functions of a RTDBS that should be
supported by the underlying operating system include priority-based CPU
and IO scheduling, concurrency control and recovery, buffer management,
and data management.

Buchmann et al. [9] proposed a system architecture for the integration
of functions from operating systems and RTDBSs. The architecture pro-
vides an interface between the operating system's scheduler and the
RTDBS's concurrency control module. The priority scheduling function
provided by the operating system is used through that interface to resolve
data conflicts among concurrent transactions. Also, for blocking/reactiva-
tion of transactions during conflict resolution, the suspend/resume primi-
tives of the operating system are used.

5.2. MAIN M E M O R Y DATABASE SYSTEMS

As pointed out before, among the most important factors that might
cause a transaction to miss its deadline is the disk IO delay. One possible
design approach to eliminate disk access delay from the database access is
to maintain the database in main memory. Main memory databases are
expected to be economically feasible in the near future due to falling
memory prices and growing memory sizes [57]. The work performed so far
on various design issues of conventional main memory database systems
can also be adopted in RTDBSs. The research in conventional main
memory databases has primarily focused on crash recovery (e.g., [23, 24]),
data access methods (e.g., [18]), and query processing (e.g., [43]).

6. SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

The area of real-time database systems (RTDBSs) has emerged as a
result of the demand to apply database technology to the management of
data belonging to a real-time system. Since the amount of data handled by
real-time systems has steadily been increasing, it has become essential to
use efficient database management techniques for timely execution of
retrieval and update operations on data. Transactions processed in an
RTDBS are characterized by timing constraints, typically in the form of
deadlines. Essential to RTDBSs is the processing of transactions within
their deadlines while maintaining the logical consistency of data accessed
by the transactions. Ideas from both real-time scheduling and database
management techniques have been combined to satisfy the needs of
RTDBSs.

RESEARCH ISSUES IN REAL-TIME DATABASE SYSTEMS 147

Issues related to transaction scheduling in RTDBSs have been ad-
dressed by a number of researchers. The major contribution of the
research conducted in this area has been the development of new time-
cognizant protocols for concurrency, control, resource scheduling, commit
processing, and buffer management. These protocols have extended tradi-
tional database management techniques with time-critical scheduling
methods. Although the proposed protocols have usually been tested using
simulation, we believe that more experimental work is needed to demon-
strate the usefulness and practicality of the protocols.

Considering the time-critical scheduling requirements of RTDBS, main
memory database systems seems to be a good candidate to replace conven-
tional database systems as they eliminate disk access delays from database
access. Main memory databases can be considered as a feasible design
approach to RTDBSs due to the recent advances in hardware technology
that makes main memory drastically cheaper each year. However, main
memory databases introduce some problems and design issues of their own
[57]. As Graham suggests [22], further research is required to understand
the tradeoffs of maintaining main memory databases.

We think that although a considerable amount of research has been
conducted so far in the area of RTDBSs, still much work remains to be
done in order to make them viable. In addition to the future research
directions discussed above, other open problems in RTDBSs include the
following:

• Providing a formal framework for defining a data and transaction
model for RTDBSs.

• Providing language constructs to express timing constraints and to
specify exception handling procedures for unsatisfied timing con-
straints.

• Developing performance models and benchmarks to exercise time-
cognizant protocols developed for RTDBS functions.

• Efficient integration of RTDBS functions with the facilities provided
by operating systems.

I would like to thank Prof. Patrick O'Neilfor his helpful comments on earlier ~'ersions q[
this paper.

REFERENCES

1. R. Abbott and H. Garcia-Molina, Scheduling real-time transactions: A performance
evaluation, in Proceedings of the 14th International Conference on Very Large Data
Bases, 1988, pp. 1-12.

148 O. U L U S O Y

2. R. Abbott and H. Garcia-Molina, Scheduling real-time transactions with disk
resident data, in Proceedings of the 15th International Conference on Very Large Data
Bases, 1989, pp. 385-396.

3. R. Abbott and H. Garcia-Molina, Scheduling I / O requests with deadlines: A
performance evaluation, in Proceedings of the l lth Real-Time Systems Symposium,
1990, pp. 113-124.

4. R. Abbott and H. Garcia-Molina, Scheduling real-time transactions: A performance
evaluation, ACM Trans. Database Systems 17(3):513-560 (1992).

5. D. Agrawal, A. E1 Abbadi, and R. Jeffers, Using delayed commitment in locking
protocols for real-time databases, in Proceedings of the ACM S1GMOD International
Conference on the Management of Data, 1992, pp. 104-113.

6. R. Bayer, K. Elhardt, J. Heigert, and A. Reiser, Dynamic timestamp allocation for
transactions in database systems, in Proceedings of the 2nd International Symposium
on Distributed Databases, 1982, pp. 9-20.

7. P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery
in Database Systems, Addison-Wesley, Reading, MA, 1987.

8. S. R. Biyabani, J. A. Stankovic, and K. Ramamritham, The integration of deadline
and criticalness in hard real-time scheduling, in Proceedings of the 9th Real-Time
Systems Symposium, 1988, pp. 152-160.

9. A. P. Buchmann, D. R. McCarthy, M. Shu, and U. Dayal, Time-critical database
scheduling: A framework for integrating real-time scheduling and concurrency
control, in Proceedings of the 5th International Conference on Data Engineering, 1989,
pp. 470-480.

10. C. Boksenbaum, M. Cart, J. Ferrie, and J. Pons, Concurrent certifications by
intervals of timestamps in distributed database systems, IEEE Trans. Software Eng.
SE-13(4):409-419 (1987).

11. M. J. Carey, R. Jauhari, and M. Livny, Priority in DBMS resource scheduling, in
Proceedings' of the 15th International Conference on Very Large Data Bases, 1989, pp.
397-410.

12. S. Chakravarthy et al., HiPAC: A research project in active, time-constrained
database management, Technical Report XAIT-89-02, Xerox Advanced Informa-
tion Technology, Cambridge, 1989.

13. M. Chen and K. J. Lin, Dynamic priority ceilings: A concurrency control protocol
for real-time systems, Real-Time Systems 2(4):325 346 (1990).

14. S. Chen, J. A. Stankovic, J. Kurose, and D. Towsley, Performance evaluation of two
new disk scheduling algorithms for real-time systems, Real-Time Systems
3(3):307-336 (1991).

15. H. T. Chou and D. DeWitt, An evaluation of buffer management strategies for
relational database systems, in Proceedings of the l lth International Conference on
Very Large Data Bases, 1985, pp. 127-141.

16. U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, D.
McCarthy, A. Rosenthal, S. Sarin, M. J. Carey, M. Livny, and R. Jauhari, The
HiPAC project: Combining active database and timing constraints, ACM SIGMOD
Record 17(1):51-70 (1988).

17. H. M. Deitel, An Introduction to Operating Systems, Addison-Wesley, Reading, MA,
1984.

18. D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebreaker, and D. Wood,
Implementation techniques for main memory database systems, in Proceedings of
the ACM SIGMOD International Conference on the Management of Data, 1984, pp.
1-78.

R E S E A R C H ISSUES IN R E A L - T I M E D A T A B A S E SYSTEMS 149

19. L. C. DiPippo and V. F. Wolfe, Objected-based semantic real-time concurrency
control, in Proceedings of the 14th IEEE Real-Time Systems Symposium, 1993.

20. R. Elmasri and S. B. Navathe, Fundamentals of Database Systems, 2nd ed., Ben-
jamin/Cummings, Redwood City, CA, 1994.

21. H. Garcia-Molina and R. K. Abbott, Reliable distributed database management, in
Proc. IEEE 75(5):601-620 (1987).

22. M. H. Graham, Issues in real-time data management, Real-Time Systems
4(3):185-202 (1992).

23. L. Gruenwald and M. H. Eich, MMDB reload algorithms, in Proceedings of the
ACM SIGMOD International Conference on the Management of Data, 1991, pp.
397-406.

24. R. Hagmann, A crash recovery scheme for a memory resident database system,
IEEE Trans. Computers C-35(9):839-843 (1986).

25. J. R. Haritsa, M. J. Carey, and M. Livny, On being optimistic about real-time
constraints, in Proceedings" of the ACM SIGACT-SIGMOD-SIGART, 1990, pp.
331-343.

26. J. R. Haritsa, M. J. Carey, and M. Livny, Dynamic real-time optimistic concurrency
control, in Proceedings of the l lth Real-Time Systems Symposium, 1990, pp. 94-103.

27. J. R. Haritsa, M. J. Carey, and M. Livny, Value-based scheduling in real-time
database systems, Technical Report 1204, Department of Computer Science, Uni-
versity of Wisconsin-Madison, 1991.

28. J. R. Haritsa, M. J. Carey, and M. Livny, Data access scheduling in firm real-time
database systems, Real-Time Systems 4(3):203-241 (1992).

29. D. Hong, T. Johnson, and S. Chakravarthy, Real-time transaction scheduling: A cost
conscious approach, in Proceedings of the ACM SIGMOD hltemational Conference
on the Management of Data, 1993, pp. 197-206.

30. W. C. Hou, G. Ozsoyo~lu, and B. K. Taneja, Processing aggregate queries with hard
time constraints, in Proceedings of the ACM SIGMOD International Conference on
the Management of Data, 1989, pp. 68-8.

31. J. Huang, J. A. Stankovic, D. Towsley, and K. Ramamritham, Experimental evalua-
tion of real-time transaction processing, in Proceedings" of the lOth Real-Time Systems
Symposium, 1989, pp. 144-153.

32. J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley, Experimental evalua-
tion of real-time optimistic concurrency control schemes, in Proceedings of the 17th
International Conference on Vew Large Data Bases', 1991, pp. 35-46.

33. J. Huang, J. A. Stankovic, K. Ramamritham, and D. Towsley, On using priority
inheritance in real-time databases, in Proceedings of the 12th Real-Time Systems
Symposium, 1991, pp. 210-221.

34. J. Huang, J. A. Stankovic, K. Ramamritham, D. Towsley, and B. Purimetla, Priority
inheritance in soft real-time databases, Real-Time Systems 4(3):243-268 (1992).

35. R. Jauhari, M. J. Carey, and M. Livny, Priority-hints: An algorithm for priority-based
buffer management, in Proceedings of the 16th International Conference on Ve O,
Large Data Bases, 1990, pp. 708-721.

36. E. D. Jensen, C. D. Locke, and H. Tokuda, A time-driven scheduling model for
real-time operating systems, in Proceedings of the 6th Real-Time Systems Symposium,
1985, pp. 112-122.

37. B. Kao and H. Garcia-Molina, Deadline assignment in a distributed soft real-time
system, in Proceedings of the 13th International Conference on Distributed Computing
Systems, 1993, pp. 428-437.

150 (~. U L U S O Y

38. B. Kao and H. Garcia-Molina, Subtask deadline assignment for complex distributed
soft real-time tasks, Technical Report STAN-CS-93-1491, Department of Computer
Science, Stanford University, 1993.

39. W. Kim and J. Srivastava, Enhancing real-time DBMS performance with multiver-
sion data and priority based disk scheduling, in Proceedings of the 12th Real-Time
Systems Symposium, 1991, pp. 222-231.

40. H. F. Korth, N. Soparkar, and A. Silberschatz, Triggered real-time databases with
consistency constraints, in Proceedings of the 16th International Conference on Very
Large Data Bases, 1990, pp. 71-82.

41. H. F. Korth and A. Silberschatz, Database System Concepts, 2nd ed., Computer
Science Series, McGraw-Hill, New York, 1991.

42. H. T. Kung and J. T. Robinson, On optimistic methods for concurrency control,
ACM Trans. Database Systems 6(2):213-226 (1981).

43. T. Lehman and M. J. Carey, Query processing in main memory database manage-
ment systems, in Proceedings of the ACM SIGMOD International Conference on the
Management of Data, 1986, pp. 239-250.

44. K. J. Lin and M. J. Lin, Enhancing availability in distributed real-time databases,
ACM SIGMOD Record 17(1):34-43 (1988).

45. K. J. Lin, Consistency issues in real-time database systems, in Proceedings of the
22nd Hawaii International Conference on Systems Sciences, 1989, pp. 654-661.

46. J. W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung, and W. Zhao, Algorithms
for scheduling imprecise cemputations, IEEE Computer 24(5):58-68 (1991).

47. P. E. O'Neil, K. Ramamritham, and C. Pu, A two-phase approach to predictably
scheduling real-time transactions, to appear in Performance of Concurrency Control
Algorithms in Centralized Database Systems, V. Kumar (ed.), Prentice-Hall, Engle-
wood Cliffs, NJ, 1994.

48. G. Ozsoyo~lu, Z. M. C)zsoyo~lu, and W. C. Hou, Research in time and error-con-
strained database query processing, in Proceedings of the 7th IEEE Workshop on
Real-Time Operating Systems and Software, 1990, pp. 32.

49. G. 6zsoyo~lu, K. Du, S. Guruswamy, and W. C. Hou, Processing real-time, non-
aggregate queries with time-constraints in CASE-DB, in Proceedings of the 8th
International Conference on Data Engineering, 1992, pp. 410-417.

50. H. Pang, M. Livny, and M. J. Carey, Transaction scheduling in multiclass real-time
database systems, Technical Report 1110, Department of Computer Science, Uni-
versity of Wisconsin-Madison, 1992.

51. H. Pang, M. J. Carey, and M. Livny, Managing memory for real-time queries, in
Proceedings of the ACM SIGMOD International Conference on the Management of
Data, 1994, pp. 221-232.

52. K. Ramamritham, Real-time databases, Distributed Parallel Databases 1(2) (1993).
53. C. Ruemmler and J. Wilkes, An introduction to disk drive modeling, IEEE Com-

puter 27(3):17-28 (1994).
54. L. Sha, R. Rajkumar, and J. Lehoczky, Concurrency control for distributed real-time

databases, ACM SIGMOD Record 17(1):82-98 (1988).
55. L. Sha, R. Rajkumar, and J. Lehoczky, Priority inheritance protocols: An approach

to real-time synchronization, IEEE Trans. Computers 39(9): 1175-1185 (1990).
56. L. Sha, R, Rajkumar, S. H. Son, and C. H. Chang, A real-time locking protocol,

1EEE Trans. Computers 40(7):793-800 (1991).
57. M. Singhal, Issues and approaches to design of real-time database systems, ACM

SIGMOD Record 17(1):19-33 (1988).

R E S E A R C H ISSUES IN R E A L - T I M E D A T A B A S E SYSTEMS 151

58. S. H. Son (ed.), Special Issue on Real-Time Databases, ACM S1GMOD Record
(1988).

59. S. H. Son and C. H. Chang, Performance evaluation of real-time locking protocols
using a distributed software prototyping environment, in Proceedings of the lOth
International Conference on Distributed Computing Systems, 1990, pp. 124-131.

60. S. H. Son, Scheduling real-time transactions, in Proceedings of the EUROMICRO
Workshop on Real-Time Systems, 1990, pp. 25-32.

61. S. H. Son, S. Park, and Y. Lin, An integrated real-time locking protocol, in
Proceedings of the 8th International Conference on Data Engineering, 1992, pp.
527-534.

62. S. H. Son, J. Lee, and Y. Lin, Hybrid protocols using dynamic adjustment of
serialization order for real-time concurrency control, Real-Time Systems
4(3):269-276 (1992).

63. S. H. Son and S. Kouloumbis, Replication control for distributed real-time database
systems, in Proceedings of the 12th International Conference on Distributed Computing
Systems, 1992, pp. 144-151.

64. N. Soparkar, E. Levy, H. F. Korth, and A. Silberschatz, Adaptive commitment for
real-time distributed transactions, Technical Report TR-92-15, Department of Com-
puter Science, University of Texas at Austin, 1992.

65. J. A. Stankovic and W. Zhao, On real-time transactions, ACM SIGMOD Record
17(1):4-18 (1988).

66. O. Ulusoy, Concurrency control in real-time database systems, Technical Report
UIUCDCS-R-92-1762, Department of Computer Science, University of Illinois at
Urbana-Champaign, 1992.

67. O. Ulusoy and G. G. Belford, Real-time 16ck based concurrency control in a
distributed database system, in Proceedings of the 12th International Conl'erence on
Distributed Computing Systems, 1992, pp. 136-143.

68. O. Ulusoy and G. G. Belford, Real-time transaction scheduling in database systems,
Information Systems 18(8):559-580 (1993).

69. O. Ulusoy, Processing real-time transactions in a replicated database system,
Distributed Parallel Databases 2(4):405-436 (1994).

70. {). Ulusoy, A study of two transaction processing architectures for distributed
real-time database systems, To appear in Journal of Systems Software (1995); also
Technical Report, BU-CEIS-94-22, Department of Computer Engineering and
Information Science, Bilkent University, Ankara, Turkey.

71. S. V. Vrbsky and K. J. Lin, Recovering imprecise transactions with real-time
constraints, in Proceedings of the 7th Symposium on Reliable Distributed Systems.
1988, pp. 185-193.

Receil~'ed 3 October 1994, ret,ised 13 February 1995.

