

 University of Groningen

8th SC@RUG 2011 proceedings
Smedinga, Rein; Biehl, Michael; Kramer, Femke

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2011

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R., Biehl, M., & Kramer, F. (Eds.) (2011). 8th SC@RUG 2011 proceedings: Student Colloquium
2010-2011. Rijksuniversiteit Groningen. Universiteitsbibliotheek.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-06-2022

https://research.rug.nl/en/publications/c5cf39a0-6046-4928-8549-e48a7145fe20

faculteit wiskunde en
natuurwetenschappen

informatica

SC@RUG 2011 proceedings

8th SC@RUG
2010-2011
Rein Smedinga, Michael Biehl
en Femke Kramer (editors)

8
th

 S
C

@
R

U
G

 2
0

1
0

-2
0

1
1

www.rug.nl/informatica

faculteit wiskunde en
natuurwetenschappen

informatica

proceedings 2011.indd 1 27-06-11 11:55

SC@RUG 2011 proceedings

Rein Smedinga
Michael Biehl
Femke Kramer

editors

2011
Groningen

ISBN: 978-90-367-5019-6
Publisher: Bibliotheek der R.U.

Title: Proceedings 8th Student Colloquium 2010-2011
Computing Science, University of Groningen

NUR-code: 980

SC@RUG 2011 proceedings

About SC@RUG

Introduction SC@RUG (or student colloquium in full)
is a course that master students in computing science fol-
low in the first year of their master study at the University
of Groningen.

In the academic year 2010-2011 SC@RUG was orga-
nized as a conference for the eigth time. Students wrote a
paper, participated in the review process, gave a presenta-
tion and were session chair during the conference.

The organizers Rein Smedinga, Michael Biehl and
Femke Kramer would like to thank all colleagues, who co-
operated in this SC@RUG by collecting sets of papers to be
used by the students and by being an expert reviewer during
the review process. They also would like to thank Janneke
Geertsema for her workshops on presentation techniques
and speech therapy.
Organizational matters SC@RUG 2011 was organized
as follows. Students were expected to work in teams of
two. The student teams could choose between different
sets of papers, that were made available through Nestor,
the digital learning environment of the university. Each set
of papers consisted of about three papers about the same
subject (within Computing Science). Some sets of papers
contained conflicting opinions. Students were instructed to
write a survey paper about this subject including the dif-
ferent approaches in the given papers. The paper should
compare the theory in each of the papers in the set and in-
clude own conclusions about the subject.
Eight teams proposed their own subject.

After submission their papers, each student was as-
signed one paper to review using a standard review form.
The staff member who had provided the set of papers was
also asked to fill in such a form. Thus, each paper was re-
viewed three times (twice by peer reviewers and once by
the expert reviewer). Each review form was made available
to the authors of the paper through Nestor.

All papers could be rewritten and resubmitted, inde-
pendent of the conclusions from the review. After resub-
mission each reviewer was asked to re-review the same pa-
per and to conclude whether the paper had improved. Re-
reviewers could accept or reject a paper. All accepted pa-
pers can be found in these proceedings.

All students were asked to present their paper at the
conference and act as a chair and discussion leader dur-
ing one of the other presentations. Half of the participants
were asked to organize one day of the conference day (i.e.,
to make the time tables, invite people, look for sponsoring,
etc.) The audience graded both the presentation and the
chairing and leading the discussion.

In her lectures about communication in science, Femke
Kramer explained how conferences work, how researchers

review each other’s papers, and how they communicate
their findings with a compelling storyline and cleverly de-
signed images.

Michael Biehl taught a workshop on writing a scientific
paper and Janneke Geertsema gave workshops on presen-
tation techniques and speech therapy that were very well
appreciated by the participants.

Rein Smedinga did the overall coordination, adminis-
tration and served as the main manager of Nestor.

Students were graded on the writing process, the re-
view process and on the presentation. Writing and rewrit-
ing counted for 50% (here we used the grades given by the
reviewers and the re-reviewers), the review process itself
for 15% and the presentation for 35% (including 5% for
the grading of being a chair or discussion leader during the
conference). For the grading of the presentations we used
the judgments from the audience and calculated the average
of these.

In this edition of SC@RUG students were videotaped
during their presentation. The recordings were published
on Nestor for self reflection.

On 20 and 21 April 2011, the actual conference took
place. Each paper was presented by both authors. On
Wednesday 7 presentations were given and on Thursday 15,
each consisting of a total of 15 minutes for the introduction,
the actual presentation and the discussion. On Wednes-
day Louwarnoud van der Duim from the UOCG was the
keynote speaker and on Thursday Muhittin Hasancioglu,
General Manager IT & IM Technology from Shell, gave a
key note presentation.

As mentioned before, each presenter also had to act as a
chair and discussion leader for another presentation during
that day. The audience was asked to fill in a questionnaire
and grade the presentations, the chairing and leading the
discussion. Participants not selected as chair were asked to
organize the day.
Thanks We could not have achieved the ambitious goal
of this course without the invaluable help of the following
expert reviewers: Henk Bekker, Frank Brokken, Pavel Bu-
lanov, Tobias Isenberg, Jan Jongejan, Alexander Lazovik,
Andrea Pagani, Nikolai Petkov, Alexandru Telea, Dan To-
fan, Marco Wiering, and Michael Wilkinson

Also, the organizers would like to thank the School of
Computing and Cognition for making it possible to publish
these proceedings and sponsoring the conference.

Rein Smedinga
Michael Biehl

Femke Kramer

3

Contents

4

Contents

1 Detecting edges using the Marr-Hildreth approach
Rudy Schoenmaker and Jeroen de Groot 7

2 Contour detection: Removing spurious edges
Pieter Stavast , Sander Kelders 11

3 2D Touch Interfaces for Interaction with 3D environments
Frank Blaauw and Wes Schuitema 18

4 Multi-touch interaction on stacked objects in 3D environments
Jan-Paul Eikelenboom and Evert Kramer 24

5 Comparison of Skeleton Extraction Techniques
Marcel Jillings and Sijmon Heitmeijer 30

6 Performance Assessment of the Augmented Fast Marching Method for Two-Dimensional Skeletonization
Mark Scheeve and Karsten Westra 36

7 Desired Features of Software Architectural Knowledge Management Tools
Zengyang Li, 42

8 Wikis Support in Architectural Knowledge Management for Sharing and Reuse: the WikiPL Approach
Konstantinos Tselios and Manuel Martiarena 48

9 Variability Management in Business Processes: Comparison of approaches
Ntembeko Mkhunyana and Sinazo Matyila 54

10 Comparison of MapReduce implementations
René Zuidhof and Jos van der Til 60

11 High-performance log data analysis using MapReduce
Fernand Geertsema and Erwin Vast 66

12 Context Inconsistency Management in Pervasive Systems
Samuel Esposito and Alexander Jurjens 72

13 The Role of Standardized Web Services in Electric Utility Control Center Applications Integration
Divya .S. Avalur 75

14 Online Voting: Yes or No
Klaas Mussche, and Edwin-Jan Harmsma 80

15 Google tools and SEO for efficient web page development
Darius Karremans, Konstantinos Theodorou 86

16 Digital Image Forensics
Jan Kazemier and Michiel Heijkoop 91

17 Dynamic Formation and Opponent Modeling in Real Time Strategy Games
Amirhosein Shanti 97

Contents

18 Cloth Simulation: Permanent Deformation using Hysteresis
Dirk Zittersteyn and Tijmen Klein 101

19 Comparison of JavaScript libraries
Johan van der Geest and Mark Ettema 107

20 Main Memory Database Systems: Opportunities and pitfalls
Wytze Hazenberg and Sjoerd Hemminga 113

21 Comparison between NoSQL Distributed Storage Systems
Elmer Jansema and Jan Thijs 119

6

Detecting edges using the Marr-Hildreth approach

Rudy Schoenmaker and Jeroen de Groot

Abstract— The Marr-Hildreth edge detection method operates by convolving the image with the Laplacian of the Gaussian function,
or, as a fast approximation by Difference of Gaussians. [6] In the next step zero-crossings are detected in the filtered result to obtain
the edges. Therefore it is possible to detect edges of visual objects within natural images, these edges are necessary for further
processing, like object or contour detection. Several applications analyze visual data without human interaction, these applications
have to recognize objects out of the visual data in order to process the relevant data. Edge detection is an important task when we want
to recognize objects without human interaction. It is one of the first steps that has to be taken in order to get a better understanding
about the image or video capture for further processing. We implemented the Marr-Hildreth algorithm to detect edges and compared
the results of the Marr-Hildreth algorithm with the Berkeley Segmentation Dataset. This is a dataset that contains images segmented
by human interaction [5]. Through this dataset we are able to determine the performance of the Marr-Hildreth algorithm. The results
are not satisfying compared to other edge detectors but this is explained by the human interpretation of objects, the main boundaries
around objects are detected. However a lot of noise is still left in the image, other techniques are needed tot remove this kind of data.
We did not implemented such methods, because we are mainly interested in the performance of the Marr-Hildreth algorithm itself.

Index Terms—Marr-Hildreth, Berkeley Segmentation Dataset, edge detection, image processing, zero-crossing, Laplacian, Gaussian

1 INTRODUCTION

Edge detection is frequently used in image processing and analysis.
Detecting edges in an image is an important step towards creating a
better overview of the data available within the image especially in
respect to the visual objects in that image. With this data we are a
step closer to recognize objects within the data. Many practical ap-
plications use edge detection algorithms to create contours for object
recognition, for example robot vision or medical image analyses.

There is no specific mathematical definition of what a contour is
[9]. We as humans are briefly trained from when we are born to recog-
nize objects within images and the real world. Since computers do not
have the ability to distinguish objects in a given natural image, we will
propose a solution to this problem by detecting edges using the Marr-
Hildreth algorithm. These edges will form the contours of the objects
within the image. We declare contours as the set of lines that human
observers would consent on to be the contours in that image [1] The
process of detecting edges is non-trivial for a computer, since objects
and background may consist of multiple variance in the gradient, mak-
ing it for the computer difficult to make a clear distinction between the
object and the background. Also when an image is not sharp we can
encounter problems in detecting the edges, since the background fades
into the object, which makes detection more difficult.

There are several algorithms available for edge detection, like So-
bel [10], Prewitt [8] or the Canny edge detector [7]. Most of them
involve differentiation or gradient measurements. The Canny edge de-
tector is a good working detector but does not create closed contours,
in which we are interested. The Marr-Hildreth edge detector is known
for his ability to create closed contours. We have to be careful with
this, because the Marr-Hildreth edge detector is also know as an de-
tector which marks edges which in fact are not really there, also known
as ghost edges. As mentioned before we are interested in the edge data
to have the possibility to recognize objects in the image. Therefore we
have a need to generate binary data (black = 0, white = 1) which rep-
resents the edges (marked with 1) from the images. With this data
further processing can be done, like actually classifying objects.

In this paper we will give a brief description of the Marr-Hildreth
edge detection algorithm, which is explained in section 2.1 and how
well it performs is described in section 3. We measure the perfor-
mance of the algorithm by comparing our results to the Berkeley Seg-
mentation DataSet. This is a set of images where the edges are man-

• Rudy Schoenmaker, s1938150, E-mail: rudyschoenmaker@live.com
• Jeroen de Groot, s1921320, E-mail: jrdegroot@gmail.com

ually drawn by human interaction, this is more briefly described in
section 2.2. In section 3 we will present the results of our research
and finally a discussion is provided in section 4.

2 METHODS AND MATERIALS

In this section the Marr-Hildreth algorithm for detecting edges and the
Berkeley Segmentation set are explained. In the first subsection 2.1
we give a brief description about the Marr-Hildreth algorithm, espe-
cially how it works and how it differs from other edge detecting al-
gorithms. Why are these differences interesting for us? In subsection
2.2 the Berkeley Segmentation Dataset is explained, we explain why
and how we use this dataset to verify our results obtained with the
Marr-Hildreth algorithm.

2.1 Marr-Hildreth Algorithm
The Marr-Hildreth method is a gradient based operator which uses the
Laplacian to take the second derivative of an image. The idea is that
if there is a step difference in the intensity of the image, it will be
represented in the second derivative by a zero crossing as shown in
Fig: 3. For calculating these differences in intensity we apply a two
dimensional Laplacian to the image. This operation is the equivalent
of taking the second derivative of the image, also known as the zero-
crossings of the Laplacian. The definition of the Laplacian operator is
presented in the following equation [2]:

G(x,y) = F(x,y) =
δ 2 f
δx2 +

δ 2 f
δy2 = 0 (1)

As can be seen the Laplacian operator produces a non-directional
second derivative [G(x,y)] of a two dimensional image [F(x,y)]. The
locus of zeros in the resulting function is the locus of the minima or
maxima in the gradient or else the gradient itself is zero. The loci
of zero-crossings are the places where the change in gradient goes
from positive to negative or vice versa. These are the inflections of the
images and such inflections occur at edges of objects in the image.

As mentioned before the edges are detected by looking at the zero-
crossings of the second derivative by applying the Laplacian, to un-
derstand the zero-crossing we take the second derivative of the image
and plot it in Fig 3. Where the slope crosses the origin the gradient
changes from positive to negative or vice versa and therefore the pos-
sibility of hitting an edge on an object is high and we mark it as an
edge pixel.

To implement the Laplacian operation we have to use digital filter-
ing which is a replacement of each pixel in the image with a weighted
sum of its neighbors, the array of weights is called a ’kernel’. To im-
plement the Laplacian operation we have to use a 3 x 3 kernel as shown

7

Fig. 1: A 3d graphical representation of the The Laplacian matrix as
can be seen the ”Mexican Hat” shape is very clear

0 -1 0

-1 4 -1

0 -1 0

Table 1: Commonly used discrete approximations to the Laplacian
filter

in Fig 1. This kernel replaces every pixel by the second difference of
the image at that certain point in the x and y directions.

Differentiation often generates spurious edges due to the presence
of frequency noise, therefore we smooth the image to get better results.
Smoothing will be done by a kernel which is in most cases larger than
3 x 3. The ideal size is as large as the lowest spatial frequency that is
considered noise, this will be different for every image. Marr and Hil-
dreth use the Gaussian kernel to smooth the image. They adjusted the
amount of smoothing by the size of the array, which is proportional to
the standard deviation of the Gaussian. Since the second order differ-
ence and the Gaussian smoothing operation are both linear, Marr and
Hildreth combined those into the Laplacian of a Gaussian. When this
function is plotted it has the shape of a ”Mexican hat” as shown in Fig
1. [3]

Why the Marr-Hildreth algorithm?
The Marr-Hildreth algorithm creates closed contours as can be seen in
Fig 2. This is very important for detecting contours or objects. Since
we do not have to deal with edge reconstruction, the object classifi-
cation can be done more easily. Nevertheless we have a lot of noise
as can be seen within the wheel, which again makes the classification
more difficult. Therefore the Marr-Hildreth is also not the perfect edge
detector, but is the most interesting in our study case, because Prewitt,
Sobel and Canny edge do not create closed contours.

Fig. 2: A natural image of a wheel, and a the result from the Marr-
Hildreth algorithm. The closed contours are very clear in this example.

2.2 Berkeley Segmentation Dataset
The Berkeley Segmentation Dataset is a dataset which consists of sets
of images which are segmented by human interaction. There are 300
image photographs, which all have roughly 5 segmented images done
by different human beings. There is a set of segmented images avail-
able for the colored picture as well as for a gray-level version of the
picture. Segmentation is done by human hand, therefore it can con-
sist of some localization error as well as the interpretation of bound-

Fig. 3: Graphical representation of the zero-crossing. The first slope is
the Laplacian function plotted on an x and y axis, followed by the 1st
and 2nd derivative of the function. As can be seen the zero-crossing is
very clear, because the slope crosses the x and y axis at the origin.

aries differing per individual. Therefore the segmented image sets can
differ a little, but besides the level of detail for the contours most of
the segmented image are consistent. As stated on their website the
dataset is provided for an empirical basis for scientific research on im-
age segmentation and contour detection [5]. They have used this data
to develop new boundary detection algorithms. On the website sev-
eral algorithms are discussed, like the Global Probability of Boundary,
Xren and Texture gradient [5]. In this research for edge detection with
the Marr-Hildreth algorithm we have used the Berkeley Segmentation
Dataset to provide a visual performance measure for the Marr-Hildreth
algorithm compared to the segmented images created by human inter-
action.

Fig. 4: An example image from the Berkely Segmentation Dataset
and an segmented image. The segmentation shown in the right part is
achieved by human interaction

3 RESULTS

The aim of this evaluation is to provide a better understanding of the
performance of the Marr-Hildreth algorithm, and how well it performs
compared to images segmented by human beings. The Berkeley Seg-
mentation Dataset (BSDS) provides a good measure for this scientific
research. Having the human segmented images compared to the Con-
toured image trough the Marr-Hildreth algorithm, we can see if the
algorithm creates correct lines and edges.

In this evaluation an original image from the Berkeley Segmenta-
tion Dataset is taken and the Marr-Hildreth algorithm is applied on this
image to detect the edges. The result obtained is compared with the
segmented image done by humans, as can be seen as a graphical view
in Fig 5. By this comparison we will see how well the Marr-Hildreth
algorithm performs. The BSDS contains images from several levels of
difficulty. Some images have a clear distinction between background
and objects, while other images have objects which fade away in the
background. In order to get a good evaluation we compared the algo-
rithm with multiple images from several levels of difficulty.

For measuring the performance of the Marr-Hildreth algorithm in
comparison with the Berkeley Segmentation Dataset we used the fol-
lowing algorithm [4]:

P =
tp

tp + fp + fn
(2)

in which fp and fn are the false positives and false negative pixels
detected. P gets an accurate value between 0 and 1. tp is the number
of correctly detected contour pixels. When P has the value of 1, this

Detecting edges using the Marr-Hildreth approach – Rudy Schoenmaker and Jeroen de Groot

8

means that all the contour pixels are correctly detected and there are no
false detected contour pixels. While in a perfect world this algorithm
would be sufficient, and only the level of detail from the interpretation
of a human would differ. Humans make errors, by not drawing the
edges perfectly around and object, or they have a different interpre-
tation of objects. In order to compensate for this localization error a
window-based approach is used. A pixel is also counted as a correct
one when it lies in the 5x5 window size.

Fig. 5: A graphical representation of the overlap from the result from
the Marr-Hildreth algorithm on the bridge image and BSDS segmented
image. The white lines represented the edges obtained by the Marr-
Hildreth algorithm, and the yellow line represent the contours created
with human interaction.

Fig. 6: The original and the result from the Marr-Hildreth algorithm
from the image of a bird

Fig. 7: The original and the result from the Marr-Hildreth algorithm
from the image of a bridge

Fig. 8: The original and the result from the Marr-Hildreth algorithm
from the image of some buffalos

Fig. 6 contains the original and the segmented image by the Marr-
Hildreth algorithm. This image has a clear distinction between objects
and the background. Which would make it more easy for a computer
to create the contours of the bird. When looking at the segmented

image you can see that the contours are indeed easily spotted around
the bird, as well as around the tree itself.

Fig. 7 contains the original image from a bridge, as well as the
segmented image by the Marr-Hildreth algorithm. This image is com-
pared to the bird image more difficult to contour. The distinction be-
tween the bridge the water and the boat are easily noticeable, but the
level of detail in the objects itself makes it harder for the computer to
only contour the object. Even when looking at the segmented images
in the BSDS we can see that humans contour the image differently in
the level of detail [4]. The segmented image by the Marr-Hildreth al-
gorithm does separate the bridge and boat from the background nicely,
but on the other hand it detects more edges inside objects then the
ground truth.

Fig. 8 contains the original image from buffalos in a land-
scape. This image does not have a clear distinction between the ob-
jects(animals) and the background(landscape). The objects fade away
in the background. This will make it very difficult for the algorithm
to separate objects from the background. When looking at the result
from the Marr-Hildreth algorithm we see that the algorithm has trou-
ble separating the objects from background. Looking at the picture
of the beast, the human contoured image only draws contours on the
animal itself. While the Marr-Hildreth algorithm has difficulties in the
grass area, not knowing whether the small edges in the grass should be
accounted as contours. While a human subject can easily distinguish
the relevant animals from the background which we are not interested
in.

The Berkeley Segmentation DataSet has around 5 segmented im-
ages for each photograph. In order to compensate for the human local-
ization error and give a more realistic view of the performance of the
Marr-Hildreth the image is convolved against all the 5 images and an
average is calculated.

Image Min performance Max Performance
Bird.jpg 0.34 0.55
Bridge.jpg 0.31 0.45
Animals.jpg 0.20 0.41

”When you can measure what you are speaking about and express
it in numbers, you know something about it; but when you cannot mea-
sure it, when you cannot express it in numbers, your knowledge is of
the meager and unsatisfactory kind.” - Lord Kelvin

Using the performance measure we explained, we created this table
with the values on the accuracy of the segmented images. Looking at
this table we can validate our visual analyses of the images. The image
of the bird has the best result, while the image of the animals performs
a lot worse. If we visually compare the images with the several other
algorithms in the BSDS. the Marr-Hildreth algorithm is not the best
algorithm for detecting edges.

The Berkeley Segmented dataset uses a different performance mea-
sure as we used in our research. They use a precision-recall curve
algorithm which is more explained into detail on their site [5]. Be-
cause they use a different performance measure we cannot compare
the actual exact numbers. Therefore we compared the results of our
research with the BSDS visually. We did compare other algorithms
like the Canny edge detection or Prewitt’s and Sobel’s masks using
our own performance measure. From which the results are posted in
the table below.

Image MH Canny Sobel Prewitt
Bird.jpg 0.49 0.62 0.81 0.81
Bridge.jpg 0.40 0.37 0.46 0.48
Animals.jpg 0.39 0.34 0.49 0.49

Looking at the results, we can see that the Marr-Hildreth algorithm
performs poorly compared to the Sobel and Prewitt mask on the first
picture. While the results of the canny edge detector are almost equiv-
alent. This can be explained by the difference in detail between the
ground truth, and the segmented image. The Marr-Hildreth as well as
the canny edge detectors both keep a certain level of detail. While the

SC@RUG 2009 proceedings

9

Sobel and Prewitt leave out as much as detail as possible with the risk
of losing relevant data. This means that there are less false positive
pixels making their performance number go up.

4 DISCUSSION

We compared the algorithm with the Sobel Prewitt and Canny edge
detection algorithms using the performance measure explained in sec-
tion 3. The performance of the Marr-Hildreth algorithm was not that
satisfactory compared to the Sobel and Prewitt masks, the Canny edge
detector gave almost the same results. While the Canny and Marr-
Hildreth edge detection methods are known to be better edge detectors,
the results can be explained through human interpretation of objects.
The Canny and Marr-Hildreth algorithms create a way more detailed
edge spectrum inside objects, mostly useful small details are marked
as edges. While on the human segmented images only the outside of
the objects are marked. The Sobel and Prewitt are fast and also leave
out high level of detail (small details are not recognized). This ex-
plains why their performance looks better when we just look at the
numbers. When we take a look at the actual segmented images we
see that the Canny and Marr-Hildreth are actually more accurate in
detecting edges.

When the background gets a higher variance in the gradient, the
Marr-Hildreth algorithm has troubles leaving the irrelevant edges out
of the contours and marks it as objects. Almost all the relevant con-
tours which are detected by the human subjects are also detected by
the Marr-Hildreth algorithm. As already discussed in the introduction
the Marr-Hildreth algorithm is known to create ghost edges. On the
images of the Berkeley segmentation database this only appeared on
the most difficult to analyze images.

Looking at the segmented images of the algorithms the Berkeley
Segmentation Dataset already provided, the Marr-Hildreth Algorithm
is not the best algorithm available. There are some better perform-
ing algorithms. Which comes of no surprise since the Marr-Hildreth
algorithm is an outdated algorithm.

REFERENCES

[1] N. P. Giuseppe Papari . Edge and line oriented contour detection: State
of the art. Imavis, Elsevier(03023):25, 2009.

[2] T. S. Jr. Edge detection in images using marr-hildreth filtering techniques.
Neuroscience Methods, Elsevier(26):75–82, June 1988.

[3] E. Nadernejad. Edge detection techniques: Evaluations and comparisons.
Applied Mathematical Sciences, 31(2):1507–1520, 2008.

[4] M. A. Nicolai Petkov. Contour detection based on nonclassical receptive
field inhibition. Transactions On Image Proccesing, 12(7):11, 2003.

[5] C. F. Pablo Arbelaez and D. Martin. The
berkeley segmentation dataset and benchmark.
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/,
2007.

[6] Wikipedia. Marr-hildreth algorithm. http://en.wikipedia.org/wiki/Marr-
Hildrethalgorithm, 2010.

[7] Wikipedia. Canny edge detector.
http://en.wikipedia.org/wiki/Cannyedgedetector, 2011.

[8] Wikipedia. Prewitt operator. http://en.wikipedia.org/wiki/Prewittoperator,
2011.

[9] Wikipedia. Shilouette. http://en.wikipedia.org/wiki/Silhouette, 2011.
[10] Wikipedia. Sobel operator. http://en.wikipedia.org/wiki/Sobeloperator,

2011.

Detecting edges using the Marr-Hildreth approach – Rudy Schoenmaker and Jeroen de Groot

10

Contour detection: Removing spurious edges

Pieter Stavast , Sander Kelders

Abstract— We propose two post processing steps after contour detection for spurious edge removal. One is using connected
components the other is based on line orientation and morphological filtering. We construct two contour detectors on which we will
test our spurious edge removal techniques. A Canny edge detector and a Nonclassical Receptive Field Inhibition based contour
detector. Spurious edge removal through connected components seems to work better than using linefilters. Edge removal combined
with the Canny edge detector works not as well as with Nonclassical Receptive Field Inhibition. The results we present here show
promise but more research is needed to reduce enough of the spurious edges without removing the contour edges.

Index Terms—Contour detection, spurious edge removal, texture inhibition, morphological filters, connected components

1 INTRODUCTION

Contour detection is an important topic of research because it expands
the possibilities of automated processes. Many automated processes
use camera’s to collect information about their surroundings, and con-
tour detection plays a vital role in finding objects of interest. Many
contour detection methods are available today such as the Watershed
method [2] or contour detection based on the Canny Edge Detector[2].
Most of the known detectors work well with artificial images or im-
ages from a controlled environment, but they fall short when faced
with natural images which contain a lot of texture.
The edge detectors respond to the texture edges, but since these are
not usually part of a contour we are not interested in them. Since the
human visual system is very good at detecting objects, it has been an
inspiration to researchers, and contour detection methods based on the
human visual system have been developed. Contour detection using
Nonclassical Receptive Field Inhibition [3] (NRFI) is based on the
observation that the human visual system inhibits texture edges. The
method detects contours by finding all the edges, and depending on the
presence of edges in its surrounding suppresses them. Through this
suppression better results are achieved in natural images than most de-
tectors which are not biologically motivated. However, even with the
improved results many texture induced edges remain. These unwanted
edges are the Spurious Edges we want to eliminate.
To finalize the contour detector we propose another step in which the
spurious edges are eliminated. In this paper we describe two methods:
one based on morphological line filters and one based on connected
components. We also use a Canny Edge Detector to compare the use-
fulness of Spurious Edge Removal (SER) using non biologically mo-
tivated contour detectors to SER with biologically motivated contour
detectors.
In this paper we first describe the contour detectors we use. Next we
discuss the SER in detail and lastly we show and discuss the experi-
ments and results.

2 CONTOUR DETECTORS

Before we can apply SER we need to have credible test images. To this
end we implement two contour detectors. A contour detector based on
the Canny Edge Detector and a contour detector based on Nonclassical
Receptive Field Inhibition.

2.1 Canny Edge Detection
The Canny edge detection algorithm was designed with three objec-
tives in mind. It should have a low error rate, the true edges should
be found and there should not be any spurious edges. The second ob-
jective is that edges should be as close as possible to the true edges.

• Pieter Stavast is a Computing Science Master student at the
Rijksunversiteit Groningen.

• Sander Kelders is a Computing Science Master student at the
Rijksunversiteit Groningen.

-1 -2 -1
0 0 0
1 2 1

-1 0 1
-2 0 2
-1 0 1

Table 1: Sobel filters

The last objective is only marking one point for each edge found. Our
implementation is build as described in Digital Image Processing [2].

Spurious edges in images can be caused by noise or texture. Canny
edge detection uses a Gaussian filter to reduce the influence of texture
and noise. After Gaussian filtering, Canny edge detection uses a filter
to detect horizontal, vertical and diagonal edges. Our implementation
uses a Sobel filter because Sobel masks have better noise-suppression
then for example a Prewitt or Roberts mask[2]. Sobel uses two masks
to calculate the first derivative in horizontal and vertical direction. The
masks are shown in Table 1. The Gaussian and Sobel masks can be
combined by convolving them with each other. So to obtain the the
final filter we convolve the Gaussian filter with both Sobel masks.

After filtering the image with the combined filter you get the deriva-
tives in two directions. The total edge gradient is calculated using
Equation 1.

G =
√

G2
x +G2

y (1)

When edges are extracted directly after this step the edges are wide
around the maxima because of the Gaussian filtering. To thin the edges
nonmaxima suppression is used. Nonmaxima suppression sets the gra-
dient value of a pixel to 0 if one of its neighbours along the same direc-
tion is higher. The direction of an edge is calculated using Equation 2.
From the angles vertical, horizontal, forward diagonal and backward
diagonal edges are extracted.

arctan(Gy/Gx) (2)

After the nonmaxima suppression thresholding is done to get a high
and a low threshold. The high threshold is calculated by giving a
percentage of pixels that should be above a certain edge value. The
low value is calculated by dividing the high threshold by two. All the
points above the high threshold are directly marked as edges. All the
points above the low threshold that are connected to points above the
high threshold are also marked as edges. The remaining pixels are
marked as non edges.

2.2 Nonclassical Receptive Field Inhibition
The implementation of NRFI is based on the work of Grigorescu
et al and we use the same filter and inhibition techniques. Here we
will present a summary. For the full explanation we refer to Contour
Detection Based on Nonclassical Receptive Field Inhibition[3].

11

In the human visual cortex, cells exist which respond to edges with
a certain orientation. These cells can be modeled by a family of Gabor
functions [4]. This family of functions in given by Equation (3).

gλ ,σ ,θ ,ϕ (x,y) = e−
x̃2+γ2 ỹ2

2σ2 cos(2π
x̃
λ
+ϕ)

x̃ = x cos θ + y sin θ
ỹ =−x sin θ + y cos θ (3)

In Equation (3) γ determines the ellipticity. We fix this at γ = 0.5.
The standard deviation of the Gaussian is determined by σ , and as
such it determines the size of the receptive field. By varying σ we can
determine the size of the edges our filter will respond to. We let σ de-
pend on the size of the filter used. We use square filters of N×N pixels
and set sigma to σ = N

10 . The parameter θ determines the orientation
of the filter. By varying θ we can rotate the filter, and let it respond
to edges with a different orientation. The parameter λ determines the
frequency of the cosine factor. Together with σ it determines the fre-
quency of the filter and the number of inhibitory and excitatory zones.
We fix this ratio at σ

λ = 0.56 so we have just over two periods in the
receptive field. The parameter ϕ is a phase offset, which determines
where in the ellipse the inhibitory and excitatory zones are. An exam-
ple filter is given in Figure 1.

Fig. 1: The intensity map of an example Gabor Filter. With θ = 0
the cell is vertically oriented and will respond to vertical edges. White
areas contain values greater than zero, black areas contain values less
than zero and gray areas contain values with negligible influence.

By convolving an image with a Gabor Filter gλ ,σ ,θ ,ϕ we get a result
rλ ,σ ,θ ,ϕ .

With the model of a simple cell we can now model more complex
cells. We do this with the Gabor Energy model [5, 1, 6]. In this model
the responses of a pair of simple cells with a phase difference of π

2 are
combined according to Equation (4).

Eλ ,σ ,θ =
√

r2
λ ,σ ,θ ,0 + r2

λ ,σ ,θ ,− π
2

(4)

We will use Gabor Energy maps Eλ ,σ ,θi
of different orientations θi

given by Equation (5) and combine these with NRFI.

θi =
(i−1)π

Nθ
, i = 1,2, ...,Nθ (5)

Now we construct an inhibition term. We recognize two sorts of
inhibition. The first is anisotropic inhibition, in which only edge re-
sponses with the same orientation as a central response contribute to
the suppression. The second is isotropic inhibition, in which all edge
responses contribute to the suppression. To define the field which con-
tributes to the suppression, we construct a weight function wσ (x,y)
given by Equation (6). The difference of the Gaussians, Equation (8),
constructs a ring around the Receptive Field and Equation (7) guaran-
tees positive values in Equation (6).

wσ (x,y) =
1

||H(D0Gσ)||1
H(DoGσ (x,y)) (6)

H(z) =
{

0 i f z ≤ 0
z i f z ≥ 0 (7)

DoG−σ =
1

2π(4σ)2 e
− x2+y2

2(4σ)2 − 1
2πσ2 e−

x2+y2

2σ2 (8)

For both forms of inhibition we construct an inhibition term. For
anisotropic inhibition this is defined in Equation (9) as a convolution
of the Gabor Energy with the weight function.

tA
λ ,σ ,θi

(x,y) = (Eλ ,σ ,θi
∗wσ)(x,y) (9)

The result of the inhibition of one orientation is defined by Equation
(10), and we will use this to determine the result in Equation (11). In
both Equation (10) and Equation (11) α determines the impact of the
inhibition. In our implementation we fix it at α = 1.

b̃A,α
λ ,σ ,θi

(x,y) = H(Eλ ,σ ,θi
(x,y)−αtA

λ ,σ ,θi
(x,y)) (10)

bA,α
λ ,σ (x,y) = max{b̃A,α

λ ,σ ,θi
(x,y) |i = 1, ...,Nθ} (11)

We also construct an orientation map ΘA(x,y) with which bA,α
λ ,σ (x,y)

was achieved in Equation (12). We will use this orientation map in the
final steps of the contour detection.

ΘA(x,y) = θk,k = arg max{b̃A,α
λ ,σ ,θi(x,y)

|i = 1, ...,Nθ} (12)

For isotropic inhibition we construct a term, which produces the
maximum response of the Gabor Filter: Equation (13) and the orienta-
tion map, which we will use in the final steps of the contour detection:
Equation (14).

Êλ ,σ = max{Eλ ,σ ,θi
(x,y)|i = 1, ...,Nθ} (13)

ΘI(x,y) = θk,k = arg max{Eλ ,σ ,θi(x,y)|i = 1, ...,Nθ} (14)

The inhibition term tI
λ ,σ (x,y) is now computed by the convolution

of the maximum response of the Gabor Filter with the weight function:
Equation (15).

tI
λ ,σ (x,y) = (Êλ ,σ ∗wσ (x,y)) (15)

The contours are now determined by subtracting the inhibition term
from the maximum Gabor Enrgy response: Equation (16).

bI,α
λ ,σ (x,y) = H(Êλ ,σ (x,y)−αtI

λ ,σ (x,Y)) (16)

We fix α at 1 again.

2.2.1 Postprocessing
To obtain the final contour maps we need to make two standard
postprocessing steps. Nonmaximum suppression and hysteresis
thresholding[2].
The contour detectors which we described return images, in which the
edge thickness is dependent on the size of the filter used. Nonmax-
imum suppression uses the orientation map obtained in the previous
step to thin the edges to 1 pixel thickness. The method checks the two
neighbours according to the orthogonal direction of the pixel orienta-
tion of each pixel. If either of the neighbours has a higher value than
the middle pixel, the middle one will be set to 0.
Hysteresis thresholding is the final step in which the amount of false
edges is reduced. Two thresholds are needed, a high threshold th and
a low threshold tl , for which th > tl holds. We fix the inequality at
th = 2tl . First we threshold the result of nonmaximum suppression by
th and tl to obtain Imh and Iml respectively. Then we we add all the
nonzero pixels of Iml which are neighbours of nonzero pixels in Imh
according to 8-connectedness.
The end result is a contourmap of the input image.

Contour detection: Removing spurious edges – Pieter Stavast , Sander Kelders

12

3 SPURIOUS EDGE REMOVAL

We note that most edges, which are left by texture and still remain in
the contour map, are not very long. These edges left by texture are the
ones we need to eliminate. We propose two methods of spurious edge
removal. One by checking the length of the connected components,
and one by eroding the image with filters that contain straight lines.

3.1 Connected Components

Spurious edges generated by noise or texture typically consist of small
groups. To reduce the number of spurious edges we look for small
groups of connected components and then remove them from the im-
age. Two edge pixels are considered to be in the same group of con-
nected components if there is a path from pixel A to pixel B via other
pixels. We look for connections in horizontal, vertical and diagonal
directions. To determine if a group is small a threshold is specified.

Our algorithm first checks for every point that it is an edge points
and not already tagged as a group, if it is connected to other edge
points. The connected edge pixels are added to a stack to be checked
later. All the connected points are given the same label. A more de-
tailed description can be found in Algorithm 1

Algorithm 1 Connected Components Algorithm

for every edge pixel in the image do
if the pixel is not labeled then

put the pixel on the stack
for every pixel in the stack do

label the pixel with the label number
for every surrounding edge pixel do

if it is not on the stack and it is not labeled yet then
put it on the stack

end if
end for

end for
increase the label number

end if
count the number of pixels per label
remove the edge pixels of labels which have a size below a certain
threshold

end for

3.2 Line Filters

To remove the spurious edges we erode the obtained contour map by
a number of filters, each containing a straight line of a certain orienta-
tion. Then we reconstruct the image by dilation.
We define a linefilter as a square filter of odd size with a line through
the origin which is the middle pixel. Let the originpixel be (0,0) and
let s be the size of the filter. For an orientation θ the line pixels are
defined by (17).

l(i) = (i cos(θ), i sin(θ)) (17)

∀i{i ∈ {⌊−
√

2
s
2
⌋, ...,⌈

√
2

s
2
⌉}|

⌈−s
2
⌉ ≤ i cos(θ)≤ ⌊ s

2
⌋∧⌈−s

2
⌉ ≤ i sin(θ)≤ ⌊ s

2
⌋}

With Equation (17) we have the pixels on a line through the origin
and with orientation θ . The condition guarantee the line is defined
within the filter and goes from one end to the other.
The reconstruction is done by dilation with square structuring ele-
ments. The size of the structuring element sse determines how big
the gaps in the edges to be reconstructed can be. Since we only want
the edges which were picked up by the linefilters we fix the size of the
structuring element to sse = 3. This way there can be no gaps in the
edges and only the connected pieces will be retrieved.

4 EXPERIMENTS

We applied the previous described contour detection algorithms on the
natural picture in Figure 2.

Fig. 2: The natural image used for experiments. This image is 480×
640 pixels in size.

For the NRFI contour detector we used a filtersize of 51 pixels,
roughly 10% of the image size. We use the following orientations for
the Gabor Filter: i−1

Nθ π for Nθ = 16 and i ∈ {1, ...,Nθ}.
The Canny edge detection uses a Gausian filter of 5 x 5. The pixel

fraction in the Hysteresis thresholding is set to 0.15.
We apply the spurious edge removal for different values of edge

sizes. For the linefilters this means different filtersizes and thus differ-
ent line lengths. For the connected components this means the number
of the pixels in the connected components.

5 RESULTS

Here we discuss the results of the spurious edge removal, starting with
connected components and ending with linefilters. The contour maps
obtained by the contour detector using NRFI are shown in Figure 3,
and we use these results for the spurious edge removal.

5.1 Connected Components
The results of using a filter based on connected components vary be-
tween edge detectors. Figure 4 shows the results of using the con-
nected components filter after Canny Edge detection. Figure 5 and
6 show the results after isotropic and anisotropic NFRI respectively.
When using the canny edge detector a low threshold does not remove
a lot of the spurious edges, and increasing the threshold a lot of true
edges are removed as well. When using the NRFI the results are a
lot better. This is probably because NFRI removes a lot more spuri-
ous edges in advance then canny edge detection while retaining the
true contours better. The threshold should be chosen carefully. Too
low a threshold retains too many spurious edges, too high a threshold
removes too many contour edges.

5.2 Linefilters
To make sure we would not miss any edges of a certain orientation we
fix the number of orientations for the linefilters at Nθ = 64. Again the
results vary from contour detector to contour detector. In Figure 9 the
contour maps of the Canny edge detector and linefilters show, many
spurious edges still remain. Figures 7 and 8 show less edge noise
but still either many spurious edges remain or many contour edges
are removed. This is due to the nature of the contour edges. These
edges are not always straight. Often they are curved. A large enough
linefilter will not respond to curved contours. Connected components
might be better suited for this task. A larger linefilter size decreases the
spurious edges but might also remove contour edges. This is analog to
increasing the connected component threshold, which yields the same
results.

SC@RUG 2009 proceedings

13

(a) Canny

(b) isotropic

(c) anisotropic

Fig. 3: Contour maps obtained by applying edge detection.

(a) Threshold = 5

(b) Threshold = 10

(c) Threshold = 15

Fig. 4: Removal of connected components after Canny Edge Detection

Contour detection: Removing spurious edges – Pieter Stavast , Sander Kelders

14

(a) Threshold = 10

(b) Threshold = 30

(c) Threshold = 50

Fig. 5: Contour maps obtained from isotropic NRFI and spurious edge
removal by connected components. (5a):minimum connectedness: 10
pixels, (5b):minimum connectedness: 30 pixels, (5c):minimum con-
nectedness: 50 pixels

(a) Threshold = 10

(b) Threshold = 30

(c) Threshold = 50

Fig. 6: Contour maps obtained from anisotropic NRFI and spuri-
ous edge removal by connected components. (5a):minimum con-
nectedness: 10 pixels, (5b):minimum connectedness: 30 pixels,
(5c):minimum connectedness: 50 pixels

SC@RUG 2009 proceedings

15

(a) Line filter size = 5

(b) Line filter size = 15

(c) Line filter size = 21

Fig. 7: Contour maps obtained by applying isotropic NRFI and spuri-
ous edge removal by linefiltering.

(a) Line filter size = 5

(b) Line filter size = 15

(c) Line filter size = 21

Fig. 8: Contour maps obtained by applying anisotropic NRFI and spu-
rious edge removal by linefiltering.

Contour detection: Removing spurious edges – Pieter Stavast , Sander Kelders

16

(a) Canny no filter

(b) Line filter size = 5

(c) Line filter size = 11

Fig. 9: Contour maps obtained by applying Canny edge detection and
spurious edge removal by linefiltering.

6 CONCLUSION AND DISCUSSION

Spurious edge removal through connected components yields better
results than using linefilters. This is due to the fact that not all contours
are straight, many are curved. Edge removal combined with the Canny
edge detector works not as well as with NRFI.

The contours obtainded by contour detection using NRFI base fil-
ters tend to be longer than contours obtained by Canny edge detection
and contain less noise of spurious edges. Since our initial observation
was that most spurious edges are short, our approach is not suitable to
combine with Canny edge detection. Choosing the edge size threshold
is of great importance. Too small a threshold will have little effect. Too
large a threshold will remove contour edges. The results we presented
here show promise but more research is needed to reduce enough of
the spurious edges without removing the contour edges. Possible sub-
jects of further research are: using the combined edge strength of the
connected components for thresholding; analyzing the edge lengths
for automatic thresholding; the impact of the filter size on the edge
response.

REFERENCES

[1] E. Adelson and J. Bergen. Spatio-temporal energy models for the percep-
tion of motion. J. Opt. Soc. Amer.A, 2:248–299, 1985.

[2] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Pearson
education, third edition, 2008.

[3] C. Grigorescu, N. Petkov, and M. A. Westenberg. Contour detection based
on nonclassical receptive field inhibition. IEEE Transactions on Image
Processing, 12(7):729–739, July 2003.

[4] J.G.Daugman. Uncertainty relation for resolution in space, spatial fre-
quency, and orientation optimized by two-dimensional visual cortical fil-
ters. J. Opt. Soc. Amer.A, 2(7):1160–1169, July 1985.

[5] M.C.Morone and D. Burr. Feature detection in human vision: a phase-
dependent energy model. Proc. R. Soc. Lond. B., 235:221–245, 1988.

[6] S.E.Grigorescu, N.Petkov, and P. Kruizinga. Comparison of texture fea-
tures based on gabor filters. IEEE Trans. Image Processing, 11:1160–1167,
Oct. 2002.

SC@RUG 2009 proceedings

17

2D Touch Interfaces for Interaction with 3D environments
Frank Blaauw

University of Groningen
f.j.blaauw.1@student.rug.nl

s2051664

Wes Schuitema
University of Groningen

w.j.j.schuitema@student.rug.nl
s2075199

Abstract—For many scientific visualization problems such as particle simulations in astronomical data it is helpful to be able to view
and explore a 3D environment/dataset; a lot of information can be derived from these visualizations. In addition to Virtual Reality
approaches and other stereoscopic visualization settings such as the CAVE by Cruz et al. [4], people are also starting to explore the
interaction using 2D touch-sensitive displays [8, 14, 16]. We analyze four different interaction methods and identify several concepts.
A concept is an abstract description of a certain way of interaction; e.g., camera manipulation or object manipulation. Our research
focuses on the similarities and differences of these concepts. The aim is to identify specific challenges and evaluate how these are
addressed in the different interaction methods. The result of our research is a list of heuristics that can be applied to 3D interaction
on 2D touch displays; i.e., which concept works well in certain situations and why.

Index Terms—Three-dimensional, Touch displays, interaction techniques, visualization, comparison of techniques

1 INTRODUCTION

We experience the world around us in three dimensions. Most of what
we know, see, and use is three-dimensional. In contrast to this three-
dimensional world, the computer many of us use every day does, in
most cases, not provide these three-dimensions. Computer-based de-
piction is mostly two-dimensional.

Figure 1. 3D technical drawing. From [13]

However, often it is still important to interact with a three-
dimensional dataset, for example a technical design of a building as
in Figure 1 where architects design a three-dimensional building, or in
medicine, where datasets can provide insights in a patient’s body. The
problem that arises with these environments is that one needs to in-
teract with three-dimensional objects using only two-dimensional in-
put, such as a mouse or a touch screen. More specifically, moving

• Frank Blaauw is a student of the University of Groningen, E-mail:
f.j.blaauw.1@student.rug.nl.

• Wes Schuitema is a student of the University of Groningen, E-mail:
w.j.j.schuitema@student.rug.nl.

Manuscript received 31 March 2008; accepted 1 August 2008; posted online
19 October 2008; mailed on 13 October 2008.
For information on obtaining reprints of this article, please send
e-mailto:tvcg@computer.org.

up, down, left, and right is easily accomplished with two-dimensional
input; it becomes more complicated when interaction with the third
dimension is required, e.g., zooming or rotating an object in that third
dimension. These actions can also be done in a two-dimensional en-
vironment, however for this the user needs more degrees of freedom
(DOF). This means that some sort of mapping must be provided to
achieve this interaction.

In this paper we focus on interaction using touch-sensitive input de-
vices. More specifically, we identify a number of heuristics for three-
dimensional interaction in a two-dimensional environment; i.e., what
type of interaction works best in given situations.

To derive this list of heuristics, we first describe four different meth-
ods of interaction: The FI3D technique [16], the sticky tools technique
[8], the simulation of grasping behavior [14, 15], and the four view
technique in Section 2. By analyzing each of these different meth-
ods, we create a list of basic concepts; i.e., the basic techniques used
to provide the interaction. In addition to this list of concepts we give
an evaluation of each described concept. By evaluating the concepts,
certain heuristics emerge; In Section 4 we present these heuristics to-
gether with their properties. This Section also provides a conclusion
and a small summary of our findings.

2 OVERVIEW OF METHODS

There exist many approaches for interacting with 3D environments,
such as special 3D mice or Virtual reality approaches, as shown by by
Cruz et al. [4]. For this research we only focus on the use of multi-
touch touch displays [5, 7] (or multi-touch screens) for the interaction.
A touch screen provides, in contrast to, for example, a mouse, a way
of interacting where a user can touch objects directly on a screen using
his fingers or a pen rather than indirectly as with the mouse. However,
there exist many techniques for doing interaction using a touch screen.
In the following subsections, four of these techniques are described,
each providing different approaches to provide the interaction.

2.1 Frame Interaction with 3D spaces
One technique for exploring 3D environments on a touch screen is
the FI3D technique by Yu et al. [16] which is a direct-touch technique
that allows users to explore three-dimensional data representations and
visualization spaces. This technique focusses on cloud datasets or
datasets with very many small objects in which there is not one ded-
icated object that can be used to constrain the mapping from to 2D
input to 3D manipulation, such as an astronomical dataset shown in
Figure 2. This approach uses a combination of active regions and a
(multi-touch) gesture to provide the user with seven degrees of free-
dom. An active region in this case is a touch-sensitive region to which
particular functionality can be attached. This means that the interac-

18

tion mode provided depends on the region in which the interaction is
started. This type of interaction is called spring-loaded mode control
[3]. The interface for the FI3D is shown in Figure 2.

Figure 2. FI3D approach, by Yu et al. [16].

This technique provides x- and y-translation by dragging (i.e., the
user can touch the dataset and move it over the x- and y-axis).

Rotation around the z-axis is done using the four active regions
noted with A in Figure 2. Free rotation around the z-axis is provided
by a virtual trackball. To use this virtual trackball, the user presses
one of these four active regions and drags his or her finger over the
screen. It is also possible to rotate the dataset around the z-dimension
or only around the x- or y-axis. To do this the user moves his or her
finger along one of the active regions for rotation around the z-axis or
specifies the x- or y-axis using one of the regions.

To translate the dataset along the z-axis, i.e., bringing the dataset
‘closer’ to the user (not to be confused with zooming, where objects
are enlarged on the same position on the z-axis), the user can use the
regions noted as B in Figure 2. The user can select this region and
drag a finger into the representation of the dataset. When dragging
from the top area into the main representation, the user moves further
into the dataset. Besides moving into the dataset, this same region also
provides the user to move away from the dataset. For this the user does
not release his or her finger and drags back up towards the top of the
screen. This can also be done using the area at the button, however,
this works the other way around. The dataset can be enlarged using the
top areas marked by C. To scale down the image the opposite buttons
are used.

These techniques provide the FI3D method with seven DOF. Be-
sides these ‘basic’ interaction techniques, the technique also provides
a gestural way for interaction. This gestural way combines four of
the degrees of freedom, called Rotate, Scale and Translate interac-
tion (RST Interaction) [9]. With this technique the user can rotate the
dataset around the z- axis by touching and turning it with two fingers,
but also translate the space in x- and y-direction as well as zoom into
or out of the data. This is informally known as the pinching gesture,
where the user moves his or her fingers closer to each other to enlarge
the entire space, where the objects in the dataset are visually reduced,
or further apart to reduce the size of the entire space, thus visually
enlarging the image.

2.2 Sticky tools
The second technique we analyze is the sticky tools approach because
it is designed to maintain the feeling of physical interaction with the
full capabilities for the manipulation of a 3D scene [8]. To provide this
feeling of physical interaction, three concepts are introduced: sticky
fingers, opposable thumbs, and virtual tools.

Sticky fingers provides the user with four DOF. First of these is the
ability to move an object around the x- and y-axis. This is done by

dragging the object with one finger. This technique is illustrated in
the left image in Figure 3. Besides moving, sticky fingers also pro-
vides the ability to rotate objects around the z-axis, by rotating it with
two fingers. This technique is also shown in Figure 3. The last DOF
provided is the ability to move an object along the z-axis, which is
the lifting of objects. This movement along the z-axis and rotation is
achieved using the RST technique (or pinching gesture) described in
Section 2.1.

Figure 3. Movement and rotation using sticky fingers(in 2D), by Hancock
et al. [8]

.

Because the sticky fingers concept does not provide enough degrees
of freedom to maintain the feeling of physical interaction (for example,
one does not have the ability to rotate objects), the opposable thumbs
concept is introduced. This concept allows the user to rotate an object
around the x- and y-axis by the use of a third finger, providing two
additional degrees of freedom. For this technique the user places two
fingers on the object and uses a thumb (or any other third finger) to
drag away from the object, causing the object to rotate. An illustration
of this technique is shown in Figure 4.

Figure 4. Sticky thumbs: rotation in 3D, by Hancock et al. [8]
.

The tools described earlier provide the technique with 6 DOFs. To
add another DOF, sticky tools uses a technique called virtual tools.
These tools are used to manipulate the continuous dimensions of the
3D objects, such as scaling the objects and applying textures to them.
For example, the virtual tool to scale objects takes the form of a drawer.
The user can drag an object into this drawer and can then adjust the
scale of an object using a virtual knob.

2.3 Grasping
The third we discuss uses an interaction technique inspired by grasping
[14] and is based on algorithms that can simulate grasping behavior
on an imaging interactive touch surface. This technique uses a physics
engine to simulate the behavior of the objects on the screen and lets
the user interact with an object as if it is being grabbed. This means
moving the objects happens in a similar way as you would do in a real
3D environment.

The technique provides this way of interaction by the use of proxy
objects [15]. These objects are kinematically controlled to match the
position of the surface contacts and can be thought of as virtual con-
tinuations of the physical contact points, i.e., where the fingers touch
the surface. An illustration of this technique, with a representation of
the proxy objects, can be found in Figure 5 (the proxy objects are the
red circles in the image).

Moving the object happens in a way in which they would be moved
in the real world. Objects on the surface can be moved along the x-and

SC@RUG 2009 proceedings

19

Figure 5. Grasping approach, by Wilson et al. [14]

y-axis by ‘grabbing’ them and moving them around in a way in which
you would normally move real objects. The same applies to rotating
objects, this can be done by, for example, grabbing it with two fingers
and turning them.

This approach also has (some) support for a third dimension. The
approach makes it possible to apply force to the objects. This means
that a user can use a different amounts of force on the touch screen
to squeeze or press harder on the object [14]. Combined with the
physics engine, this can cause objects to be harder to move, as the
friction between the object and the surface the object is on increases
when force is applied to the object.

2.4 Four view

The four view method is one of the most commonly used approaches
of interacting with 3D environments [10]. In this approach, the view
on the subject is split up into four views; three views showing the 3D
object in parallel projections along the three main coordinate axes, for
example, from the top, the right side and the front, and a fourth view
providing a perspective projection of the complete object. An example
of this technique is shown in Figure 6.

Figure 6. Four view approach, from [12]
.

Each of the three views which show a 2D representation of the ob-
ject enables the user to translate the object along two of the three axes,
depending on which view the user is interacting with. For example,
when the object is viewed from the top, it is possible to translate the
image along the x- and y-axis. Moving along these axes can be done
by touching and dragging the object. The fourth view is used to give
an easy to understand 3D representation of the object.

3 INTERACTION CONCEPTS

The goal of this research is to determine which type of interaction
works well in which 3D environment. To evaluate the methods of
interaction described in Section 2, we discuss this by the means of
interaction concepts. These concepts provide an abstract description
of the means to interact with 3D environments. This section describes
and provides an evaluation of key characteristics of the concepts used
in the four methods.

3.1 Camera vs. Object Manipulation
There are two different concepts for three dimensional interaction:
camera and object manipulation. With object-manipulation, interac-
tion takes place with the object itself. Camera-manipulation is a con-
cept where the user can move the camera around. There is a big con-
ceptual difference here: camera-manipulation lets users observe while
object-manipulation lets users interact.

To provide a clear example of this difference in interaction, compare
FI3D with sticky tools. The FI3D interface lets users manipulate the
camera, e.g., users can zoom and pan the camera. The other method
uses a fixed camera position, this leads to a different way of interact-
ing.

With sticky tools there is not really a zoom function; if users want to
view an object in greater detail, they can either make the object larger
or lift the object so it is closer to the fixed camera.

Panning is used to view an object from a different perspective; there
is a related way to achieve the same result using sticky tools. Instead
of panning the camera to view another side of an object, the object
itself can be rotated.

We evaluated both concept in order to identify important properties.
The most important properties regarding camera-manipulation are:

• The interface only needs to supply the users with ways of chang-
ing the camera position. There is no need to have objects interact
with each other or provide means to modify objects.

• This concept works well for applications where no interaction
with an object is required; for example, walking trough a virtual
house. The camera manipulation concept does not allow for in-
teraction; for example, it is not possible to move around furniture
in a virtual house.

• Camera manipulation only allows for one view at a time. This
can be problematic when there are multiple users who each need
to view something from a different perspective.

We have also identified some key characteristics of the object-
manipulation, these are:

• Multiple users can interact at the same time, assuming the dis-
play supports multi-touch. Every user is able to manipulate a
different object at the same time. In some situations, simulta-
neous interaction by multiple users and a single object is also
possible; for example, two users can stretch or tear (Figure 7) an
object when each user drags an edge of an object away from the
other edge.

• Object-interaction is a very natural concept, it represents how
people interact with real-world objects. There is, however, a
drawback: there is no tactile feedback; i.e., you cannot feel the
object.

• Object manipulation on small screens can cause problems. On
smaller screens occlusion by the hands or fingers limit how pre-
cise people can interact; for example, when your finger is larger
than a group of objects, it becomes difficult to interact with just
one of these objects. The influence of occlusion on interaction is
reduced when the screen becomes larger.

• In order to interact with an object, it needs to be near to the user.
This can be problematic on large shared screens.

2D Touch Interfaces for Interaction with 3D environments – Frank Blaauw and Wes Schuitema

20

Figure 7. Multiple users interact on one object by tearing it, Wilson et
al.[15]

3.2 Grabbing vs. Dragging
The displacement and manipulation of objects is an important form
of interaction. A distinction can be made between two methods of
moving objects; grabbing objects and dragging objects. Dragging is
a commonly used method to move objects; this method is used in for
example Apple’s iPhone [6] and Google’s Android [11] operating sys-
tems; these implementations, however, only provides two-dimensional
interaction. Through the use of physics, extra degrees of freedom can
be added to the dragging method. Another way to interact with objects
is to simulate grabbing behavior. Grabbing is technically very similar
to dragging; the difference is that instead of dragging an object, an
object is pushed by invisible objects which, in turn, are dragged them-
selves. Although the methods are technically similar, the concepts are
different.

The first concept provides the base for the sticky tools method.
When touching an object with the sticky tools method, the user is
able to drag an object. Grabbing behavior is used in the Grasping
method. Objects here have a defined border that can be used to move
an object; for example, a user can place his or her fingers around an
object and subsequently move it. Both methods have a straightforward
implementation when it comes to two-dimensional movement, three-
dimensional movement is provided through the use of physics. The
exact implementation of physics to achieve three-dimensional move-
ment is discussed in the papers describing both methods [14, 15].

Both methods have been evaluated; the most important points are
listed below, starting with grabbing. The most important characteris-
tics of grabbing are:

• Grabbing an object is a very natural way to interact, this is what
people do everyday.

• Interaction with a group of objects is possible; for example, a
user can grab multiple objects at the same time.

• The use of physics can have unintended consequences; e.g., an
object ‘bumping’ into another object, causing the object to top-
ple.

• The lack of tactile feedback from the object is problematics; i.e.
you don not feel the object, making interaction difficult.

• Grabbing only works in two dimensions, this means users cannot
lift objects as is possible in real life.

The dragging concept is evaluated as well. We have identified the
following characteristics:

• Using physics, users are also able to rotate and topple object,
giving them more freedom.

• This is a natural way of interacting, e.g., users can slide object
towards each other.

• Handling small objects can become difficult. There needs to be
an area where the user can, for example, place his or her finger.

• Because a users needs to touch an area of the object, occlusion
happens almost by design. Occlusion can cause problems; for
example, some important part of the object cannot be seen.

3.3 Single- vs. Multi-View
Differences apply not only to the way interaction is achieved, there are
also different ways to present information. When using a single view
to display information it becomes more difficult to map which DOF to
which changes in the system.

Another possibility is to use multiple views. These multiple views
can be, for example, viewing an object from the side and from above.
This multi-view approach has an advantage: the two-dimensional di-
rections, up, down, left, and right then have a different meaning de-
pending on the window, the interactions can stay two-dimensional.
The multi-view approach is commonly used in computer aided draw-
ing applications [1, 2]. It is common to also have a ‘normal’ three-
dimensional view in conjunction with other views.

We have examined the characteristics of the multi-view approach,
which are:

• This concept requires no extra mapping of the input to move
along the x-, y-, and z-axis; this movement can be achieved with
left, right, up, and down. This means that input from the screen
can be directly mapped to the movement of the object.

• Some form of mapping of the input is still needed for scaling and
rotation around the x-, y-, and z-axis.

• The impact of occlusion is reduced. What is occluded in a view
can be clearly visible in another; for example, a view from above
could let you see an object that is not visible in a side-view.

• The multi-view concept allows for very precise control, the
movement of an object can be seen from multiple angles. This
allows for precise placement, because depth can be observed in
another view.

• Having to observe multiple views is not very natural. People are
used to working from one viewpoint.

• Every view that is used needs to be visible on the screen. This
means that more space is needed, or that each view has less space
for itself, when using this concept.

3.4 Manipulating Continuous Dimensions
There are three ways for users to inspect an object in greater detail.
The first option is to move an object closer to the camera (or the camera
closer to the object). This is called z-translation. It is done regularly in
real life; for example, holding a book closer to our eyes to read small
text.

The second option is to make object appear larger, the object and
camera stay in the same place. This is called zooming, this is also
intuitive to most people. Zooming is also used in real life; for example,
when zooming in on an object using a video camera or using a looking
glass.

The third option may be a bit less intuitive, as it involves some-
thing that usually cannot be done in real life. This option is to actually
make an object larger. When an object is made larger, its dimensions
are manipulated; the addition of ‘continuous’ indicates that the new
dimensions stay the same relative to the other objects. It should be
noted that this is only relevant when working with multiple objects.

SC@RUG 2009 proceedings

21

There are some things to keep in mind about this third option. It is
a good option when there are multiple users, interacting with multiple
objects, using a fixed camera position. When a user needs to inspect
an object, he or she can make this object larger. However, this only
works when there are other objects, in relation to which the object is
made larger. When there is a single object, the results are, arguably,
the same as zooming. This other object could simply be an indicator
of the size of the object; for example, a ruler.

4 CONCLUSION

From the evaluation in Section 3, we can draw some conclusions.
These conclusions enable us to create the following list of heuristics:

• Just observation: when the goal of the application is just ob-
serving an object or a set of objects, camera manipulation is the
best choice. This is, for example, provided in the FI3D interac-
tion technique. Here users can view the objects and move around
them by changing the camera position. However, it is not pos-
sible to move or change an object itself. Also note that when
using this technique with multiple users, each user sees the ob-
jects from the same viewpoint as the other users.

• Interaction required: interaction, in this context, means the ma-
nipulation of objects, e.g., moving them (separately) or scaling
them. When the interface needs the users to interact with the ob-
ject on the surface, the object manipulation concept provides the
means to do this. This is in contrast to the camera-manipulation
concept, in which the user only has the ability to view objects.
It is possible, however, to combine the camera-manipulation and
object-manipulation concept; this can be done, for example, by
letting users switch with a spring-loaded mode [3]. This way the
user can use camera-manipulation to view which object has to be
manipulated, and switch to an object-manipulation technique to
manipulate the object.

• Multiple users: for a screen providing functionality for multi-
ple users, the best concept to use is object manipulation. This
concept provides straightforward ways for multiple users to in-
teract; users are able to, for example, move and mutate multiple
objects. The camera manipulation technique could be used for
multiple users as well, however, the users all see the objects from
the same viewpoint. A solution for this could be splitting up the
main screen in separately controlled smaller screens. Each user
would then have his or her own sub-screen. Having the same
viewpoint for multiple users is not necessarily a bad thing. How-
ever, in some cases it could be helpful, e.g., when someone is
presenting information to the other people.

• Small screen: when a three-dimensional environment is dis-
played on a small screen (screen sizes smaller than 7 inches, e.g.,
mobile phones and tablets), the best observation concept is cam-
era manipulation. The reason for this is that the object manipu-
lation technique would be harder to use on small screens. This
is because the objects become smaller and, therefore, become
harder to touch and easier to occlude with fingers. This makes in-
teraction with the objects harder. The impact of the occlusion in
the camera manipulation is less because, after the interaction has
been done, the fingers can be removed from the screen, so they
do not occlude the objects on the screen. With this technique it
is also possible to map actions to active regions, for example at
the bottom of the screen. As you can use this region to control
the interaction, you will not be occluding the main image. This
is for example used in the FI3D technique [16].

• View multiple objects: a large dataset or multiple objects can
best be viewed using the camera manipulation method. This
method scales very well to the amount of objects in the set.

• Screen orientation: the correct concept to use also depends on
the orientation of the screen. For example, when a screen us-
ing the object manipulation technique like sticky tools would be

tilted, the technique would become less intuitive. Objects picked
up would fall into the screen, instead of to the bottom and the
mapping of the controls would be incorrect as well. Besides this,
the viewpoint of the technique would be incorrect; it would be
more intuitive to view objects from the side on a vertical display,
instead of from the top.

In this paper only object manipulation techniques for table top
displays have been tested. It is however possible to use these
techniques for vertical displays, however, the mapping of the
controls, the view, and the physics should be adapted to the ori-
entation.

• High precision: having multiple views is the best concept to
choose when high precision is needed while interacting. This
is mainly because this concept shows the object from multiple
viewpoints, allowing the user to have a clear view on what hap-
pens when something is edited. This decreases the influence of
occlusion between objects. Although the influence of occlusion
by objects is decreased, occlusion by a finger becomes higher
because the screen gets split into four sub-screens, meaning each
windows is reduced in size significantly.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. T. Isenberg, for giving his expert opinion
and commenting on our paper. We would also wish to thank our peers
K. Westra and S. Matyila for giving their opinion and reviewing our
paper as well.

REFERENCES

[1] Autodesk-inc. 3ds Max. http://autodesk.com/3ds-max/, Web site, visited
March 2011.

[2] Autodesk-inc. AutoCAD. http://www.autodesk.com/autocad/, Web site,
visited March 2011.

[3] W. A. S. Buxton. Human-computer interaction. chapter Chunking and
phrasing and the design of human-computer dialogues, pages 494–499.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995.

[4] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. V. Kenyon, and J. C. Hart.
The CAVE: audio visual experience automatic virtual environment. Com-
mun. ACM, 35:64–72, June 1992.

[5] P. Dietz and D. Leigh. DiamondTouch: a multi-user touch technology. In
Proceedings of the 14th annual ACM symposium on User interface soft-
ware and technology, UIST ’01, pages 219–226, New York, NY, USA,
2001. ACM.

[6] J. Gonzalez-Sanchez and M. E. Chavez-Echeagaray. iPhone application
development. In Proceedings of the ACM international conference com-
panion on Object oriented programming systems languages and applica-
tions companion, SPLASH ’10, pages 321–322, New York, NY, USA,
2010. ACM.

[7] J. Y. Han. Low-cost multi-touch sensing through frustrated total internal
reflection. In Proceedings of the 18th annual ACM symposium on User
interface software and technology, UIST ’05, pages 115–118, New York,
NY, USA, 2005. ACM.

[8] M. Hancock, T. ten Cate, and S. Carpendale. Sticky tools: full 6DOF
force-based interaction for multi-touch tables. In Proceedings of the ACM
International Conference on Interactive Tabletops and Surfaces, ITS ’09,
pages 133–140, New York, NY, USA, 2009. ACM.

[9] M. S. Hancock, S. Carpendale, F. D. Vernier, D. Wigdor, and C. Shen.
Rotation and Translation Mechanisms for Tabletop Interaction. In Pro-
ceedings of the First IEEE International Workshop on Horizontal Inter-
active Human-Computer Systems, pages 79–88, Washington, DC, USA,
2006. IEEE Computer Society.

[10] A. Martinet, G. Casiez, and L. Grisoni. Design and Evaluation of 3D
Positioning Techniques for Multi-touch Displays. Research Report RR-
7015, INRIA, 2009.

[11] M. Sterk and M. A. C. Palacio. Virtual Globe on the Android – Remote
vs. Local Rendering. In Proceedings of the 2009 Sixth International Con-
ference on Information Technology: New Generations, pages 634–639,
Washington, DC, USA, 2009. IEEE Computer Society.

[12] TurboSquid. Image used from the TurboSquid web site.
http://www.turbosquid.com/FullPreview/Index.cfm/ID/581786, Web
site, visited April 2011.

2D Touch Interfaces for Interaction with 3D environments – Frank Blaauw and Wes Schuitema

22

[13] Vladimir. iStockPhoto. http://www.istockphoto.com/stock-photo-
5259104-house-3d-technical-draw.php, Web site, visited April 2011.

[14] A. D. Wilson. Simulating grasping behavior on an imaging interactive
surface. In Proceedings of the ACM International Conference on Inter-
active Tabletops and Surfaces, ITS ’09, pages 125–132, New York, NY,
USA, 2009. ACM.

[15] A. D. Wilson, S. Izadi, O. Hilliges, A. Garcia-Mendoza, and D. Kirk.
Bringing physics to the surface. In Proceedings of the 21st annual ACM
symposium on User interface software and technology, UIST ’08, pages
67–76, New York, NY, USA, 2008. ACM.

[16] L. Yu, P. Svetachov, P. Isenberg, M. H. Everts, and T. Isenberg. FI3D:
Direct-Touch Interaction for the Exploration of 3D Scientific Visualiza-
tion Spaces. IEEE Transactions on Visualization and Computer Graphics,
16:1613–1622, November 2010.

SC@RUG 2009 proceedings

23

Multi-touch interaction on stacked objects in 3D environments

Jan-Paul Eikelenboom, Evert Kramer

Abstract—Creating an intuitive interface to manipulate 3D objects on a 2D display is an interesting but nontrivial problem. In this
paper we explore and evaluate a number of different stack based approaches to interact with 3D objects. Different stacking strategies
will be described along with gestures used in multi-touch applications and possible improvements to existing techniques. In our own
approach we use a shallow-depth 3D environment, which is a 3D environment that can only be viewed from the top. The stack
consists of several rectangle flat objects, which can represent images, documents, and other files. We will demonstrate that our
implemented method provides improved ways to interact with a stack and, in our opinion, makes the user interaction easy, fast, and
intuitive.

Index Terms—2D multi-touch , 3D visualization, Stacking, Intuitive interaction, Pilling strategies, Organizing objects

1 INTRODUCTION

Multi-touch and 3D environments is likely to play a greater role in fu-
ture user interfaces. For instance multi-touch is implemented in the
majority of hand-held devices and 3D techniques are implemented in
more products than before. Tristram et al. [10] state that the future of
user interfaces will use “3-D schemes that use our sense of spatial ori-
entation to create the illusion of depth on-screen”, instead of current
desktop files, folders and icons. Thanks to these new techniques and
approaches, people can interact much more efficient and intuitive with
computers. Witthaker et al. [11] did research on the paper organization
strategies ‘piling’ and ‘filing’. The result was that piling is more effi-
cient than filing. Using piling to organize objects has several benefits
over filing, because it is easier prioritize, store, and find elements. The
approaches that we explore try to solve this problem by using stacks on
a multi-touch display and a shallow-depth 3D environment. Shallow-
depth 3D [4] is a concept that is used in tabletop touch displays. This
method allows interaction with 3D objects, but with limited depth.
Hancock et al. [4] describes several interaction methods, which allow
direct touch interaction on shallow-depth 3D objects. The results show
that multiple-touch interaction offers more flexibility, speed, and accu-
racy. This concept makes it possible to simulate a more realistic stack
interaction, by using multi-touch interaction, gestures, and a more nat-
ural 3D environment.

In this paper we first describe and evaluate the different stack-
ing strategies. In the second part we explore the different approaches
on how to interact with the stacked objects in a 3D environment. Af-
ter evaluating and discussing the different methods, we show our own
enhanced implementation of one of the methods and describe the im-
provements that we implemented, along with possible future improve-
ments. At the end of the document we summarize the results we
achieved with our implementation and compare it to existing meth-
ods.

2 MULTI-TOUCH INTERACTION TECHNIQUES

There already exist applications that offer multi-touch interaction and
implemented different techniques to interact with stacked objects. In
this section we discuss the approaches and interaction techniques of
BumpTop [1] and Microsoft Surface1.

• Jan-Paul Eikelenboom is MSc. Computing Science student at the
University of Groningen, e-mail: j.p.eikelenboom@student.rug.nl.

• Evert Kramer is MSc. Computing Science student at the University of
Groningen, e-mail: e.kramer.1@student.rug.nl.

1http://www.surface.com

2.1 Bumptop
BumpTop [1] is an application that offers different ways to interact
with object stacks in a 3D desktop environment. In most multi-touch
tabletop applications shallow-depth 3D is used, which allows interac-
tion with limited depth and provides 2D interaction, but gives a 3D
experience. The 2½D [1] viewing angle of BumpTop gives a better
perspective of the workspace and gives the user a more natural en-
vironment to interact with. The lasso gesture is the main interaction
technique with stack creation, in combination with a menu to select
stack organizing actions. Instead of menus, it would be better to use
different gestures for the most used functions, because of the extra ef-
fort it takes to select one in a menu. BumpTop examined what the best
ways are to interact with stacks, by letting users evaluate the different
techniques.

Examples of a contracted and expanded stack in BumpTop are
shown in Figure 1. The stack is expanded by dragging the top object
away from the stack. BumpTop uses a 2½D view on the desktop,
which is a shifted perspective view of 25°, so that users can easily
distinguish the size of the stacks.

Fig. 1: Example of a stack in BumpTop, image from [1].

2.1.1 Gestures
Interaction with stacks can be done in various ways, in this section
we describe the most important multi-touch gestures. The gestures
below are also visually shown in Figure 2. The animation between
states of the objects and stacks is made as smooth as possible, with
“Smooth Transitions” as the design goal. However, in some cases
when an action needs to be more noticeable, the smooth transitions
can be counter-productive. The gesture ‘scrunch’ is an intuitive and
easy gesture to pile a selection of elements, that uses a smooth transi-
tion to pile the elements.

• Push: Objects can be added or removed from a stack, by moving
an object on top of a stack or picking an object from an expanded
stack and moving it out of the stack (not displayed).

• Fan-out: When two fingers swipe the top object of the stack out-
wards, the objects in the stack are fanned out following the object
that is swiped away from the stack.

24

• Scrunch: When placing three or more fingers around a few scat-
tered objects and then moving the fingers to the center of the
objects, all those objects will be arranged in a stack.

• Lasso: Objects can be added to a stack by dragging a finger
around a group of objects, when the lasso is closed the objects
inside are arranged in a stack.

• Shove: With a larger contact area than just fingers, for example
the side of a hand, objects can be pushed aside.

• Grow & Shrink: Objects and stacks can be zoomed in or out by
using two fingers and moving them together or away from each
other, also called pinch & zoom.

• Rotate View: When placing two fingers on an object, the object
can be rotated by dragging the two fingers around each other.

Fig. 2: Gestures used with stack interaction, image from [1].

2.2 Microsoft Surface
Microsoft Surface is an interactive multi-touch tabletop display, on
which multiple users can interact simultaneously. The most impor-
tant features, which set it apart from BumpTop are physical object
recognition and multi user interaction. The Microsoft Surface tabletop
display only offers a 2D environment, uses basic gestures and offers
basic stack interaction techniques. BumpTop on the other hand of-
fers more advanced interaction with 3D object stacks. Interaction with
physical objects using Tangible User Interface (TUI) is an innovative
aspect of this method, but only usable on tabletop displays. TUI makes
the user experience more immersive, but requires intelligent stacking
techniques to show the content of a tangible object and to allow the
user to easily interact with the virtual objects.

Microsoft Surface works with stacks to order images, messages,
and other objects. Stacks offer organization of contents and allow ba-
sic interaction. With the Microsoft Surface it is also possible to inter-
face with a device placed on the surface, like a phone. After detecting
the device, the Microsoft Surface can show the contents of the device
in stacks. The stacks are visualized next to the device on the display, so
that the user can interact with the content on the device. Offering more
advanced interaction with stacks would give the user a more realistic
experience and a faster way to interact with virtual objects [13]. Fig-
ure 3 shows direct-touch interaction on the Microsoft Surface tabletop
display.

2.3 Tangible User Interface
TUI [9] is a new interface technique that links the virtual world with
the physical world. The research into TUIs is still in an early phase,
but is already used in some commercial products. Figure 4 shows how
physical objects can function as handles, icons, and instruments to
manipulate virtual objects, it also shows the mapping of physical TUI
objects to virtual GUI elements.

Fig. 3: Interaction with Microsoft Surface using a TUI, image from
http://www.surface.com.

Physical objects that can interact with the display are called tan-
gible bits [6]. An example of this is content on physical devices like
a phone or camera can interact with the Microsoft Surface. This way
the user has more physical interaction with the display and can interact
with the content on the device, this gives the user has a more immer-
sive and realistic experience. Stacks can be grouped next to a tangible
bit, for example figure 4 shows stacked photographs next to a device
that the user can interact with.

Fig. 4: Linking TUI to GUI elements, image from [6].

3 OTHER INTERACTION TECHNIQUES

Besides multi-touch, there are other techniques for interaction with
virtual environments. The first is pen based interaction with stacks and
the second uses multi-touch to simulate real world physics to interact
with 3D objects.

3.1 Stacking in a 2D environment with a pen
This section describes a method for interaction on a 2D surface using
a pen as input device. It is possible to fit the pen with sensors to pro-
vide hover and tilt [12] detection. Research in the field of simulating
object stacks is already done using a digital table in combination with
a pen [2]. This results in different strategies to interact with stacked
objects. The principles behind these techniques can also be used to
interact with stacks in a multi-touch environment.

Two of the strategies use transparency to reveal objects that are
hidden in the stack. One of the advantages is that the remaining
workspace is unaffected, when interacting with the stack. Trans-
parency has the disadvantage that more calculations need to be per-
formed when this technique is used. The third strategy allows inter-
action with an expanded stack (see Figure 5.c), the usable space on
the environment is reduced, but the method is lightweight and more
intuitive.

SC@RUG 2009 proceedings

25

The first technique for stacking objects is called DragDeck, when
the user wants to interact with the stack he or she just presses the pen
onto the the top of the pile. Moving the pen across the surface causes
the stack to become more transparent, revealing the hidden content.
Selecting a revealed object and pressing the pen button moves the ob-
ject onto the top of the stack. It is also possible to remove an item from
the stack, by moving the pen orthogonally to the browsing direction.

This technique uses a hover interaction, instead of dragging to
browse the stack, as shown in Figure 5.b. The image can be moved
to the top of the stack by first selecting it and then removing the pen
from the surface. Dragging an object results in removing it from the
stack so that it can be used as a single object and new objects can be
dragged onto an existing stack to be added on top.

In the second technique the stack is expanded. When the user
touches the stack, the objects then are scaled to fit the workspace, see
Figure 5. In expanded state, the user can reform the stack by click-
ing on an empty space, or on another object, the latter results in the
selected object being placed on top of the selected stack. Removing
an object is done by dragging it out of the expanded stack. Adding an
object to the stack works the same way as in the other techniques.

Fig. 5: Different states of a stack. In a the stack is in the normal state,
in b the stack is in browsing mode and in c the stack is open as in the
ExpandPile method, image from [2].

3.2 Analysis
Each of the techniques proposed for the 2D environment offer the same
interactions, but with a different approach. In each technique a touch
gesture is used to open the stack. The browse action requires a differ-
ent action in each technique, as with repositioning a stack. Reorganiz-
ing the stack is done with either a drag or lift interaction, depending
on the technique used.

To find out which one is the best technique out of the three, the
authors of the paper included an usability study [2]. In the study, test
subjects where asked to perform three different tasks that are supported
by each technique:

• Navigate: Browsing trough a stack to find an image with a certain
shape on it

• Repositioning: Finding images, showing one and two, then put
them in order on top of the stack

• Reorganizing: Comparing stacks and find the same image, then
move it from one stack to the other

It turned out that HoverDeck scored higher, than the other tech-
niques, except in navigating through a stack (see Figure 6). Which
is logical, because the ExpandPile reveals all elements by expanding,
making it easy to find an element. However, most people preferred
the HoverDeck techniques although it was on average slower than the
other techniques.

3.3 Stacking with physics in a 3D environment
Physics play an important role in our daily life and dictate the manner
in which objects interact with the environment. Which in turn gives
users a certain expectation on how this interaction works. One of the
challenges faced when trying to deliver an intuitive user experience, is
to correctly simulate these interactions. Proxy objects [3] is a method
which can simulate these interactions and could be used in stack inter-
action.

Fig. 6: Mean value for preferred approach, image from [2].

3.3.1 Proxy objects
In most implementations of a multi-touch environment, a touch on the
surface is directly translated into an 2D position. If there is an object
at that 2D position in the virtual environment, the user can interact
with it. Proxy objects [3] introduce a different approach, translating
the touch on the surface into an object in the 3D environment. This
approach is useful, because in reality people use their hands or fingers
to interact with an object. For example, when rotating an object there
should be a collision force from the side pushing the object away (see
Figure 7), if we want it to work as expected.

Fig. 7: Different strategies for rotating an object within a multi-touch
environment, image from [3].

For each touch on the surface a proxy object is created in the
3D environment, represented as a primitive, like a cube or sphere (see
Figure 8). The primitive is placed in the 3D environment according
to the location of the touch on the display. When the user moves his
or her finger, the corresponding action is also processed for the proxy
object. With this method the user can push objects around or grab
them by placing two fingers on opposite sides.

Fig. 8: Example of the Proxy Objects method, proxy objects are placed
by ray casting, image from [3].

In the real world every object has a mass and can interact with
other object by forces. This can be simulated using a physics engine,
which also makes it possible to use proxy objects. With the help of a
proxy object it is possible to simulate finger pressure onto an object, by

Multi-touch interaction on stacked objects in 3D environments – Jan-Paul Eikelenboom and Evert Kramer

26

giving the corresponding proxy object a higher mass. This results in
down force onto the virtual object beneath the proxy, in turn causing
higher friction. Proxy objects make it possible to simulate friction
and collision forces using an existing physics engine. This provides
improved performance and reusable methods for rotating or grabbing
objects, with the help of friction and collision forces.

The Proxy Object technique only handles single touch points, this
introduces a set of limitations. These mainly concern the detection of
complex shapes, like a hand or object placed onto the surface. Some
interactive surfaces give enough information to detect the contour of
the shape. With the use of Particle Proxies [3] it is possible to transfer
the shape into the 3D environment. The basic idea behind Particle
Proxies is to use a number of proxy objects to represent the shape, by
removing or adding as much proxy objects as needed.

3.3.2 Stacking

The question is how can we use this technique to let the user create
stacks. In reality, stacking a pile of papers is done by shoving it to-
gether with the hands until it forms a stack. However, in a 3D environ-
ment the same gesture would result in objects that represent documents
[8] colliding into each other and flying everywhere, giving unrealistic
results. The difference is that in reality a paper or document has some
3D shape, therefore making it possible to slide one on top of another.
To make this possible in the 3D environment, Wilson et al. give the
top and bottom surface of each object, a cambered shape. This shape
makes it possible to tilt one object with a finger and sliding another
object underneath, as shown in Figure 9.

Fig. 9: Example of sliding one object underneath another, image from
[3].

4 ANALYSIS

In this section we compare the different techniques based on three cri-
teria; input, interaction, and environment.

Technique Input Interaction Environment
Bumptop Multi-Touch Gestures Shallow-depth

3D with a 25
degree viewing
angle

Microsoft
Surface

Multi-Touch
TUI

Gestures Top view

Pen on tablet Pen Gestures
and button
control

Top view

Physics
based

Multi-Touch Physics Shallow-depth
3D with top view

Table 1: Properties of the approaches for interaction with a digital
environment

4.1 Input
In Table 1 we can see that the input for three of the techniques is sim-
ilar, namely multi touch. Multi touch interaction offers users a natural
way to interact with the surface by using multiple fingers, without the
use of any tools. The pen on tablet technique also uses touch as input,
but in the form of a pen instead of a finger. An advantage of using
the pen, is that it can be fitted with different sensors, which add new
functionality and interaction techniques to the touch interface. The
downside is, that users need to know how to use the pen. How the
different methods use gestures to improve the user interaction is dis-
cussed next.

4.2 Gestures
Our goal is to find an intuitive method for interaction with stacks. With
intuitive interaction we mean that the user can interact with the stack
in a similar way as with a real stack.

Bumptop uses different gestures to interact with stacks, these ges-
tures have been extensively tested and analyzed, with respect to if they
are intuitive and efficient. The main gestures that are used, lasso, fan
out, and pinch & zoom are commonly accepted as ways to interact
with multi-touch displays. Scrunch and shove are not as well-known,
but sometimes are faster than other more simple gestures. These ges-
tures are not as intuitive as lasso, for example, but they can make stack
interaction much faster, so each method must decide on a trade-off
between how intuitive and efficient a gesture should be.

Microsoft Surface is based on a 2D environment in which ob-
jects in the stack are assigned a different height, the gestures used are
mostly based on one or two touches [13]. The stack interaction on the
Microsoft Surface is not as advanced as the gestures and interaction
used in BumpTop. The focus is more on simple object interaction and
TUI, ”messy piles” [1] are used to stack objects. In a messy pile, ob-
jects are loosely stacked on top of each other in such a way that each
object is partially visible. This only allows a few of the top objects on
the stack to be visible, but messy stacks are suitable for the Microsoft
Surface, which tries to keep interaction as simple as possible and the
number of virtual objects to a minimum.

Pen based gestures can provide more accuracy, so it is easier
to interact with elements in the stack than with the other touch-based
gestures. Fanning out the stack and removing and adding items is
more accurate, but it does not make the experience more realistic or
intuitive. Using a pen is for most users not intuitive and working with
fingers on a direct-touch display is more realistic and intuitive. When
accuracy is needed in touch-based applications, pen based interaction
is a good option, but for general touch-based applications for normal
users, regular touch interaction is preferred.

Physics based interaction with objects is in reality very intuitive,
but on a 2D display it is not intuitive for a user to interact the same way.
There are not any gestures used in this method, but proxies can be used
to provide a more intuitive way to slide objects out of an expanded
stack. The proxies give a more precise control over the objects and this
technique could be added to stack interaction gestures. However, a big
disadvantage of physics simulation is that user could create unwanted
collisions when interacting with multiple objects. The same holds with
moving a stack because large stack could fall over when applying to
much force, making it difficult to efficiently use the stack.

Another problem is that the system cannot detect the force a user
applies, which in the real world results in less or more friction on an
object. For example, sliding across an object with one finger will result
in less force exercised than multiple fingers. It is possible to simulate
this, by using Particle Objects to interact with the environment. How-
ever, it turned out that most users did not make this distinction, and
just pressed hard on the surface to apply more force.

Our implementation uses the gestures fan-out and pinch & zoom
to interact with the stack. These gestures make it possible to efficiently
extract and add objects to the stack. Our method focuses on the extrac-
tion and addition of objects, while other methods focus more on visu-
alizing the stack in different ways. We will not use the proxy method,

SC@RUG 2009 proceedings

27

because in real world it is useful, but for working with stacks it is not
efficient.

4.3 Environment
The last row of table 1 shows that either a 2D or 3D shallow-depth
environment is used. Bumptop uses an 3D environment but has tilted
the camera angle. The tilted camera makes it easier for users to see
depth in the environment. Another trick Bumtop applies is the use
of shadows to emphasize depth as described in earlier research [5].
Bumptop also offers walls were user can hang items on. The physics
technique uses also a 3D environment but with a fixed top down view.

Microsoft Surface and the Pen on tablet technique both use a 2D
environment. An advantage of using a 2D environment is that it is easy
to translate finger-touches into coordinates for the 2D environment.
Because the 2D environment lacks the dept dimension it is difficult to
show a stack. To solve this, both techniques apply an drawing order,
drawing the elements from to bottom to top. This will cause the top
element to be drawn over the other elements, creating a depth illusion.

Both types of environments offer advantages and disadvantages.
The 3D environment has a depth dimension, making it easy for the user
to see depth and differences in size. Because the 2D environment only
has the drawing order, to convey depth, it is harder to work with and
to make the user aware of depth. However, the 3D environment may
put more strain onto the system and the correct handling of touches on
the surface is harder.

5 STACK MODEL FOR MULTI-TOUCH ENVIRONMENT

Based on the different stacking strategies, we can now propose a solu-
tion that takes advantage of multi-touch environments. There are a few
basic functionalities which a stack needs in order to make it usable:

• Creating a stack from a group of objects

• Adding an item to the stack or adding a group of items to a stack

• Browsing the stack

• Reposition an object in the stack

• Removing an object from the stack

• Splitting a stack into multiple stacks.

Our implementation focuses on creating a stack, browsing the stack,
and splitting a stack. We implemented our own method based on the
discussed techniques to perform these tasks. In one technique physics
are used, to interact with elements in the environment. Although this
simulates real world interaction, there is a chance that unintended col-
lision causes unwanted effects on interaction with stacks, hindering
efficient use of the stacks in the environment. For the environment we
use a 3D environment with a camera from above to make it similar to
a desktop.

5.1 Creating a stack and adding objects
As explained in Section 2.1.1, a multi-touch environment recognizes
gestures made by the user. In our model it is possible to create a stack
with three different gestures. First a user can use the Lasso gesture, to
make a lasso around the objects for the stack, as shown in Figure 10.
An evaluation of people’s multi-touch interaction behavior has previ-
ously shown that 56% [7] of the users used this method. As explained
earlier, a Scrunch gesture can be used to gather objects by placing the
fingers around the object and moving them closer to each other. When
the fingers are released and the object distance between them is small,
the group changes into a stack. A similar action is to use two hands
to shove the objects together and when the objects are moved together
close enough, the objects are turned into a stack.

(a) Step one (b) Step two

Fig. 10: Example of lasso action to create stack, Figure 10a shows first
step, Figure 10b shows the result.

It is also possible to add more objects to a stack by dragging an
object with a finger onto the stack. Objects are always added on top of
the existing stack. The same holds for a group of objects that can be
selected and dragged onto the stack, the objects are then added on top
of the existing stack. With the Lasso gesture the user can make a circle
around a group of objects, to select them and can then drag his finger
to another stack to add those objects on top of the existing stack.

Our approach differs in two ways from the earlier discussed meth-
ods. Firstly, we automatically create a stack while Bumptop uses
menus to specify what type of stack is created. Secondly, our stack
elements are shifted, so that it is easier to see how high the stack is.
Because we use a 3D environment with a top-down view it is difficult
to see the height of a stack when objects are neatly stacked.

5.2 Browsing the stack and reposition objects

Browsing is an important functionality for a stack, because most of the
time the user needs quick access to the stack. According to Aliakseyeu
et al.’s work [2], HoverDeck provided the best experience. Keeping
this in mind, we modeled our browsing method in a similar way by
replacing the pen with a finger. In our model, the user can interact
with the stack, by touching the top element of the stack and dragging
it in any direction. While dragging the top element of the stack, hidden
objects can be revealed (see Figure 11a), this is a technique similar to
the Fan out gesture introduced in the BumpTop method.

When an interesting object is found, another finger touch can be
used to slide the object out of the stack, like a person would pick some-
thing out of a stack in reality. When the user removes his or her fin-
ger from the surface, the object will automatically slide back into the
stack. Moving the finger while an object is selected further upwards or
downwards on the stack results in repositioning the object in the stack.

5.3 Removing objects and splitting stacks

Removing objects works by touching an object and then dragging it
out of the stack. The object is then released from the stack and can
be moved free in the environment, or moved to another stack. Besides
removing an object, it is also possible to split a stack using intuitive
multi-touch possibilities. To split a stack the user needs to place two
fingers onto two objects of an expanded stack. The objects selected
and the objects in between are removed from the current stack when
they are dragged away from the stack, these objects then form a new
stack, as illustrated in Figure 11.

6 CONCLUSION

During our research we found different approaches in working with
stacks, some of these approaches tried to model real world interac-
tion, while other took a more abstract approach. It also turned out that
physics do not always give a better result, when trying to achieve an
user friendly method for interaction.

Multi-touch interaction on stacked objects in 3D environments – Jan-Paul Eikelenboom and Evert Kramer

28

(a) Fan-out stack (b) Split stack step one

(c) Split stack step two

Fig. 11: Example of a split gesture.

We first thought that gestures should always to be intuitive, but a
user evaluation [7] shows that a gesture, like the lasso, is more efficient
and preferred by the users. So we can say that some gestures, in par-
ticular those that are widely used on interfaces are preferred over ges-
tures that are more intuitive. Another important finding is that gestures
can be divided in two groups, namely, command based or simulation
based. The lasso is an example of a command based gesture and is a
more abstract way to interact with the stack, while the scrunch gesture
is simulation based and is more realistic and intuitive. In some cases
it is best to use a combination of these groups, for example when it is
widely accepted or efficient way to interact with a stack.

We can conclude that stacks are a useful method for interacting
with objects on a desktop, our proposed method tries to make the in-
teraction with a stack more intuitive and easy. We achieved this by
modifying and adapting existing methods for interaction with a stack.
We also introduced a new method for splitting a stack in a way that
is similar to interaction with a real stack. Future work in the field of
stack based interaction could be improving physics interaction, so that
it adds value to the user interaction.

ACKNOWLEDGMENT

The authors wish to thank Dr. Tobias Isenberg, Drs. Jan-Mark S.
Wams and Ing. Johan van der Geest for reviewing our paper.

REFERENCES

[1] A. Agarawala and R. Balakrishnan. Keepin it real: Pushing the desk-
top metaphor with physics, piles and the pen. In Proceedings of the
SIGCHI conference on Human Factors in computing systems, CHI ’06,
pages 1283–1292. ACM, Aug. 2009.

[2] D. Aliakseyeu, S. Subramanian, A. Lucero, and C. Gutwin. Interacting
with piles of artifacts on digital tables. In Proceedings of the working con-
ference on Advanced visual interfaces, AVI ’06, pages 159–162. ACM,
May 2006.

[3] W. Andrew D, S. Izadi, O. Hilliges, A. Garcia-Mendoza, and D. Kirk.
Bringing physics to the surface. In Proceedings of the 21st annual ACM
symposium on User interface software and technology, UIST ’08, pages
67–76. ACM, Oct. 2008.

[4] M. Hancock, S. Carpendale, and A. Cockburn. Shallow-depth 3d interac-
tion: Design and evaluation of one-, two- and three-touch techniques. In
Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI ’07, pages 1147–1156. ACM, Apr. 2007.

[5] K. P. Herndon, R. C. Zeleznik, D. C. Robbins, D. B. Conner, S. S. Snibbe,
and A. van Dam. Interactive shadows. In Proceedings of the 5th annual
ACM symposium on User interface software and technology, UIST ’92,
pages 1–6. ACM, Nov. 1992.

[6] H. Ishii and B. Ullmer. Tangible bits: Towards seamless interfaces be-
tween people, bits and atoms. In Proceedings of the SIGCHI conference
on Human factors in computing systems, CHI ’97, pages 234–241. ACM,
Mar. 1997.

[7] C. North, T. Dwyer, B. Lee, D. Fisher, P. Isenberg, K. Inkpen, and
G. Robertson. Understanding multi-touch manipulation for surface com-
puting. In Proceeding INTERACT ’09 Proceedings of the 12th IFIP TC
13 International Conference on Human-Computer Interaction: Part II,
INTERACT, pages 236–249. Springer-Verlag Berlin, Heidelberg, Aug.
2009.

[8] G. Robertson, M. Czerwinski, K. Larson, D. C. Robbins, D. Thiel, and
M. van Dantzicht. Data mountain: using spatial memory for document
management. In Proceedings of the 11th annual ACM symposium on User
interface software and Technology, UIST ’98, pages 153–162. ACM,
Nov. 1998.

[9] O. Shaer and E. Hornecker. Tangible user interfaces: Past, present, and
future directions. Foundations and Trends in Human-Computer Interac-
tion, 3(1-2):1–137, Jan. 2010.

[10] C. Tristram. The next computer interface. page 1, Dec. 2001.
[11] S. Whittaker and J. Hirschberg. The character, value and management of

personal paper archives. ACM Transactions on Computer Human Inter-
action, 8(2):150–170, June 2001.

[12] D. Wigdor and R. Balakrishnan. Tilttext: using tilt for text input to mobile
phones. In Proceedings of the 16th annual ACM symposium on User
interface software and Technology, UIST ’03, pages 80–90. ACM, Nov.
2003.

[13] J. O. Wobbrock, M. R. Morris, and A. D. Wilson. User-defined gestures
for surface computing. In Proceedings of the 27th international confer-
ence on Human factors in computing systems, CHI ’09, pages 1083–1092.
ACM, Apr. 2009.

SC@RUG 2009 proceedings

29

COMPARISON OF SKELETON EXTRACTION TECHNIQUES

Marcel Jillings and Sijmon Heitmeijer
Department of Mathematics and Computer Science

Rijksuniversiteit Groningen, The Netherlands
m.jillings@student.rug.nl

s.heitmeijer@student.rug.nl

Abstract— In the field of skeleton extraction there are multiple algorithms which all have their own technique to extract a
skeleton. This paper will compare three of these algorithms to help practitioners choose an algorithm which suits their needs and
helps to determine global shortcomings of skeleton extraction techniques. The first algorithm is the Augmented Fast Marching
Method which uses the observation that skeleton points are generated by the collapse of compact boundary segments during the
Fast Marching Method algorithm’s front evolution. The algorithm is augmented by a value U which is added to each point on the
advancing front which allows the determination of the corresponding boundary point. The second algorithm is Computing
Multiscale Curve and Surface Skeletons using a Global Importance Measure. Each point on the skeleton is assigned a part of the
object surface, called the collapse. During the first phase of the algorithm the collapse measure is calculated, an importance
measure where the size of the collapse is used for both curve and surface skeleton. Directional 3D Thinning using 8 Subiterations
is the third algorithm being discussed. Thinning is an iterative process of layer by layer erosion of an object to extract an
approximation to its skeleton. There are two types of 3D thinning algorithms: the curve-thinning type is used to extract medial
lines or centerlines, whereas a surface-thinning type produces medial surfaces The inner workings of these algorithms are
explained and the algorithms are compared by means of the robustness, complexity, ease of implementation and usability. The
paper shows that the three different algorithms all produce usable skeletons but that robustness and ease of implementation are
general issues. The Directional 3D thinning method can’t handle noise and doesn’t provide an implementation. The Global
Importance Measure and Augmented Fast Marching Method give better results but the latter provides code segments, a ready to
use implementation and is less complex.

Index Terms—skeleton extraction, centerlines, directional thinning, global importance measure, augmented fast marching
method

1 INTRODUCTION
Extraction of skeletons is a fundamental problem with many
applications in computer graphics and visualization. The skeleton of
an 3D object consists, in general, of curves and surfaces [4]. A curve
skeleton is a set of 1D curves that are locally symmetric with respect
to the shape boundary [5] whereas the surface skeleton is a 2D set
union of surfaces and curves [6].
 Curve skeletons have a low dimensionality which is useful for
many visualization tasks such as virtual navigation, reduced-model
formulation, visualization improvement, animation, geometric
processing and morphing [2, 12]. Skeleton surfaces are useful in
many application areas, such as volumetric animation, surface
smoothing and topological analysis used in shape recognition,
registration, simplification and feature tracking [2].
 There are many algorithms in the literature describing extraction
algorithms for different applications. However, it is unclear how they
compare to each other. In this paper, we provide an overview of three
skeleton extraction techniques: Augmented Fast Marching Method,
Global importance Measure , Directional 3D Thinning, and compare
them based on certain comparison criteria. The comparison criteria
are based on the goals the authors set for the algorithms. These goals
also often affect the advantages and disadvantages of the algorithm.
It is important to compare algorithms because of the wide scope of
available techniques. A comparisons helps practitioners choose an
algorithm which suits their needs and helps bring forth problems
with current techniques that might otherwise have been overlooked
or ignored.
 The structure of this paper is as follows. In Section 2 we give a
summary about how the different algorithms work. The comparison
criteria for the algorithms are defined in Section 3. The criteria from
section 3 are than used to compare all three algorithms in section 4.
In Section 5 a conclusion is presented and contains suggestions for
possible future work.

2 SKELETON EXTRACTION TECHNIQUES
There are three different algorithms that we will compare. This
section describes how the different algorithms work and note what
the key features, according to the respective papers, of the algorithms
are. These key features can be easy usability, noise resistance or real-
time skeleton extraction.

a) b)
Figure 1: The advancing front of the FMM algorithm which
determines the position of the skeleton points (a) and the maximal
disks centered on the skeleton points (b). [9]

2.1 Augmented Fast Marching Method
This subsection will discuss the Augmented Fast Marching Method
(FMM) algorithm as described by Alexandru Telea and Jarke J. van
Wijk [1]. The key to their method is the observation that skeleton
points are generated by the collapse of compact boundary segments
during the front evolution of the FMM algorithm [9]. Figure 1a
shows the inwards movement of the advancing front of the FMM
algorithm. Black dots indicate skeleton points. In theory corresponds
each skeleton point to at least two boundary points. Those boundary
points are the boundary points touching the maximal disk centered

30

on the skeleton point (Figure 1b). For every point in the advancing
front the corresponding boundary point is determined.

 Figure 2: Objects (a ,c) and the order in which U is assigned
to their boundaries (b, d). [1]

 One real value U was augmented to the FMM algorithm per grid
point in order to do this. Initially U is set to zero in an arbitrary
boundary pixel. They assign a monotonically increasing U to every
boundary pixel, equal to the distance, along the boundary, from that
pixel to the U = 0 pixel (Figure 2). This makes U a boundary
parameterization with the property that the distance between any two
boundary points, measured along the boundary, is equal to the U
difference of that point. An exception to this are the points from
which U starts being propagated, e.g. the point with U = 1 in Figure
2b and the points U = 1 and U = 33 in Figure 2d. The U value is
propagated along with the original FMM values. Every pixel inside
the initial boundary gets marked by the propagation of U with the U
value of the boundary point that arrived at that location on the
advancing front. They interpolate U values, via averaging, to account
for boundary points that are located between the initial boundary
pixels. When the U values around the current point differ more than
two it means that the boundary points were not neighbors. The
maximum distance between two boundary points is √2 in case of
diagonally connected pixels. The above happens along convex

boundary segments that shrink (collapse) during front evolution in
which case a skeleton point is found. A U field is computed for the

Figure 3: Detail of the augmented FMM result in the corner of a
rectangle. [1]

figure on which a threshold is applied to retrieve the proper skeleton
points. All points where U differs from the neighboring U’s by more
than a given threshold remain.
 Figure 3 shows the first three advancing fronts as evolved from the
boundary of a rectangle. Note that the U difference between
neighboring points increases as one goes further from the boundary.
 Alexandru Telea and Jarke J. van Wijk explain that the property
that U increases monotonically along the boundary’s compact
segments does not hold for the points in which they start the
parameterization from. The problem of finding false skeleton
branches at these starting points is solved by executing the whole
augmented FMM algorithm twice and starting the U initialization
from different boundary points. The intersection of the two resulting
skeletons produces the correct skeletons in all the cases they tested.

2.2 Global Importance Measure
This section covers the Multiscale Curve and Surface Skeletons
using a Global Importance Measure algorithm [2], which is designed
to obtain both surface and/or curve skeleton hierarchies in a uniform
manner. The algorithm is uniform because both, curve and surface
skeletons, are computed and treated similar.
 The algorithm consists of three separate phases. Each point on the
skeleton is assigned a part of the object surface, called the collapse.
During the first phase of the algorithm the collapse measure is
calculated, an importance measure where the size of the collapse is
used for both curve and surface skeleton.

a) b) c) d)
Figure 4: Example of skeleton extraction of a cow with multiple thresholds. [2]

SC@RUG 2009 proceedings

31

 Mass, initially located on the object boundary, is advected onto and
then along the skeleton. The collapse measure of an object point is
the amount of mass advected through that point. The amount of mass
that passes through a point on its way to the root, the middle of
skeleton, determines the importance of an object point. The collapse
measure has a low value at the non-skeleton object points whereas
the value increases while approaching the root.
 Each skeleton point has at least two points on the shape’s boundary
at minimum distance, called feature points [7]. In the second phase
the algorithm classifies an object point as a curve or surface skeleton
point. Instead of only computing the shortest paths between both
feature points of an object point, the feature points of the neighbors
of the object point are also considered. This results in multiple
shortest paths. The shortest paths form a band around the object. The
object point is classified as a curve skeleton point if and only if the
band splits the object surface into two connected components,
assuming that the object is of genus 0. The object point is classified
as a surface skeleton point if the band does not divide the object
surface into multiple components.
 Simplified skeletons can be obtained by pruning the skeleton using
the importance measure [8]. After the collapse measure is calculated
for each object point and the classification is done, the third phase is
to obtain the simplified skeletons of the curve and surface skeleton.
This is done by thresholding the collapse measures with a desired
threshold. The collapse measures are normalized to [0..1] by
dividing the values by its maximal value to easily handle objects of
different maximum values. Because the collapse measure is
monotonic the simplified skeletons are connected by default. The
object points are of low importance and will disappear first when
increasing the threshold, whereas the curve skeleton points are of
high importance and will disappear last when increasing the
threshold. An example of the algorithm using different thresholds is
shown in Figure 4.

2.3 Directional 3D Thinning
This section will discuss the two 8-subiteration Directional 3D
Thinning algorithms as described by Kálmán Palágya and Attila
Kuba [3]. The goal of thinning is to reduce binary objects to their
skeletons in a topology-preserving way. Thinning is an iterative
process of a layer by layer erosion of an object to extract an
approximation to its skeleton. There are two types of 3D thinning
algorithms: the curve-thinning type is used to extract medial lines or
centerlines, whereas a surface-thinning type produces medial
surfaces.

Figure 5: The original object (left), its medial surface (middle), and
its medial lines (right). [11]

 There are six kinds of border points in 3D images and 6-
subiteration parallel thinning algorithms were generally proposed
[9]. Instead of the six usual directions, eight new directions are
proposed. These directions are depicted in Figure 6. The directions
are labeled according to the four wind directions (N E S W) and as
up and down (U D). Kálmán Palágya and Attila Kuba used some
basic notions in their paper such as white points, black points, a
black component, a white component, border points and simple
points which we will not explain in detail in this paper.

a) b)
Figure 6: The usual six directions (a) and the proposed eight
directions (b). [3]

 The skeleton is extracted by deleting simple points from the image.
A black point is called simple point if its deletion does not alter the
topology [3]. At the start all points within the figure are black points
(Figure 5, left) and the points outside the figure are white points.
When a simple point is deleted it will become a white point.
 In order to be able to retrieve a curve skeleton or a surface skeleton
some black points are marked as curve-end points or surface-end
points depending on the desired skeleton. These end points cannot be
deleted. The following definitions are given:

Definition 1: A black point p is a curve-end point in a picture (
, 26, 6, B) if the set (N26(p) \ B) ∩ {p} is singleton (i.e., p is 26-
adjacent to exactly one black point).

Definition 2: A black point p is a surface-end point in a picture (
, 26, 6, B) if the set N6(p) \ B) contains at least one opposite pair of
points (Note that each curve{end point is a surface{end point.)

 Seven base templates are assigned to the sub iterations of the curve
thinning algorithm. These templates define the parallel reduction
operation. A set of four base templates is assigned to the sub
iterations of the surface thinning algorithm. These base templates are
then rotated and reflected with respect to the three symmetry planes
illustrated in Figure 7. Each direction gets its own template set, for
curve thinning is this 22 templates per direction and for surface
thinning this is 15 templates per direction.

Figure 7: The three symmetry planes for reflecting templates. Points
belonging to the given planes are marked "*". [3]

A black point can be deleted if at least one template in the set of
templates matches it. By using different templates Kálmán Palágya
and Attila Kuba are able to extract curve skeletons as well as surface
skeletons.

3 COMPARISON CRITERIA
The paper presents a set of criteria which can be used for comparing
the three algorithms from Section 2. When comparing different
algorithms it is crucial to identify the criteria that lead themselves to
comparison. The advantages and disadvantages of an algorithm are
often influenced by the goals the authors set at the beginning of the
research, and are usually described in the respective papers.
 The different goals of the algorithms make it possible to determine
the extent to which the goals have been attained or if they have been
outperformed by other algorithms.
 The Augmented Fast Marching Method algorithm has multiple
goals. The main goal of the algorithm is to be easy to use and

Comparison of Skeleton Extraction Techniques – Marcel Jillings and Sijmon Heitmeijer

32

implement for inexperienced users. The only parameter of the
algorithm is a threshold value which is easy to choose by the users.
The algorithm also sets a goal to behave robustly with respect to
noisy boundaries. This goal is in line with the previous goal because
other methods are very sensitive to their parameters’ choice [1] with
respect to the quality of the skeleton with noisy boundaries.
 The main goal of the Global Importance Measure algorithm is to
treat the non-skeleton, surface and curve skeleton points in a uniform
manner. This should improve the overall running time because it uses
a single global measure for both the curve and surface skeleton [2].
The secondary goal is that the curve skeleton is a subset of the
surface skeleton. The curve skeleton can be considered as a limit
case of the surface skeleton for objects with local circular symmetry
[2].
 The goal of the Directional 3D Thinning algorithm is to reduce
binary objects to their skeletons in a topology-preserving way. A
thinning algorithm does not preserve the topology if the object is
split or deleted, any cavity is merged with the background or another
cavity, or when a cavity is created which was not in the object.
 All algorithms described above have their own goals. Some of
these goals are in line with other goals and can also overlap with
goals from other algorithms. Apart from the goals set by the authors
a comparison is made for complexity, ease of implementation,
robustness, usability and the quality of the results.
 The complexity of an algorithm is the running time of the
algorithm. There are problems having multiple algorithms with
different complexity, while other problems having only one
algorithm. The ease of implementation describes how much effort is
required to implement the algorithm. Usability is the extent to which
a product can be used by specified users to achieve specified goals
with effectiveness, efficiency and satisfaction in a specified context
of use [10]. Robustness is the extent to which the algorithm is
insensitive to boundary noise. This is required in all practical
applications [2].

4 COMPARISON
We make a comparison between the different algorithms based on
the comparison criteria from Section 3. A verdict is given at the end
of each subsection.

4.1 Complexity
The discussion about the computational complexity will focus on the
running time of the three methods.
 The running time of the Augmented Fast Marching Method
algorithm is for both 2D and 3D objects O(n log n) for n pixels (2D)
or n voxels (3D).
 The Global Importance Measure algorithm has a running time of
O(n(b log b)), where n is the number of object voxels and b the
number of boundary voxels. The worst case scenario occurs when

the object is a sphere, as the algorithm visits nearly all boundary
voxels for diametrically-opposed object voxels [2], in which b ≈ log
n. However, in most practical cases is the running time far below the
worst case running time [2].
 The last algorithm is the Directional 3D Thinning algorithm which
has a running time of O(n) for n voxels.
 The computational complexity of the Directional 3D Thinning
algorithm is the least of the three compared algorithms. The
Augmented Fast Marching Method algorithm is the second least
complex algorithm and the Global Importance Measure algorithm is
the most complex algorithm.

4.2 Ease of implementation
As pointed out by Alexandru Telea and Jarke J. van Wijk, a lot of
algorithms are very complex to understand and implement [1]. Most
methods do not provide a detailed implementation or discussion on
how to use their various parameters. The discussion about the ease of
implementation will focus on the number of parameters, the
implementation itself and documentation of the three algorithms.
 The Augmented Fast Marching Method requires an image and a
threshold as its parameters [1]. Code segments are given in the paper
and a full working C++ implementation, including documentation, is
available. These detailed code segments and a low number of
parameters make the algorithm easy to implement.
 The Global Importance Measure algorithm is comparable to the
previous algorithm in terms of parameters. The algorithm requires an
image and a threshold, to apply to the importance values, as
parameters [2]. Pseudo code is provided in the paper but there is no
actual implementation given. This makes it more difficult to
implement than the previous algorithm.
 The Directional 3D Thinning algorithm requires the least amount
of parameters and only needs an image as the input [3]. Unlike the
previous algorithms, there is a lack of any meaningful pseudo code.
The paper also relies heavily on knowledge out of previous papers,
which makes it difficult to understand the algorithm. Even though
the algorithm only requires one parameter, the lack of code makes
the algorithm by far the hardest to implement.

4.3 Robustness
In this section we will compare the robustness property of the
different methods, based on the information offered in the
corresponding papers. The Augmented Fast Marching Method
algorithm and the Global Importance Measure algorithm both desire
the robustness property because of the importance in practical use.
The extent to which the algorithm is sensitive to boundary noise and
be different for the surface and curve skeleton.
One of the goals of the Augmented Fast Marching Method algorithm
is to be robust to noise. The collapse measure from the algorithm
possesses this property. It is robust to compute on complex and noise

Figure 8: The skeletons can be made robust by increasing the threshold value. [1]

SC@RUG 2009 proceedings

33

objects, and the result of a noisy surface is close to that of the
corresponding smooth surface. This is achieved by setting the
threshold value such that the skeleton parts due to noise are filtered
out. In Figure 8 the dinosaur is depicted with and without surface
noise with two different thresholds. The surface skeleton from the
dinosaur with added noise (Figure 8b) is much noisier than the
surface skeleton from the dinosaur without noise (Figure 8a).
Increasing the threshold value results in a more robust surface
skeleton with noisy surfaces (Figure 8d). With the increased
threshold the original dinosaur and the noisy dinosaur are
comparable with each other. The curve skeleton and surface skeleton
are calculated in a uniform manner, both the curve and surface
skeleton use the same threshold value.
 The Global Importance Measure algorithm presents a
skeletonization algorithm which behaves robustly with respect to
noisy boundaries. A pruning threshold t is used to prune skeleton
branches, caused by boundary noise, shorter than t pixels. Good
results with threshold values between 20 and 40 pixels on average
are achieved for objects without added noise. For objects with
boundary noise, the threshold values are increased to be around 100
pixels on average [2] to prune the small skeleton branches created.

Figure 9: Noise sensitivity of the algorithm. The thinning of a solid
doughnut (a) and its noisy version (b). The results of surface thinning
(b, e) and the results of curve thinning (c, f). [3]

 Unlike the other two algorithms, the Directional 3D Thinning
algorithm only has the goal to reduce binary objects to their
skeletons in a topology-preserving way. It is not a goal of the
algorithm to be robust. In Figure 9 a solid doughnut is depicted in the
original state and the noisy state. The noise in the noisy object was
added to the boundary of the original object. Some border points are
deleted from the original object and some white points adjacent to
border points are changed to black. The surface skeleton from the
doughnut with added noise (Figure 9e) is much noisier than the
surface skeleton from the doughnut without noise (Figure 9b). This
algorithm is sensitive to noise, since a noisy boundary may contain a
number of surface-end points to be preserved [3]. Unlike the other
two algorithms, it does not provide threshold values to reduce
boundary noise. The curve skeleton from both the original doughnut
(Figure 9c) and the noisy doughnut (Figure 9f) are comparable to
each other.
 The Augmented Fast Marching Method algorithm and the Global
Importance Measure algorithm contain a threshold parameter to
reduce the sensitivity to noise. The Directional 3D Thinning
algorithm, which does not provide any threshold values to reduce the
noise, is not suitable for surface skeletons but the curve skeleton of
the noisy object is comparable to the curve skeleton of the original
object. The results of the Augmented Fast Marching Method
algorithm and the Global Importance Measure algorithm are similar

in terms of sensitivity to noise, but the second algorithm is designed
in particular for 2D objects. The Global Importance Measure
algorithm can also be extended to 3D objects with additional
implementation effort. The preferred algorithm depends on the
skeleton type, the dimension of the object and the other desirable
properties, like the complexity, usability and quality.

4.4 Usability
The usability of an algorithm depends on the objects being used.
Noisy objects are widely used in practical situations whereas noise-
free objects are rare [2]. In case of noisy objects the user want more
control over the ability to reduce the noise.
 The Augmented Fast Marching Method algorithm provides the user
with a single threshold value to reduce object boundary noise, no
other hacks or settings are needed and available. This threshold is
intuitive and easy to use because the skeleton values are normalized
to the [0..1] range by dividing the values by its maximum value. This
algorithm is suitable for the use with noisy objects. There are no
specific settings available for the skeleton extraction algorithm.
 The Global Importance Measure algorithm is similar to the
previous algorithm in terms of parameters. The algorithm provides
the user with a single threshold value to reduce object boundary
noise. Unlike the previous algorithm, the values are not normalized
and more knowledge about the object is required in terms of size of
the object [2]. There are no specific settings available for the
skeleton extraction algorithm.
 The Directional 3D Thinning algorithm has no parameters, hacks
or settings available to reduce object boundary. Due to the lack of
any settings this algorithm is sensitive to noise and the user will only
be able to use it with noise-free objects for a surface skeleton. Curve
skeletons are still useful for some objects but this depends heavily on
the kind of shape which means that it can’t be called robust.
 None of the algorithms have settings to set the skeleton extraction
algorithm to their preferences. This is not a problem for the users
because the results of the algorithms correspond to the
documentation. The Directional 3D Thinning algorithm has the worst
usability due to lack of any settings.
 The usability of the Directional 3D Thinning algorithm depends on
the requirements of the user. If the user requires the possibility to
simplify the skeletons with a threshold then it has the worst usability
due to lack of a threshold setting. However, if the user does not
require this setting, the algorithm has the best usability because the
only requirement is the image. The first and second algorithm are
identical in terms of settings, but the Augmented Fast Marching
Method algorithm requires less information about the state of the
object. The Augmented Fast Marching Method is thus the algorithm
with the best usability when taking both settings and the amount of
knowledge about the object are taken into account.

5 CONCLUSION & FUTURE WORK
This paper shows that the three different algorithms are all capable of
producing usable and correct skeletons. The Augmented Fast
Marching Method and Global Importance Measure algorithms are
capable of handling noise unlike the 3D directional thinning
algorithm.
 Key features of the Augmented Fast Marching Method algorithm
are the simplicity and usability of its algorithm, the provided
implementation and the ability to adjust the threshold to fine-tune the
resulting skeleton. It is also robust to noise and able to compute 3D
centerlines but does this by intersecting the three 2D x, y and z
planes.
 The computation of skeletons using the Global Importance
Measure algorithm has comparable results to the Augmented Fast
Marching Method algorithm. It is robust to noise and thresholding
the Global Importance value allows the user to influence the
resulting skeleton. The algorithm is more complex then the
Augmented Fast Marching Method algorithm but pseudo code is
provided. This algorithm is capable of computing curve and surface

Comparison of Skeleton Extraction Techniques – Marcel Jillings and Sijmon Heitmeijer

34

skeletons of 2D and 3D shapes. A limitation of the measure is that
objects with tunnels cannot be handled.
 The Directional 3D Thinning algorithm has the best complexity
compared to the other algorithms however the paper in which it is
presented relies heavily on previous knowledge and is hard to
understand for non expert users. No implementation or pseudo code
is provided. It is capable of computing 3D curve and surface
skeletons but has no thresholding capabilities and fails in handling
noise robustly.
 Computing Multiscale Curve and Surface Skeletons with a Global
Importance Measure seems to be the best choice because of its 3D
capabilities and robust results. The Augmented Fast Marching
Method algorithm is a good start for non expert users to gain
experience or that have no need for full 3D support.
 The main challenge is to include more, different and newer
algorithms in the comparison. By including more algorithms it is
interesting to see how different approaches and newer algorithms
compare to each other using the defined comparison criteria.
 It would also be interesting to implement the different algorithms
and determine the difference between these algorithms for the
defined comparison criteria over the same objects. Our current
comparison between the algorithms is done only with the
information provided in the respective papers.

REFERENCES
[1] ALEXANDRU TELEA AND JARKE J. VAN WIJK, An Augmented

Fast Marching Method for Computing Skeletons and Centerlines, Joint
EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2002).

[2] DENNIE RENIERS, JARKE J. VAN WIJK, MEMBER, IEEE, AND
ALEXANDRU TELEA, Computing Multiscale Curve and Surface
Computing Multiscale Curve and Surface Global Importance Measure,
IEEE Transactions On Visualization And Computer Graphics.

[3] KÁLMÁN PALÁGYA AND ATTILA KUBA, Directional 3D Thinning
Using 8 Subiterations, In Proceedings of the International Conference
on Discrete Geometry for Computer Imagery, volume 1568 of Lecture
Notes in Computer Science, pages 325-336, 1999. Springer Verlag.

[4] SEAN M. GELSTON AND DEBASISH DUTTA, Boundary surface
recovery from skeleton curves and surfaces, November 1999.

[5] M. SABRY HASSOUNA AND ALY A. FARAG, On the Extraction of
Curve Skeletons using Gradient Vector Flow.

[6] CARLO ARCELLI, GABRIELLA SANNITI DI BAJA AND LUCA
SERINO, From 3D Discrete Surface Skeletons to Curve Skeletons.

[7] DENNIE RENIERS AND ALEXANDRU TELEA, Robust
Segmentation of Voxel Shapes using Medial Surfaces.

[8] D. SHAKED AND A. BRUCKSTEIN, Pruning medial axes, Computer
Vision and Image Understanding, vol. 69, no. 2, pp. 156–169, 1998.

[9] R. KIMMEL, D.SHAKED, N.KIRYATI, A.M BRUCKSTEIN,

Skeletonization via Distance Maps and Level Sets, Computer Vision and
Image Understanding, vol. 62, no. 3, pp. 382-391, 1995.

[10] ISO 9241-11, Ergonomic requirements for office work with visual
display terminals (VDTs), pt 11, Guidance on usability, 1998.

[11] KÁLMÁN PALÁGYA AND ATTILA KUBA, A 3D 6-subiteration
thinning algorithm for extracting medial lines, Pattern Recognition
Letters, 19, pages 613-627, 1998.

[12] CORNEA, N.D.; SILVER, D.; MIN, P., Curve-Skeleton Properties,

Applications, and Algorithms, 2007.

SC@RUG 2009 proceedings

35

Performance Assessment of the Augmented Fast Marching
Method for Two-Dimensional Skeletonization

Mark Scheeve and Karsten Westra

Abstract—The creation of a small shape representation of a 2D object is called skeletonization. Over the years several
algorithms for computing skeletons were proposed. A. Telea and J.J. van Wijk claim that many of the known solutions
use overly complex mathematical models and are difficult to implement and use. They proposed the Augmented Fast
Marching Method (AFMM) as a more intuitive and simple approach to the challenge of skeletonization.
We assess the claims of the simplicity and ease-of-use by performing arbitrary experiments using the open-source
implementation provided by Telea et al. The claim that the AFMM algorithm is simple to implement is assessed by
investigating the translation from pseudo code to source code. The effectiveness is assessed by a comparison of
skeletonization results using the AFMM algoritm and a thinning approach to skeletonization described by Gonzalez et al.
[4]. Finally we discuss the results and present the conclusion of the assessment.

Index Terms—Skeletonization, 2D, Augmented Fast Marching Method, Visualization, Computer Graphics.

1 INTRODUCTION

A skeleton of a shape is a thin version of that shape that is
equidistant to its boundaries. Skeletons provide a simple and
compact representation while preserving the topological and
size characteristics of the original shape. These characteristics
make skeletons useful in many application areas e.g. medical
visualization [12], computer vision [3, 10], object repre-
sentation [6], path planning, computer animation and flow
visualization [7]. Over the years many definitions of skeletons
were proposed, but one of the first was given by Blum [1, 2]
as the locus of the centers of maximal disks contained in the
original object.
Skeletons can be produced in three main ways: Morphological
thinning, geometric and distance transform (DT) methods.
Morphological thinning methods iteratively peel off the
boundary layer by layer, identifying points whose removal
does not affect the object’s topology. These methods are
relatively straight-forward, but depend on some complex
heuristics to ensure the connectivity of the skeleton. These
methods also do not produce a true skeleton by the definition
given by Blum [1, 2].
Geometric methods make a polyline-like approximation of the
shape boundary of the object and compute a Voronoi diagram.
The resulting Voronoi diagram is the medial axis of the bound-
ary [5, 6]. This produces an accurate connected skeleton,
but are fairly complex to implement, are computationally
expensive and require a robust boundary discretization.
The last class of methods computes the DT of the object’s
boundary.

• Mark Scheeve is a student at the Rijksuniversiteit of Groningen,
E-mail: m.scheeve@student.rug.nl.

• Karsten Westra is a student at the Rijksuniversiteit of Groningen,
E-mail: k.westra@student.rug.nl.

Paper written for Student Colloquium Conference given on 20 April
2011
For information on obtaining reprints of this article, please send
e-mail to: k.westra@student.rug.nl or m.scheeve@student.rug.nl.

First of all we summarize related work in Section 2. In
Section 3 we dive into the theory behind the AFMM method
for finding skeletons proposed by Telea et al. Furthermore
in Section 4 we provide implementation details of the algo-
rithm with the help of pseudo code to help increasing the
understanding of the algorithm. Then in Section 5 we use that
understanding to aid in the comparison with a morphological
thinning method and assess the claims of Telea et al. by
performing a number of experiments. Finally in Sections 6
and 7 we have respectively our conclusions and a discussion
including future work.

2 RELATED WORK

J. A. Sethian [8] introduced a robust and simple to implement
algorithm for monotonically advancing fronts called the Fast
Marching Method (FMM) which Telea et al. [11] used to
create an algorithm for finding skeletons. A skeleton lies along
the creases or curvature discontinuities in the DT. Finding
these singularities in the DT is however difficult and many
different solutions are proposed. Some methods try direct
computation of the singularities, but this is a numerically
unstable process and usually can not guarantee one-pixel-wide
skeletons [7]. Direct singularity computation is attractive from
a mathematical point-of-view but almost all methods fail to
give a detailed implementation, performance analysis and
discussion on how to set the parameters to achieve the desired
results. Telea et al. present an algorithm which according
to them is: simple to implement, well-performing, produces
connected skeletons and is fast.

3 THE FAST MARCHING METHOD

This section gives an extended summary of the theory that is
used in [11] to help increase the understanding of the algo-
rithm. The Augmented Fast Marching Method (AFMM) is a
method for skeletonization proposed by A. Telea and J.J. van
Wijk [11]. The AFMM is an augmentation to the Fast March-

36

ing Method (FMM) proposed by J.A. Sethian [8]. According
to Telea et al. the rational behind using this FMM theory is that
it is robust and easy to implement.

3.1 The FMM theory

The AFMM uses a mathematical theory based on the distance
transform (DT) 1 method for computing a skeleton. The FMM
algorithm computes a scalar field to solve the Eikonal equation

|∇T |= 1 (1)

with T = 0 on the object’s boundary. The field T is a good
approximation of the distance to the boundary. The FMM al-
gorithm uses an evolving front that moves from the boundary to
the center of the image starting from the smallest T values. A
so-called narrow band is maintained to keep track of this evolv-
ing front and is used to march inwards while freezing some of
the computed T values in a particular case, hence the name Fast
Marching Method.

3.1.1 Initialization of the grid points

We initialize the FMM algorithm by giving every 2D grid point
a label and a T value. Depending on location the pixel and the
evolving front it has three possible labels:

BAND: The point belongs to the evolving front, the so-called
narrow band and the T value is undergoing update.

INSIDE: The point is inside the evolving front. Its T value is
not yet known.

KNOWN: The point is behind the evolving front. Its T value
is already known.

3.1.2 Propagation of the narrow band

After the initialization phase the FMM algorithm enters the
propagation phase in which the T and f information gets prop-
agated to the pixels inside the moving front. The order in which
the algorithm examines these pixels is in ascending of the val-
ues for T . The propagation phase consists of four steps. Step
one retrieves the coordinates (k, l) of the pixel with the small-
est T value. Step two marches inwards. Step three computes
T (k, l) by solving Equation (1) in point (k, l) and step 4 finally
adds the point with its recomputed value to the narrow band.
Step 3 solves Equation (1) by finite difference discretization on
a Cartesian grid. The discretization of Equation (1) according
to [8, 9] yields:

max
(
D−xT,−D+xT,0

)2
+max

(
D−yT,−D+yT,0

)2
= 1 (2)

where D−xT (i, j) = T (i, j)− T (i− 1, j)) and D+xT (i, j) =
T (i+ 1, j)− T (i, j)) and similarly for the y direction. Telea
et al. do not solve Equation (1) by solving Equation (2) for ev-
ery pixel on the 2D grid, but they used a more efficient scheme
as first introduced by Sethian in [8]. They solve Equation (2)
for every 4 neighbors of the pixel (k, l) and use the solution
which produces the lowest value for T .

1definition of distance transform:
http://en.wikipedia.org/wiki/Distance transform

3.2 Augmentation of the Fast Marching Method

Skeleton points are always generated by the ‘collapsing’ of
compact boundary segments as the front advances [5]. The im-
portance of a skeleton point is then given by the length of the
boundary segment that collapsed into that point. The AFMM
determines the origin of every point in the advancing front.
Telea et al. use what they call a U value for all the points on
the boundary. Initially all boundary pixels get a number start-
ing with U = 0 in some arbitrary point and monotonically in-
creasing U along the grid points as shown for objects a and c
in Figure 1. The boundary will shrink when the fronts evolves.
The new front will consists of fewer pixels that all get a new
U value. This U value is assigned by setting the same value
as that of their nearest neighbor in the current inwards moving
front. In Figure 2 you can see an example of a collapsing front.

Fig. 1: The order in which U is assigned to their boundaries. Taken from [11].

The moving front initially consists of the the object’s bound-
ary with U values ranging from 1 to 17. The front will move
inwards by iteratively solving the Eikonal equation for every
pixel in the front starting with the lowest U value. Each pixel
will be iteratively ‘moved’ to a pixel with the updated distance
incrementation to the boundary. Moving in this case means as-
signing the U value from the previous boundary to the pixel
that is currently under investigation. If a pixel already has a
U value then the minimum of the current value and possible
new value will become the new U value for this pixel. Now
the only thing left to decide is when a new point is a skeleton
point. As explained in Section 1 we want to find the singular-
ities in the DT field. The U value differences provide us that
ability. Knowing these locations of the singularities and their
value differences allows us to use a threshold parameter t for
pruning the skeleton branches which have a difference value
lower than t.

SC@RUG 2009 proceedings

37

Fig. 2: All the pixels on the boundary get a U value.

4 THE ALGORITHM

The algorithm consists of two phases: the initialization and the
propagation phase. In the initialization phase the DT map is
created and every pixel gets a flag that points out if it is inside
or outside the object or on the object’s boundary as shown in
Section 3.1.1. Each point iteratively is assigned a T and flag
value f .

4.1 Initialization
When the current point is on the boundary its distance to the
boundary is zero, it is assigned the BAND flag and the pixel
is added to the narrow band. If the pixel is inside the object
then its distance is set to MAX VALUE and assign the INSIDE
flag. Telea et al. chose 10E6 as an arbitrary maximum T value.
Finally the distance of the points outside the object is set to zero
and are assigned the OUT SIDE flag. After the initialization
phase the algorithm is ready for finding the singularities in the
DT in the propagation phase. The initialization step, in pseudo
code is described in listing 1.

Listing 1: FMM initialization code as pointed out in [11]

f o r a l l p o i n t s (i , j)
i f ((i , j) on i n i t i a l boundary)
{

f (i , j)=BAND; T (i , j) = 0 ;
add (i , j) t o NarrowBand ;

}
e l s e i f ((i , j) i n s i d e boundary)
{

f (i , j)= INSIDE ; T (i , j)=MAX VALUE;
}
e l s e /∗ (i , j) o u t s i d e boundary ∗ /
{

f (i , j)=KNOWN; T (i , j) = 0 ;
}

4.2 Propagation
After the initialization step the algorithm enters a propagation
step. There are four steps to undertake in this phase. First the
algorithm removes the first point P from the current front and
gives the KNOWN flag. Each point that is a neighbor of the
point P is tested for the possibility of it being part of the new
front. In step two the current possible ”neighbor” under inves-
tigation gets the BAND label if it is inside the object. In step
three the algorithm starts to solve the Eikonal equation 1 and
the obtained result is assigned to the T , or distance value, of
point P. Finally the update version of the point P under investi-
gation is inserted into the narrow band again. The propagation
step in pseudo code can be found in listing 2.

Listing 2: FMM iteration code as pointed out in [11]

w h i l e (NarrowBand n o t empty)
{

P (i , j) =head (NarrowBand) ; /∗ STEP 1 ∗ /
remove P from NarrowBand ;
f (i , j) =KNOWN;
f o r p o i n t (k , l) i n {(i −1, j) , (i , j −1) , (i +1 , j) , (i , j +1)}
i f (f (k , l) !=KNOWN)
{

i f (f (k , l) ==INSIDE) f (k , l) =BAND; /∗ STEP 2 ∗ /
s o l =MAX VALUE; /∗ STEP 3 ∗ /
s o l v e (k−1, l , k , l −1, s o l) ;
s o l v e (k +1 , l , k , l −1, s o l) ;
s o l v e (k−1, l , k , l +1 , s o l) ;
s o l v e (k +1 , l , k , l +1 , s o l) ;
T (k , l) = s o l ;
i n s e r t (k , l) i n NarrowBand ; /∗ STEP 4 ∗ /

}
}

s o l v e (i n t i1 , i n t j1 , i n t i2 , i n t j2 , f l o a t& s o l)
{

f l o a t r , s ;
i f (f (i1 , j 1) ==KNOWN)

i f (f (i2 , j 2) ==KNOWN)
{

r = s q r t ((2− (T (i1 , j 1)−T (i2 , j 2))
∗ (T (i1 , j 1)−T (i2 , j 2))) ;

s = (T (i1 , j 1) +T (i2 , j 2)−r) / 2 ;
i f (s>=T (i1 , j 1) && s>=T (i2 , j 2)) s o l =min (s o l , s) ;
e l s e
{

s += r ;
i f (s>=T (i1 , j 1) && s>=T (i2 , j 2))

s o l =min (s o l , s) ;
}

}
e l s e s o l =min (s o l , 1+T (i1 , j 1)) ;

e l s e i f (f (i2 , j 2) ==KNOWN) s o l =min (s o l , 1+T (i1 , j 2)) ;
}

4.3 The solution
The solution skeleton we are looking for needs some more at-
tention. We need to do thresholding and take care of an issue in
the U values. These challenges are addressed in the following
sections.

4.3.1 Thresholding
The difference in U value of each pixel will increase as the
front evolves. When pixels get ‘removed’ the U difference to
a neighbor of the ‘removed’ pixel will increase. When the U
value difference becomes larger then that means that the pixels
with their U values are not neighbors of each other. With this
notion we can assume that pixels with large difference in their
U value, which are not neighbors but that do collapse on each
other, are interesting for our skeleton. An example of this is
illustrated in figure 3. The pixel with U = 4 and U = 15, blue
and red respectively, were indeed not neighbors in the original
images. But after a couple of iterations in the AFMM algorithm
they do collapse onto each other. The U difference gets larger
when points are closer to the skeleton. A U distance threshold
is chosen to obtain the best resulting skeleton. Telea et al. tested
and validated the use of thresholding and came with a resulting
threshold range of 20 to 40 pixels. Figure 4 shows the results
from the validation by Telea et al.

Performance Assessment of the Augmented Fast Marching Method for Two-Dimensional Skeletonization – Mark
Scheeve and Karsten Westra

38

Fig. 3: Threshold U difference. Taken from [11].

Fig. 4: Threshold example. Taken from [11].

4.3.2 Special case U value
Telea et al. mention that there is a ‘special case’ in which the
U difference method does not result in the correct skeleton.
The U values are assigned monotonically to all the pixes of the
initial boundary. However the first and last pixel always have a
large difference in their U value. This does not mean that they
are always part of the skeleton that the algorithm is looking
for. This ‘special case’ is illustrated in figure 5. This figure
illustrates where boundaries are part of the skeleton where they
really should not be part of it. Figure 5 illustrates were false
skeleton edges might appear and shows:

a) the original object.

b) the initial U values.

c) the computed U values after AFMM run.

d) the resulting skeleton.

Telea et al. make the claim that it is easy to solve this spe-
cial case. To overcome the problem they executed the AFMM
method twice with a different starting point for assigning the
U values. In this case they were able to remove the false edges
by intersecting the skeletons from the two AFMM runs. All
the tests of Telea et al. produced the correct skeletons that they
were looking for.

5 EXPERIMENTS

Some of the claims of Telea et al. in [11] are hard to quan-
tify making them rather subjective. Subjective claims which
are assessed and supported by many people are more likely to
be accepted or rejected. We assess the claims of the simplic-
ity and ease-of-use by performing arbitrary experiments us-
ing the open-source implementation provided by Telea et al.
The claim that the AFMM algorithm is simple to implement is
assessed by investigating the translation from pseudo code to
source code. The effectiveness is assessed by a comparison of

Fig. 5: The special case. Taken from [11].

skeletonization results using the AFMM algorithm and a thin-
ning approach to skeletonization described by Gonzalez et al.
in [4].

5.1 Simplicity and ease-of-use
The AFMM has one parameter. This parameter is a thresh-
old which defines the minimum U value of the skeleton points
as described in Section 4.3.1. The open-source AFMM im-
plementation by Telea et al. allows to control the threshold di-
rectly. This makes finding the ideal threshold very intuitive,
even for the non-expert users. To assess this, we have per-
formed a number of tests to set the parameter for different im-
ages and the results are that according to us it works intuitive.

5.2 Implementation difficulty
Telea et al. provide an open-source implementation of their
proposed algorithm. The AFMM is explained using pseudo
code in section 4. We will now assess the claim of Telea et al.
whether or not it really is easy to implement. The algorithm
has been written in C++. Let us find out how much skill is re-
quired to implement/understand the solution of Telea et al.
The first step of the AFMM algorithm is the initialization step.
In this step they need to assign a flag and a distance value to
every point and add it to the NARROW BAND if it is located on
the boundary. This step is executed in the file flags.cpp. There
is quite a lot going on in this class. The FLAGS constructor
takes care of initialization. The current point under initializa-
tion gets a ALIVE flag, KNOWN in pseudo code. The distance
value is set to T = 0. After this everything that is outside the
boundary, and the object, gets a FAR AWAY flag, INSIDE in
the pseudo code. Its T value is set to INFINITY. After iterating
over all points the remaining points which are FAR AWAY and
have a neighbor that are ALIVE then they add it to the narrow

SC@RUG 2009 proceedings

39

band. It is a little bit different from the pseudo code. But the
idea is fairly simple.
The second step is the propagation step. The theory behind
this step is explained in section 4. This step is executed in
the mfmm.cpp and fmm.cpp. The difference with the pseudo
code and the code implementation is that the code implemen-
tation allows to use four different methods which are variants
of the algorithm described in the pseudo code. The fmm.cpp
file is ‘responsible’ for the four steps in the pseudo code. The
augmentation, or modification, is implemented in mfmm.cpp.
The five steps, four in pseudo code, are easily found in the
diffuse method in fmm.cpp. The implementation gets the
points with the smallest T values and its neighbors. If the cur-
rent point is inside the shape then it is added to the narrow band.
After this the eikonal equation 1 is solved by the algorithm.
When comparing the pseudo code to the actual source code,
the first thing that is noticed is that the code is not a one-to-one
translation of the pseudo code. This is probably because over
the years many improvements have been made. The pseudo
code seems relatively simple to implement, but because the
open-source implementation was not a one-to-one translation
and written in the C++ language, it was not that easy to read.
However, we do believe that the implementation of the AFMM
is relatively simple due to the pseudo code giving a much bet-
ter understanding of the algorithm as a whole. Any decent pro-
grammer with the proper experience can make the translation
to from pseudo code to source code.

5.3 Effectiveness

To assess the effectiveness claim we do a comparison of the
performance in terms of speed and quality of the resulting
skeleton. According to Telea et al. morphological filtering
methods do not produce results which are in accordance with
the definition given by Blum [1, 2] where a skeleton is the
locus of the centers of maximal disks contained in the original
object. For the AFMM we use the open-source implementation
provided by Telea et al. and for the thinning method we use the
Binary Thinning Image Filter (BTIF) which is implemented
in the Insight Toolkit 2 framework. The BTIF is a sequential
thinning algorithm and known to be computational time
dependable on the image size. The algorithm corresponds
with the 2D implementation described by Gonzales et al. in [4].

In Figure 6 we show the results of skeletonization between
these two methods where the red line is produced by the BTIF
and red line by the AFMM. Both skeletons are a good repre-
sentation of the object from a human perspective. From the
definition given by Blum the red line is the better skeleton of
the two.
Another important property for a skeletonization method is the
computational cost or speed. We test the two methods on the
five different skeletonization problems on the same machine.

2The Insight Toolkit is available on http://itk.org/

Fig. 6: Skeletonization of cartoon.bmp. The red line is produced by the thinning
algorithm and the blue by the AFMM.

Table 1: Comparison between AFMM and BTIF, tested on same machine.

Image Running time AFMM Running time BTIF
anim5.bmp 0.249 sec. 3.510 sec.
camel.bmp 0.514 sec. 10.608 sec.

cartoon.bmp 2.852 sec. 57.938 sec.
leaf1.bmp 0.592 sec. 14.149 sec.
xxx.bmp 1.388 sec. 79.576 sec.

The outcome of this comparison shown in Table 1 shows that
the AFMM computes a lot faster in comparison with the BTIF.
Note that this particular implementation of a thinning method
is not the most efficient thinning algorithm out there today.

Table 2: Skeleton images used in comparison and corresponding number of pix-
els.

Image Number of pixels
anim5.bmp 76916
camel.bmp 156660

cartoon.bmp 842710
leaf1.bmp 182040
xxx.bmp 599536

Despite xxx.bmp having less pixels in comparison with
cartoon.bmp the BTIF takes longer to compute a skeleton.
This is due to the fact that the image xxx.bmp contains a very
complex ‘spatter-like’ shape. The AFMM seems to be less sen-
sitive to complex shapes.

Performance Assessment of the Augmented Fast Marching Method for Two-Dimensional Skeletonization – Mark
Scheeve and Karsten Westra

40

6 CONCLUSION

With the introduction of the AFMM for skeletonization Telea
et al. express their claims on the advantages of their method,
but these claims are subjective. The thinning approaches have
the advantage that they usually are fast to compute and easy
to implement. The disadvantage is that these methods do not
always produce a skeleton as the definition given by Blum [2]
which may not be desirable. We used a thinning method im-
plementation which was not really fast compared to the AFMM
but is old and probably better solutions exist. Although we did
not use Geometric methods in our comparison these methods
in general produce good results but are computationally more
expensive. The AFMM focuses on the best of both worlds
by producing good results at low computational cost. We ex-
plained the theory behind the algorithm and conclude that the
algorithm is indeed easy to understand and implement. The
best thing about the AFMM is that it only takes one intuitive
parameter to set, which even a less-experienced user is able to
do. We assess these claims to be correct.

7 FUTURE WORK

The AFMM may be useful in many more applications, but is
not used because it is not well-known. Perhaps implement-
ing the AFMM in a well-known open-source project would in-
crease the popularity.

8 ACKNOWLEDGEMENTS

The authors would like to thank the reviewers for their useful
and thorough comments, which helped to improve the contents,
style and structure of the paper.

REFERENCES

[1] H. Blum. A Transformation for Extracting New Descriptors of
Shape. In W. Wathen-Dunn, editor, Models for the Perception of
Speech and Visual Form, pages 362–380. MIT Press, Cambridge,
1967.

[2] H. Blum and R. N. Nagel. Shape description using weighted sym-
metric axis features. Pattern Recognition, 10(3):167 – 180, 1978.
The Proceedings of the IEEE Computer Society Conference.

[3] S. Bouix and K. Siddiqi. Divergence-based medial surfaces. In
Computer Vision - ECCV 2000, volume 1842 of Lecture Notes in
Computer Science, pages 603–618. Springer Berlin / Heidelberg,
2000.

[4] R. C. Gonzalez and R. E. Woods. Digital Image Processing.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edition, 1992.

[5] R. L. Ogniewicz and O. Kbler. Hierarchic voronoi skeletons,
1995.

[6] R. L. Ogniewicz and R. L. Ogniewicz. Automatic medial axis
pruning by mapping characteristics of boundaries evolving under
the euclidean geometric heat flow onto voronoi skeletons. Tech-
nical report, 1995.

[7] F. Reinders, M. E. D. Jacobson, and F. H. Post. Skeleton
graph generation for feature shape description. In In Joint
Eurographics-IEEE TCVG Symposium on Visualization, pages
73–82. Springer Verlag, 2000.

[8] J. Sethian. A fast marching level set method for monotonically
advancing fronts. Proc. Nat. Acad. Sci., vol. 93:1591–1595,
1996.

[9] J. A. Sethian. Fast marching methods. SIAM Rev., 41:199–235,
June 1999.

[10] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker. The
hamilton-jacobi skeleton. In Proceedings of the International
Conference on Computer Vision-Volume 2 - Volume 2, ICCV ’99,
pages 828–, Washington, DC, USA, 1999. IEEE Computer Soci-
ety.

[11] A. Telea and J. J. van Wijk. An augmented fast marching method
for computing skeletons and centerlines. 2002.

[12] M. Wan, F. Dachille, and A. Kaufman. Distance-field based
skeletons for virtual navigation. In Proceedings of the confer-
ence on Visualization ’01, VIS ’01, pages 239–246, Washington,
DC, USA, 2001. IEEE Computer Society.

SC@RUG 2009 proceedings

41

Desired Features of Software Architectural Knowledge Management Tools
Zengyang Li, PhD student of SEARCH Group, University of Groningen

Abstract—Recently, both researchers and industrial practioners are increasingly aware of that architectural knowledge (AK),

such as design decisions and rationale, is important for the communication among stakeholders and should be recorded along

with architecture design. Since the AK that is created and used during the architecting process is voluminous, broad, complex,

and evolving, it is difficult for architects to manually manage AK, thus (semi-) automatical support for AK management is required.

Some architectural knowledge management (AKM) tools were developed for this purpose. However, there is no consensus about

what features an AKM tool should support. By reviewing selected papers on AKM tools, this paper summarizes a set of

knowledge activities and use cases that an ideal AKM tool should support in architecting life-cycle; then, this paper focuses on AK

sharing and proposes seven desired features that an AKM tool should possess by considering the characteristics of architecting.

Finally, we discuss some questions about the openness level of AK and reputation ranking mechanism of AK and its producers.

We argue that this discussion is valuable to the design and development of future AKM tools.

Index Terms— Architectural knowledge, architectural knowledge management, architectural knowledge management tools, tool

features

1 INTRODUCTION

Software architecture (SA) has been considered of paramount sig-

nificance in managing the complicated interactions and dependencies

between stakeholders [12]. As a reference artefact, SA can help dif-

ferent stakeholders to share knowledge with regard to the design of a

software system [1].

 In the last decade, most of researchers and industrial practitioners

have regarded a software architecture as a high-level design [12]

which can be documented using component and connector views

[13]. Recently, SA community has been gradually aware of that not

only the architecture design itself is crucial to record, but also the

knowledge with respect to it [2]. Kruchten et al. defined architectural

knowledge (AK) as design decisions plus design, and they focused

on the design decisions and their rationale [11]. However, besides

decisions and rationale, AK also contains other architecturally sig-

nificant information. De Boer et al. argued that AK is a collection of

entities such as concerns, alternative solutions, decisions, rationale,

people, architectural design, processes, and a set of relationships

between them [6].

Software architecting is a complex and highly knowledge-

intensive process during which a large amount of AK is created and

used [4]. Such AK is broad, complex, and evolving and thus difficult

to be manually managed by architects. Moreover, owing to the in-

crease in size and complexity of software-intensive systems, diverse

stakeholders are involved and architects need to efficiently collabo-

rate with them in the architecting process [4]. Therefore, AK sharing

among these stakeholders and across a number of the lifecycle phas-

es is essential and managing AK becomes quite challenging. This

situation is intensified in the context of distributed or global software

development. Meanwhile, the industry has also been aware of the

need for efficient AK sharing within an organization. Therefore, AK

needs to be (semi-)automated managed by appropriate tools [4].

Knowledge management has started to play an increasingly impor-

tant role in SA [9]. Knowledge management comprises a range of

strategies and practices used in an organization to identify, create,

represent, distribute, and enable adoption of knowledge [16]. Archi-

tecture Knowledge Management (AKM) applies the approaches and

strategies in knowledge management to SA domain.

 Recently, researchers and industrial practitioners developed some

AKM tools for different purposes [2][3][4][5][8][9]. These AKM

tools place emphasis on different features. For instance, Henttonen et

al. studied the open source based tools for sharing and reusing AK

with a special focus on “easy to use” feature [5]. Farenhorst et al.

proposed an AK sharing portal emphasizing the feature of “Just-In-

Time” AK sharing [8]. Some AKM tools, such as ADkwik (Archi-

tectural Decision Knowledge Wiki), ADDSS (Architecture Design

Decision Support System) and Archium, only support the codifica-

tion strategy while other tools, e.g., EAGLE and PAKME, support

the hybrid strategy [4] (For more details about AKM strategies,

please see next section). However, there is no consensus about what

features an AKM tool should support. For guiding the development

of new AKM tools, a first step is identifying what features an AKM

should support. In this paper, by reviewing several scientific papers

in the field of AKM, we try to present a set of desired features that

an AKM tool should support in architecting process.

 The rest of this paper is organized as follows. Section 2 presents

the strategies of AKM. Section 3 illustrates a set of knowledge ac-

tivities that an AKM tool should support. Section 4 distills a set of

use cases an AKM should implement. Section 5 outlines the features

that an AKM tool needs to support in terms of AK sharing. Section 6

discusses some questions about openness level of AK and reputation

ranking mechanism of AK and its producers. Section 7 concludes

this paper and outlines the future work directions.

2 AKM STRATEGIES

“Knowledge management codifies and reuses relevant knowledge

that is considered valuable in a particular organization” [3]. In recent

years, there has been an increasing awareness that it is critical for

codifying and managing architectural design and the knowledge

pertaining to it for future sharing and reuse in the SA field [2].

Fig. 1. Pyramid of AK types and the associated management strate-

gies [15]

 In knowledge management, knowledge is generally classified into

implicit and explicit knowledge [16]. Implicit (or tacit) knowledge

resides in people’s heads, while explicit knowledge is codified in

some form (e.g. a document, or a model). Explicit knowledge can be

further classified as documented knowledge (i.e., explicit knowledge

documented using natural language or images) and formal knowl-

42

edge (i.e., explicit knowledge codified representing by a formal lan-

guage or model of which the exact semantics are defined) [4].

 To effectively manage AK, an appropriate strategy needs to be

chosen according to application scenarios. There are three knowl-

edge management strategies: codification, personalization, and the

hybrid which is a combination of the previous two [4]. Figure 1

shows different knowledge types in the vertical dimension and the

differences between codification and personalization strategies in the

horizontal dimension.

 Codification targets to systematically store AK in order to make

the AK available to people in an organization and it emphasizes the

significance of formal AK. Personalization focuses on storing infor-

mation relevant to knowledge sources thereby enabling people to

know who knows what and it underlines the importance of tacit AK

[2].

3 DESIRED AK ACTIVITIES

Tang et al. [3] argue that AK activities that an AKM tool should

support can be identified by considering the architecture life-cycle as

a set of architecting stages and identifying AK activities in each

stage. These AK activities can be regarded as a collection of re-

quirements for development and features of AKM tools.

3.1 Architecture life-cycle

Tang et al. [3] extended the general model of software architecture

design proposed by Hofmeister et al. [7]. The extended model indi-

cated that architecture life-cycle includes not only the three stages of

architecture design (i.e., architectural analysis, architectural synthesis

and architectural evaluation) but also the stages of architecture evo-

lution and maintenance in a system’s life-cycle. Figure 2 shows the

architecting stages in the architecture life-cycle. The explanations for

these stages are as follows:

1. Architectural analysis aims to define the problems need to be

solved in the architecture. This activity filters and examines ar-

chitectural concerns and context in order to identify a collec-

tion of architecturally significant requirements (ASRs) [7].

2. Architectural synthesis proposes architecture solutions to a set

of ASRs. By synthesizing existing knowledge, the architect se-

lects the most suitable solutions for the ASRs from a set of

available solution choices [7].

3. Architectural evaluation ensures that the architectural solutions

selected are the right ones. Each candidate architectural solu-

tion is measured against the corresponding ASR [7].

4. Architectural implementation makes the architecture a detailed

design. In this stage, designers and developers need to make

more decisions to design and implement the architecture based

on the existing one [3].

5. Architectural maintenance is the stage in which architectural

changes may take place and impact analysis might be done be-

fore a new architectural decision is made [3].

Fig. 2. Architecture life-cycle [3]

AK is mainly produced during the initial three stages, i.e., architec-

tural analysis, synthesis and evaluation. During the architectural

implementation and maintenance stages, designers, developers and

maintainers use the AK created and captured during the early three

stages to support their work. If there are new design issues need to be

settled, they may have to revisit the architectural analysis, synthesis,

and evaluation stages [3].

3.2 AK Activities

Before identifying the AK activities involved at each stage of the

life-cycle of an architecting process, a good understanding of various

kinds of AK that may be produced and/or consumed in these stages

may be very helpful. To this end, AK can be classified into four

types [3]:

(1) Context knowledge is a set of information relevant to the problem

space, e.g., ASR and the context of a project.

(2) General knowledge is a set of knowledge refined as valuable

assets that can be drawn on by architects while designing software

and systems, e.g., architectural styles and patterns, and tactics.

(3) Reasoning knowledge is a set of reasoning information about a

design, e.g., design decisions, design rationale, design alternatives,

and trade-offs performed.

(4) Design knowledge is a set of designs of a system, e.g., compo-

nents and architectural models.

Fig. 3. Architectural knowledge activities [3].

 Figure 3 shows the AK activities in the life-cycle of an archi-

tecting process. The following describes the AK activities in each

stage of an architecture life-cycle.

3.2.1 AK Activities in Architectural Analysis

At the architectural analysis stage, an architect, as a producer, inte-

grates context knowledge into already existing AK to identify ASR.

Meanwhile, as a consumer, the architect needs to Learn and

search/retrieve the existing AK to make sure if there is any other

relevant AK (e.g., previous design decisions) affecting the analysis

or not [3].

3.2.2 AK Activities in Architectural Synthesis

At the architectural synthesis stage, an architect, as a producer, needs

to propose solutions (a type of reasoning knowledge) for ASRs by

architecting. To facilitate architecting, the architect may learn and

search/retrieve AK and apply general knowledge, such as patterns,

to solve the problems at hand. The architect creates a design and

synthesizes it to capture the design knowledge. Meanwhile, the archi-

tect also needs to create the necessary traces between the four types

of knowledge mentioned above [3].

3.2.3 AK Activities in Architectural Evaluation

During the architectural evaluation stage, an architect shares AK

SC@RUG 2009 proceedings

43

with architecture evaluators to allow them, as AK consumers, to

learn, search/retrieve, and evaluate the reasoning knowledge and

design knowledge. Furthermore, to efficiently evaluate an architec-

ture, the evaluators often need to trace reasoning knowledge to the

other three kinds of AK. When an architecture design is evaluated

and approved, it may be distilled as a general design pattern in gen-

eral knowledge for future reuse by architects or reviewers [3].

3.2.4 AK Activities in Architectural Implementation

At the stage of architectural implementation, designers need to create

a detailed design for an architecture. In this course, they may synthe-

size the design knowledge. To facilitating the designers and develop-

ers’ understanding of the architecture design for implementation,

architects would share the AK with them and allow them to learn,

and search/retrieve the available reasoning knowledge [3].

3.2.5 AK Activities in Architectural Maintenance

During the architectural maintenance stage, maintainers would trace

the design knowledge to the other types of AK to learn the rationale

of designs and evaluate the impact of certain architectural changes

[3].

Table 1. AK activities in each architecting stage

Architecting Stage AK Activities

Analysis Integrates (B), Learn (E),

Search/Retrieve (J)

Synthesis Architect (A), Trace (D), Learn (E),

Synthesize (G), Apply (I),

Search/Retrieve (J)

Evaluation Share (C), Trace (D), Learn (E),

Evaluate (F), Distill (H),

Search/Retrieve (J)

Implementation Share (C), Learn (E), Synthesize (G),

Search/Retrieve (J)

Maintenance Trace (D), Learn (E), Evaluate (F)

 Therefore, the AK activities involved at each stage of the architec-

ture life-cycle can be summarized in table 1. After integrating those

AK activities of the stages in the architecture life-cycle, a full list of

AK activities that AKM tools should support include:

1. Architect (A): creating new reasoning knowledge.

2. Integrate (B): integrating context knowledge into AK.

3. Share (C): sharing existing AK of the architecture which the

architect is working on with other stakeholders.

4. Trace (D): tracing reasoning knowledge to context knowledge,

general knowledge and design knowledge.

5. Learn (E): learning and understanding existing AK.

6. Evaluate (F): evaluating reasoning knowledge and design

knowledge to make sure the knowledge is correct.

7. Synthesize (G): using the design decisions and producing the

system design.

8. Distill (H): distilling some AK into general AK, such as a de-

sign pattern.

9. Apply (I): applying general knowledge using existing solutions

(e.g., patterns) to solve the problems at hand.

10. Search/Retrieve (J): searching/retrieving AK for a certain pur-

pose, such as learning.

4 DESIRED USE CASES

After surveying a series of papers, Liang and Avgeriou [4] formed a

panorama set of use cases that can be deemed as the potential set of

tool features for AKM. The use cases define the requirements for the

development of an ideal AKM tool, i.e. who are the users of it (ac-

tors) and with it what would the users do (use cases)?

4.1 Actors

The actors of an AKM tool contain [4]:

1. Architects who design architectures of software systems may

need to transform tacit AK from tacit to documented or formal-

ized knowledge.

2. Reviewers who are engaged in judging the quality or progress

of an architecture.

3. Requirements engineers who learn AK to facilitate their ac-

tion in identifying the first-class requirements.

4. Developers who participate in implementing of the architecture

design and decisions.

5. Maintainers who maintain the system and need to get a good

understanding of what impact the decisions they take will exert

on the previous architecture.

6. Users who are the whole collection of system stakeholders of

an AKM tool, including the actors mentioned above as special-

ized ones.

4.2 Use cases

According to the functionality of use case, the use cases (UCs) can

be grouped into four categories (see Fig. 4): consuming AK, produc-

ing AK, knowledge management and intelligent support [4]. Use

cases in “consuming AK” enable actors to consume AK for certain

purposes; use cases in “producing AK” allow actors to create new

and modify existing AK; use cases in “knowledge management”

supply general functionality for managing AK data; and use cases in

“intelligent support” aim at automating AKM tasks that require ei-

ther rigor or intelligence.

In figure 4, different colors indicate various types of use cases

with different possible actors. The actors of the use cases with light

green (i.e., UC5, UC7, UC11, UC13, UC22, UC23 and UC24) are

only architects, the actors of the use case with light blue (i.e., UC14)

are reviewers, and the possible actors of the remaining use cases are

all types of users.

Some use cases can be easily understood since their names are

with clear meanings. Some are overlapped with the AK activities

illustrated in section 3. For this reason, we just describe the follow-

ing use cases in detail.

Fig. 4. Panorama of the AKM use case model [4].

Desired Features of Software Architectural Knowledge Management Tools – Zengyang Li,

44

� UC5, Identify stakeholder: architects identify a certain stake-

holder according to specified criteria, e.g., who influences a

certain architectural decision most or some architecturally key

information should be supplied by whom [17].

� UC7, Reuse AK: the architect reuses existing AK from a pro-

ject in another project context [17].

� UC8, Elicit/Capture AK: elicit and capture AK from various

project-related resources, e.g. stakeholders and documents [4].

� UC12, Translate AK: translate the formal AK based on a

certain AK domain model into another domain model to facili-

tate future reuse [18].

� UC13, Recover architectural decisions: the architect rebuilds

decisions with their associated rationale from a legacy or 3rd

party system [17].

� UC15, Conduct a trade-off analysis: analyze the architecture

by trading off different quality attributes [17].
� UC19, Notify user about new AK: notify the users, who have

subscribed to elements on some specific AK topics, about

changes to them [9].

� UC20, AK versioning: create and manage different versions

of various types of AK elements [4].

� UC21, Enrich AK (semi-) automatically: create AK content

proactively, e.g. automatically interpret then elicit AK from ar-

chitectural information documented in text without the users’

intervention [4].

� UC22, Cleanup the architecture: ensure that all the associa-

tions between the removed AK and other AK have been re-

moved as well [17].

� UC23, Offer decision-making support: supply automated

support for the architect in decision-making process [9].

� UC24, Assess design maturity: “the architect evaluates when

the architecture can be considered as finished, complete, and

consistent, e.g. verify whether a system conforming to the ar-

chitecture can be made or bought” [4].

5 SPECIFIC FEATURES FOR AK SHARING

Section 3 and 4 illustrate the knowledge activities and use cases an

ideal AKM tool should support in the whole architecting process. In

this section, we focus on the AK sharing and describe what features

an AKM tool should have.

 Software architecting involves a set of knowledge-intensive tasks.

Many different stakeholders located in different sites are involved in

these tasks. As illustrated in the introduction of this paper, sharing

AK is crucial, especially for reusing best practices, obtaining a more

transparent decision making process, tracing between AK elements,

and recalling past decisions and their rationale.

 Farenhorst et al. [2] defined five main characteristics of archi-

tecting based on which they define seven specific features of AKM

tools in terms of AK sharing. Subsection 5.1 and 5.2 describe them

respectively.

5.1 Characteristics of architecting

 The main characteristics of architecting are as follows [2]:

1. Architecting is consensus decision making. Architecting can

be viewed as a decision making process that not only seeks the

agreement of most stakeholders, but also resolves or mitigates

the objections of the minority to achieve the most agreeable so-

lution.

2. Architecting is iterative in nature. This iterative nature of

architecting is illustrated by the concept of a backlog that is

implicitly or explicitly maintained by architects [7]. In this

backlog, there are some needs, issues, problems to be tackled

and ideas to be used. The architecting workflow is driven by

such a backlog. Conceptually, the architecture can not be seen

as finished until this backlog is empty.

3. Architecting is an art. The creativity of the architect plays a

significant role in architecting process especially when dealing

with novel and unprecedented systems since there may be no

codified experience to draw upon. Thus, AK sharing tools

should support the architect’s creativity instead of constraining

it, i.e., methods and tools probably work better if they are more

descriptive in nature.

4. Architecting impacts the complete life-cycle. Architecting

affects not only the architecture design phase but also the im-

plementation and maintenance stages. An architecture is never

finished before the system’s retirement from use, i.e., archi-

tecting is performed through the whole system life-cycle. An

architecture plays an important role in safeguarding architec-

tural qualities during implementation and maintenance. If rele-

vant AK is not stored correctly knowledge vaporization will

happen. Therefore, AK should be available to various stake-

holders such as developers and maintainers, instead of only to

the architects.

5. Architecting is constrained by time. In practice, the available

time the architects have is usually a heavy constraint on the ar-

chitecting activities. Often, ‘time to market’ is a big pressure

for the architects and they have to choose for suboptimal solu-

tions.

Characteristics of architecting Specific features for AK sharing tools

Architecting is consensus

decision making

Architecting is iterative in nature

Architecting is an art

Architecting impacts the

complete life-cycle

Architecting is constrained by

time

Stakeholder-specific content

Easy manipulation of content

Descriptive in nature

Support for AK codification

Support for AK personalization

Support for collaboration

Sticky in nature

Fig. 5. Specific features for AK sharing tools.

5.2 Specific Features of an AKM tool for AK sharing

Based on the five characteristics of software architecting men-
tioned above, a set of specific features of an AK sharing tool are
proposed (see Fig. 5) as below [2]:
1. Stakeholder-specific content. Because Architecting impacts

the complete life-cycle, different stakeholders are involved in
the architecting process and they require specialized views on
the available AK which they are interested in, such as open is-
sues, approved decisions. AK sharing tools should support to
distinguish between certain types of knowledge thus different
kinds of users, e.g., developers and designers, can then choose
what AK they want to retrieve.

2. Easy manipulation of content. Because architecting is iterative
in nature, architects follow a continuous iterative decision mak-
ing process. Easy manipulation of content can help to acceler-
ate the decision making process, while rigid tool support will
just slow it down.

3. Descriptive in nature. Since Architecting is an art, too many
restrictions put on the architects will limit their creativities
when they are using an AK sharing tool. Therefore, the tools
should allow a descriptive perspective on the available AK.

4. Support for AK codification. Because Architecting is con-
strained by time, architects need support for finding relevant

SC@RUG 2009 proceedings

45

AK quickly. For some kinds of knowledge that does not tend to
change frequently, a codification strategy may be fit best. Then
architects can easily retrieve previous solutions that are evalu-
ated and approved, and reuse them.

5. Support for AK personalization. Because Architecting is con-
sensus decision-making, some AK, such as AK about issues
under discussion, tends to be evolving and vary often, thus it is
not ‘stable’ enough to codify immediately. For such knowledge,
a personalization strategy could be useful to enable architects
to find who knows what.

6. Support for collaboration. Because Architecting is consensus
decision-making, supporting collaboration between users is an
essential feature for AK sharing tools. Since most architects are
specialized in certain areas, it makes possible that architects get
relevant stakeholders involved in the current decision making
activity by collaboration support of AK sharing tools.

7. Sticky in nature. To some sense, this feature can be considered
as an orthogonal one to the others since it is an essential prop-
erty to motivate potential users to start using an AK sharing
tool at the beginning. Without this property, users may neglect
the tool after having played with it once. Thus, the tool should
combine some special elements to keep this tool at a certain
level of stickiness. For instance, we can put top N users, who
use the tool more frequently and the top N architectural knowl-
edge, which is browsed more frequently, on the homepage of
the tool. Through this, we make famous the top N users and the
producers of the top N architectural knowledge to the tool us-
ers and make the tool attractive to existing and potential users.

6 DISCUSSIONS

In the previous sections, we reviewed the selected papers in terms of
the desired features of AKM tools. In this section, we suggest that
two additional features, i.e., openness of AK and reputation ranking
mechanism, should be considered as supplementary ones of AKM
tools besides the features described in section 3, 4 and 5. We believe
that this discussion will be beneficial to the development of future
AKM tools. We firstly discuss openness of AK, which can be a fea-
ture of AKM tools in terms of protecting confidentiality of AK in an
organization. In [5], the authors discussed the security of AK, but
they did not show how to classify AK and who can access what kind
of AK. Thus, there is a need to illustrate this problem in more detail.
Then, we discuss reputation ranking mechanism of AK and its pro-
ducers, which could be a feature of AKM tools specified in facilitat-
ing users’ understanding of AK quality. Moh and Kaul [19] men-
tioned that user reputation should be considered when building a tool
for the visualization of AK. The aim is to help user understand how
reliable the supplied content is. However, the authors did not give the
details to form such a ranking mechanism. Besides, we also advise
that not only the user reputation but also the AK reputation need to
be measured in an AKM tool.

6.1 Openness of AK

With our work experience in industry, usually, for reasons of confi-

dentiality, some key AK in a specified project is not allowed to be

published outside. Because this kind of AK is relevant to the core of

the system and it is only accessible to members of this project. Some

AK, such as context knowledge, just makes sense in the project con-

text where the knowledge comes from. Therefore, such knowledge

does not need to be published outside the project. Generally, there is

some AK valuable to the organization in a project since the organiza-

tion usually is possible to develop similar systems in the future. Thus,

such AK should be open to the organization. Some AK that is evalu-

ated and approved may be as universal knowledge, such as design

patterns and architecture patterns, for the software community. Thus,

as shown in figure 6, we define three openness levels for AK of a

project.

Project-specific. Project-specific AK can be shared among the

stakeholders within a particular project. Such AK includes the key
AK which is not allowed to be open to the outside of the project and
the AK which makes sense just with in the project. The quantity of
this kind of AK is the most among the three levels of AK.

Organization-specific. Organization-specific AK can be shared
within the whole organization in which the members can learn this
kind of AK of the project and reuse it in other projects. This kind of
AK usually contains the AK which is valuable for the similar kind of
projects of the similar businesses in the organization. Also, some AK
special relevant to the organizationally architectural principles (e.g.,
projects in this organization must use web services instead of “.net
Remoting” technique since the organization has developed a web
services library in the business domain) should be included into or-
ganization-specific AK.

Public. Public AK is open to all potential users or consumers.
Such AK is with high reusability and may be used in all software
projects. The quantity of public AK is the least among the three lev-
els of AK.

O
p
e
n
n
e
s
s
 le
v
e
l

Fig. 6. The openness model of AK.

This openness model classifies the AK that created in the same
project into 3 types from the perspective of accessibility, and it is a
different classification approach from the one in section 3.2, which
groups the AK both consumed and produced in a certain project into
4 categories: context, general, reasoning and design knowledge. Ap-
parently, there is intersection between different types of AK from the
two classifications. For example, general AK is also public AK;
reasoning AK generally is project-specific and organization-specific
AK.

An example of the application of this openness model is follow-
ing. We worked in a large company that is one of the top 5 telecom
equipment and services provider in the world. The main task of our
department is developing automated testing tools for testing the
hardware function of various series of base stations. The hardware
includes digital parts and radio frequency parts. There is another
department C with similar tasks to our department, but that depart-
ment’s target test object is high-performance routers that only have
digital parts. Thus, some AK about digital parts test in the project of
our department is useful to department C and should be organization-
specific. The AK on radio frequency parts test just applicable in the
projects of our department and therefore it should be project-specific.
The AK about digital parts test can be distilled as a pattern that will
be beneficial to the domain of digital parts test, such as computer
mainboard test. Thus, the distilled AK can be public to all potential
users in this field.

6.2 Reputation ranking mechanism

The quality of AK makes large impact on the use and sharing of AK.

Because architecture can strongly affect a software-intensive system

in the whole life-cycle, AK with poor quality will cost users much

effort to validate the correctness and may result in negative effects

upon the maintenance and evolution of the system architecture.

To help users to get a good understanding of the quality of AK, we

may create a reputation ranking mechanism to rank AK and AK

Desired Features of Software Architectural Knowledge Management Tools – Zengyang Li,

46

producers. The main idea is: (1) We calculate the reputation of an

AK element according to the scores assigned by the AK element’s

users; (2) Different users of the AK element have various reputation

values, and the score assigned by the user with higher reputation

should have a higher weight on the calculation of the AK element’s

reputation value; (3) The reputation value of an AK producer is the

average reputation value of all AK elements of the producer.

For example, An AKM tool offers a set of criteria for appraising

AK and then users can give a score to AK according to the criteria

and comment it. We assume that there is an AK element k and the

number of its users is nk. The set of reputation values of its users

is 1 2{ , ,..., }
knur ur ur

, and the corresponding set of scores assigned by

the users is 1 2{ , ,..., }
kns s s

. We define the reputation of k, akrk, as

1 1

() /()
k kn n

k j j i

j i

akr ur s ur
= =

= ×∑ ∑
 (1)

We take the reputation of the users of the AK element into account in

this definition in order to increase the weight of the score assigned

by the user with higher reputation and decrease the weight of the

score assigned by the user with lower reputation. When users search

or retrieve AK relevant to a particular topic, results are listed with

the reputation values so that users can easily judge the quality of AK

and select the target AK more effectively. Furthermore, the reputa-

tion of AK producers may influence the acceptance of the AK cre-

ated by them. People tend to believe that the AK produced by a pro-

ducer with higher reputation value is more possible to have a good

quality. Therefore, we can use the average reputation value of all AK

produced by a producer as a reputation measurement associated to

the producer. When users search the AK about some certain topic,

they can easily pick out the AK whose owner is with higher reputa-

tion.

7 CONCLUSION

As AKM becomes critical to strengthening an organization’s archi-

tectural capabilities, tooling support for this management is required.

To facilitate managing AK, some AKM tools were developed for this

purpose. However, there is not a consensus about what features an

architectural knowledge management tool should support.

 By reviewing selected papers on AKM tools, this paper summa-

rizes a set of AK activities and use cases that an ideal AKM tool

should support in the architecture life-cycle. Then, we focus on the

AK sharing and illustrate seven specific features an AKM tool

should possess by considering the characteristics of architecting.

Finally, we propose an openness model of AK, which suggests the

AK in an organization should be distinguished to 3 levels, i.e., pro-

ject-specified, organization-specified and public AK. And we also

suggest that an AKM tool should support a reputation ranking mech-

anism of AK and its producers. We believe that all these AK activi-

ties, use cases, specific features for AK sharing and the model of AK

openness and the reputation ranking mechanism make up the most

important desired features of AKM tools.

 In this paper, many features are conceptually described. However,

the technical details of the features have not been discussed yet, e.g.,

what steps should we take to implement a use case? Is there any

issue remained to be resolved in each use case? What technologies

should we employ to implement each feature? How to make a trade-

off among different features when using a specified technology? In

the next step, we will investigate these questions and generate a

guideline for future AKM tool development.

ACKNOWLEDGEMENTS

This work was supported in part by a grant from FNR, Luxembourg.

The author would like to thank Dan Tofan, Sjoerd Hemminga, Fer-

nand Geertsema and Peng Liang for their reviewing of and valuable

suggestions to the paper.

REFERENCES

[1] P. Avgeriou, P. Kruchten, P. Lago, P. Grisham and D. Perry, “Architec-

tural Knowledge and Rationale – Issues, Trends, Challenges”, ACM

SIGSOFT Software Engineering Notes, Vol. 32 Number 4, pp 41-46,

Jul. 2007.

[2] R. Farenhorst, P. Lago and H.V. Vliet, “Effective tool support for archi-

tectural knowledge sharing”. In: First European Conference on Software

Architecture (ECSA’07), pp. 123–138, 2007.

[3] A. Tang,P. Avgeriou, A. Jansen, R. Capilla and M. A. Babar, “A com-

parative study of architecture knowledge management tools”, The Jour-

nal of Systems and Software 83 (2010) 352–370, 2010.

[4] P. Liang and P. Avgeriou, “Tools and Technologies for Architecture

Knowledge Management”, In Software Architecture Knowledge Man-

agement: Theory and Practice, pages 91–111. Springer, 2009.

[5] K. Henttonen and M. Matinlassi, “Open Source Based Tools for Sharing

and Reuse of Software Architectural Knowledge”, Joint Working

IEEE/IFIP Conference on Software Architecture, 2009 & European

Conference on Software Architecture. WICSA/ECSA 2009. Oct. 2009.

[6] R.C. de Boer, R. Farenhorst, P. Lago, H. van Vliet, V. Clerc and A.

Jansen, “Architectural knowledge: getting to the core”. In: Third Inter-

national Conference on the Quality of Software Architectures (QoSA),

2007.

[7] C. Hofmeister, P. Kruchten, R.L. Nord, H. Obbink, A. Ran and P.

America, “Generalizing a model of software architecture design from

five industrial approaches”. In: Fifth Working IEEE/IFIP Conference on

Software Architecture (WICSA 2005), pp. 77–88, 2005.

[8] R. C. de Boer and R. Farenhorst, “In Search of ‘Architectural Knowl-

edge’”. Proceedings of the 3rd international workshop on Sharing and

reusing architectural knowledge (SHARK’08), pp. 71-78, 2008.

[9] R. Farenhorst, R. Izaks, P. Lago and H. van Vliet, “A Just-In-Time

Architectural Knowledge Sharing Portal”. Seventh Working IEEE/IFIP

Conference on Software Architecture (WICSA 2008), pp. 125-134,

2008.

[10] A. Nour, B. Sarah and M. Ivan, “Architectural knowledge management

in global software development: a review”. 2010 5th IEEE International

Conference on Global Software Engineering (ICGSE 2010), pp. 55-63,

2010.

[11] P. Kruchten, P. Lago and H. van Vliet, “Building up and Reasoning

about Architectural Knowledge”. Quality of Software Architecture

(QoSA), pp. 43-58, 2006.

[12] L. Bass, P. Clements and R. Kazman, “Software Architecture in Prac-

tice”, 2nd edn. SEI Series in Software Engineering. Addison-Wesley

Pearson Education, Boston, 2003.

[13] J. Ivers, P. Clements, D. Garlan, R. Nord, B. Schmer and J. R. O. Silva,

“Documenting Component and Connector Views with UML 2.0”,

TECHNICAL REPORT, University of Carnegie Mellon/Software En-

gineering Institute, 2004.

[14] P. Kruchten, P. Lago, H. van Vliet and T. Wolf, “Building up and ex-

ploiting architectural knowledge”. In: Proceedings of the 5th Working

IEEE/IFIP Conference on Software Architecture (WICSA), pages 291-

292, 2005.

[15] A. Jansen, “Architectural design decisions”, PhD thesis, University of

Groningen , 2008.

[16] I. Nonaka and H. Takeuchi, “The Knowledge-creating Company: How

Japanese Companies Create the Dynamics of Innovation”. Oxford Uni-

versity Press Inc, USA, 1995.

[17] J. van der Ven, A. Jansen, P. Avgeriou and D. Hammer: Using architec-

tural decisions. In: Proceedings of the 2nd International Conference on

the Quality of Software-Architectures (QoSA), LNCS, vol. 4214, pp. 1–

10, 2006.

[18] P. Liang, A. Jansen and P. Avgeriou, “Collaborative Software Archi-

tecting through Knowledge Sharing”. In Collaborative Software Engi-

neering, pages 343–368, 2010.

[19] T.S. Moh and A. Kaul,"A Prototype for Visualized Architecture

Knowledge Collaboration Services".2010 IEEE International Confer-

ence on Granular Computing, 2010.

SC@RUG 2009 proceedings

47

Wikis Support in Architectural Knowledge Management for
Sharing and Reuse: the WikiPL Approach

Konstantinos Tselios and Manuel Martiarena

Abstract—The amount of architectural knowledge that is produced, consumed, re-produced and consumed again in the
development of a medium-large software project is massive. As a project grows, complexity increases it and becomes impossible
for the software architect to manually manage the situation. This knowledge needs to be shared and reused between many
stakeholders. This study finds wikis appropriate to achieve efficiency in Sharing and Reuse of Software Architectural Knowledge
(SHARK). We combined key characteristics and evaluation frameworksʼ criteria, extracted from previous experiences. This
literature review leads us to map the key functionalities of the wikis and the desired properties of the SHARK tools. Lastly we
present the WikiPL approach and review and discuss its functionalities, with respect to our theoretical findings. WikiPL addresses
almost all the desired SHARK properties and it provides a reusable way for preserving architectural designs using unit tests. The
design can be formulated into Python code and it can also be documented and shared within a collaborative wiki environment.
We successfully simulated small-scaled architectural designs using the WikiPL environment; this study provides the details and
the results of the simulation. In overall we argue that wiki tools can be used to support and facilitate SHARK and we propose
using WikiPL as a tool for preserving the validity of the shared knowledge.

Index Terms—Software Architecture, Architectural Knowledge Management Tools, Knowledge Sharing and Reuse, SHARK,
Wiki, WikiPL.

1 INTRODUCTION
Software architecture is a discipline that is rapidly growing the last
few years [8]. There are numerous software design techniques and
methodologies used over the years, but this knowledge was only
lying inside the minds of the architects. The need for feedback from
a community that supports and comments on their work led to
investigation into previously unknown knowledge domains and
expertise. Architects started to exchange experiences, techniques and
tactics.

Sharing and reuse of knowledge constitute an effective way to
improve software architecture. Nevertheless, it could be very
difficult to provide the architects community an effective tool for
submitting, viewing and searching contributed knowledge. An
effective tool should cover the needs of its participant and it should
also be time-tolerant in order to gather and preserve knowledge.
Wiki tools are web-based content management tools [1]. Their
content could be seen and manipulated by multiple authors at the
same time. This study reviews and discusses wiki functionalities
[2][3][16] and desired properties [8][9] regarding SHARK.
Moreover we are interested in preserving the validity of the shared
knowledge. The WikiPL tool is examined, as it is a Python
programming environment in a wiki [15], which uses unit testing for
preserving the validity of its content over subsequent changes.

Chapter 2 provides definitions of basic concepts of software
architecture and architectural knowledge and its management. We
provide an insight of the need for knowledge management in the
software architecture practice. Wikis are presented in chapter 3 and
their key functionalities are addressed to desired properties for
SHARK tools. The approach of WikiPL and our experience using it
as a SHARK tool are discussed in chapter 4 and chapter 5 reviews
the approach with respect to theoretical mapping of chapter 3. In
chapter 6 we discuss this study’s findings and future work and
finally in chapter 7 we provide conclusions.

2 SOFTWARE ARCHITECTURE
Software architecture as a concept was identified in the early seventies,
when scientists realized that the structure of a software system is
important; it increases the chances of getting a good product. In the last
decade it was mainly considered a high level design, a set of
components and its relations, represented in different views [8].

There is not a single definition of Software Architecture. We
consider the definition provided in [26] to better fit in our literature
review. We provide its outline in this section. Software architecture
is a representation of a software system in an architectural language.
The architecture should display a clear separation of concerns in the
observable and the non-observable behaviours of the system. It
should support both static and dynamic components through a set of
well-documented interfaces or contracts known to the clients. It
should be described in a set of patterns to facilitate clarity and serve
as a simple mean of communication between the system’s
stakeholders. In overall, software architecture should support
changeability, expandability and reusability amongst other
characteristics. Roughly, we conceptualize software architecture as
the organization of interacting software components, acting as a
bridge between requirements, engineering and system design.

2.1 Software Architecture Trends
The amount of architecting information of a medium/large software
development project grows and becomes massive, complexity
increases and becomes impossible for the architect to manually
manage this situation. Many stakeholders participate in the decision-
making process and they are often in different physical locations. In
software architecture the following trends are perceived [14]: (a)
Increased collaboration: large groups of stakeholders from different
background and expertise participate in the discussions of
architectural issues. In order to collaborate, they need to have access
to the information in an understandable way and in a level of
complexity in accordance to the task; (b) Focus on decision making:
many decisions that take place in architecting processes are decisions
that matter, and have a large impact on the final system; (c)
Distributed development: In the development of a medium-large
software project, there are many groups and architects located in

!
• Konstantinos Tselios @ University of Groningen
E-Mail: k.tselios@student.rug.nl

• Manuel Martiarena @ University of Groningen
 E-Mail: m.martiarena@student.rug.nl

48

different offices, departments, buildings, countries (Global Software
Development [3]); and (d) Need for reusable assets: The rapid
progress of software architecture implies continuous evolution of
solutions. Reusable assets can prevent architects from re-inventing
solutions.

2.2 Architectural Knowledge
If software architecture is conceived as the bridge between
requirements, engineering and system design, architectural
knowledge could be seen, amongst others, as the rationale on how to
build it [6]. Not only architecture design is important to be captured
in documents, but also the knowledge attached to it. If this
knowledge is not stored or documented it disappears, leading to
additional costs in maintenance and inconsistencies in design over
time.

Additional reasons to share architectural knowledge are [7]: (a)
Encourage reuse: contribution to the community by sharing
architectural styles, patterns and experiences with other participants,
makes knowledge available to reuse; (b) Facilitate learning: the
ability to extract information about the rational of decision-making
facilitates in understanding the solutions in a shorter period of time;
and (c) Promote collaboration: sharing architectural knowledge
allows finding rationales for decisions and access important
information sources like artefacts or people.

Figure 1: Specific and generic architectural knowledge [19]

There are two types of architectural knowledge, the specific and
the generic [22]. Specific architectural knowledge is the sequence of
design decisions, including the rationale in their combination to
provide the architectural design. Specific architectural knowledge
can be modelled and presented to the stakeholders in different ways,
such as different types of UML diagrams, scenarios and use cases
[23]. Generic architectural knowledge is often tacit knowledge, lying
inside the heads of the architects, formed by experience, domain
knowledge or expertise. It includes styles, patterns, tactics and
experience in using specific technologies, tools and methods. This
kind of knowledge is hard to document and model and it is the most
valuable asset of an organization. The major problem regarding the
capital of knowledge is that it has free will and walks home every
day [10].

Figure 1 depicts different kinds of architectural knowledge,
organized in four quarters: from Specific-Explicit knowledge, more
easy to model and store, to the Tacit-Generic knowledge, residing
only in the minds of people which makes it difficult to store and
share [19].

2.3 Architectural Knowledge Management
Architectural Knowledge (AK) in software engineering is growing
more diverse and vast. There is a greater need to improve the way in
which this knowledge is stored and shared [10]. There are several
factors that make architectural knowledge sharing and reuse

(SHARK) difficult, i.e., documenting knowledge is time consuming
and contributors usually do not want to invest time on it. Other
perspectives state that knowledge is highly valuable, thus it should
not be shared.

There are two defined approaches to Knowledge Management
strategies [25]: (1) Personalization relies upon the tacit and implicit
knowledge and is more focused in sharing based on the relation of
people. The knowledge to transmit includes expertise, ways of
thinking and analytical advices amongst others. Personalization
could be simply described as a “people-to-people” approach. (2)
Codification is based on the explicit knowledge. This strategy
approach is more focused on the use of technology to enable, store,
retrieve and reuse of explicit knowledge, emphasizing on
documenting work processes, best practices and guides. Codification
can be described as a “people-to-document” approach. It is important
to understand that in AK management it is necessary to provide a
balance between the two strategies. AK management tools should
support a hybrid approach to stimulate its use in organizations.

3 WIKIS
Understanding the terms of architectural knowledge and sharing and
reuse of architectural knowledge, we are able to discuss tools that
support and facilitate these domains. This chapter provides a brief
flashback to the history of the Wikis. Further on, we describe key
wiki functionalities and desired SHARK tool properties as defined in
literature, and provide a mapping between them. We close the
chapter providing a view of how wikis support architectural
knowledge sharing and reuse.

3.1 Background
The “wiki wiki” word stands for “quick” in Hawaiian [13]. The first
WikiWikiWeb was developed in 1994 by Cunningham to serve as a
collaborative software running in a web environment [1]. The main
scope of a wiki system is contribution and exchange of knowledge,
allowing collaboration amongst the participants. As a kind of Web-
in-the-Web system [5], the pages of the wiki are interlinked and
content can be edited by multiple authors using a simplified markup
language or a what-you-see-is-what-you-get text editor. Basically, it
is a lightweight web-based content management application, offering
an ease of interaction and collaboration of many authors.

3.2 Wikis Support in Knowledge Sharing and Reuse
A well-structured content, supported by a strong collaborative
community that keeps it up-to-date and an effective searching
mechanism, make wikis a tool that can strongly support architectural
knowledge sharing in an effective way. Reuse of knowledge is more
effectively performed if the collection of information, from different
knowledge sources, is not a complicated and difficult procedure. In
other words, we argue that reuse of knowledge requires an ease of
extracting the information that one needs.

When someone performs a search on the Web to retrieve a topic-
specific piece of information, one can be found in front of an ocean
of relevant information; a large amount of previously contributed
knowledge. We argue that relevance does not necessarily imply
usefulness as well. This simply means that initially relevant
information served to a user, as a search result, is not always
referenced to the user’s interest; thus this piece of information, or
knowledge contribution, is useless. Wikis answer the question -”How
does this specific knowledge contribution supports one’s decision to
reuse it?”. This is also the main concern of software architects with
respect to AK reuse. They need a tool to facilitate their design
decisions, based on existing concepts in order to avoid reinventing
the wheel [27].

SC@RUG 2009 proceedings

49

It is common conception that concurrent edits performed by
numerous participants rarely lead to structured, well-defined and
comprehensive content. However, wiki software offers an
evolutionary process where edits which are coherent tend to survive
subsequent changes and corrections. This model ensures that only
qualitative edits remain and the overall quality of an article increases
over time. Therefore, wiki serves the user useful and valid
information.

3.3 Wiki Functionalities
Cunningham [2] defined the design principles of wikis, whereas
Clerc et al. [3] defined important generic wiki functionalities. Tang
et al. [16] set certain criteria in order to perform a comparative study
for SHARK tools. The important key characteristics we extracted
from the aforementioned sources are:

1. Ease of use − an everyday user can easily view and edit
wiki web content. Sometimes though, a user needs to hold
some limited experience to perform editing and linkage
using markup language [3].

2. Collaboration − wiki content is dynamic and users can
navigate through multiple versions of wiki pages. Hence,
many authors can edit content while the tool performs
versioning. In this way “wiki users are prosumers”, as
stated by Ellie Rennie [4]; they produce by editing content
[-producers] and they consume by viewing it [-consumers]
at the same time.

3. Search − users can search in wiki content requesting an
article title or by performing full-text search.

4. Content linkage − pages are interlinked within a wiki
environment. A wide variety of articles having links back
and forth to each other may be inconvenient for someone
to find one’s way through this content [3]. Reinhold [5]
proposed the usage of wiki trails to better suit the
knowledge requirements of the environment and its
stakeholders.

5. Versioning − the wiki content is not static; it may rapidly
change and grow large by the participant’s potential
contribution of knowledge. The versioning mechanism
enables back tracking in previous versions of the same
content, meaning that the status of the wiki can revert at
any time.

6. User authentication − authentication assures user
identification. Content versioning, also documents the
name of the authenticated author; this makes the authors
traceable with respect to their activity and/or knowledge
domain. Moreover, authentication provides administrations
to perform authorization, by limiting users’ rights in
editing specific wiki content.

7. Stakeholders feeds − sharing new content with others in a
wiki community enables mechanisms to use RSS-feeds for

pushing relevant knowledge content to targeted
stakeholders.

8. Ease of integration − the wiki environment is open to
integration with other tools that can provide extra
functionality. Several approaches of wikis exist integrating
a variety of external plug-ins to facilitate the usability of
the tool itself.

3.4 Tools Support in SHARK
In this study, we extracted desired properties based on the needs of
architects, as defined from Farenhost et al. [8] and a proposed
evaluation framework defining criteria for selecting a SHARK tool
for organizational use, developed by Henttonen and Matinlassi [9].
The characteristics of architecting are reflected in the extracted
properties.

A. Stakeholder-specific content − a software project has
many interfering stakeholders during its entire
lifecycle. A clear distinction between knowledge
committed by different stakeholders is an important
aspect that a tool should cover. This enables the user to
extract the desired knowledge reflecting a group of
profiles of users; i.e., architects, developers or
managers.

B. Easy manipulation of content − the architectural
process is iterative by nature. Architects make and
verify decisions in a continuous iterative flow. The ease
of content manipulation that a tool provides, can speed
up the decision making process in software
architecture.

C. Descriptive in nature − there should be freedom of
choice in the decision making process. The
environment should not provide strict and guided
modelling and hence, should allow architects to unfold
their creativity.

D. Support for architectural knowledge codification −
the tool should provide the architects with efficient and
quick searching of content that is not frequently
changing. This content constitutes already proven
solutions that the tool should provide a codification
strategy quick access for its retrieval.

E. Support for architectural knowledge
personalization − a personalization strategy can be
useful to architects when content is rapidly changing.
The tool should offer traceability of authors in a certain
domain of architectural knowledge.

F. Support for collaboration − collaboration of different
stakeholders facilitates the decision making process.
Furthermore, it enables discussion and negotiation
regarding specific content in several domains of

Figure 2: Mapping of Wiki features to desired properties of SHARK tools

Wikis Support in Architectural Knowledge Management – Konstantinos Tselios and Manuel Martiarena

50

expertise. An important positive impact of
collaboration is that software development can be more
effectively divided and managed.

G. Sticky in nature − the stickiness of the tool refers its
ability to attract the users and provide comfortability.
This ability is also facilitated by integrating special
features that motivates the user to adopt it as one’s
primary method for architectural knowledge
management.

H. Support for decision-making − the knowledge
contributes should support its coherence and its
usefulness in order to persuade the architects to reuse it.
This could be facilitated by provision of additionally
documentation of discarded design decisions.

I. Ease of adoption − the tool should be easily integrated
in the stakeholders’ decision-making process.
Customizability of the tool plays an important role in
accommodating organizational needs. Thus, a tool
should be flexible to serve the needs of its environment
and its stakeholders.

J. Security − the tool should guarantee that knowledge
contributions are coherent and accurate in order to
preserve the validity of the contribution.

3.5 Mapping Wiki Functionalities to Desired Properties
for SHARK Tools

Clerc et al. [3] discussed a mapping method, which we followed as a
guideline in our work. The mapping Clerc et al. performed resulted
in assigning wiki functionalities with AK management in Global
Software Development (GSD). In their study they “focus on using
AK effectively to overcome the challenges associated with GSD
practices” [3], by first identifying the wiki functionalities and best
GSD practices for AK management, and concluding on how wiki
functionalities can be used to implement these practices. In this
study we first extracted some wiki functionalities referred in [3]–
with additions from other studies [2][16]–and software architects’
needs for SHARK tools [8][9], and we mapped them to conclude that
wikis support sharing and reuse of AK.

The key functionalities of the wikis defined in §3.3, can be
mapped to the requirements of the software architects mentioned in
§3.4, regarding SHARK. The upper left of figure 2 lists the eight
wiki functionalities and the upper right side lists the ten desired
properties for SHARK tools. The mapping of the lists is depicted
below in the same figure and shows the relation between two
elements pointing each other using arrows. The arrows show that one
or more wiki functionalities support one or more desired SHARK
properties.

Stakeholder-specific content needs the users to act as
authenticated prosumers in order to contribute and consume
knowledge in a clearly distinguishing and traceable way. In addition,
stakeholders’ subscriptions feed them with relevant knowledge
content. One of the main functionalities of the wikis is ease of use
and manipulation of content, where authors should have none, or
limited experience in markup language usage. The codification
strategy urges the support of an effective searching mechanism,
whereas the personalization strategy proves useful when supported
by versioning. Wikis support both personalization as well as
codification [17]. In order to be “sticky” a tool should provide extra
functionality and also should cover the needs of a wide variety of
potential users. Interconnected content supports the decision making
process, and user authentication and versioning increase the security
of the content. The ease of use and integration causes adopting a tool
more easily in a process or an organization. Lastly, property C, as we
see in figure 3, is not addressed to a wiki functionality. That happens
because a tool providing content management capabilities, gives its
user the opportunity to decide whether to respect its content as a
barrier to the user’s creativity, or as a provision of free choice.

4 WIKIPL APPROACH AND EXPERIENCE
After providing a view on why is a wiki tool appropriate to support
SHARK, we discuss how a tool actually does what we claimed in the
previous chapter. We examine the WikiPL approach and we discuss
how it can be used to support SHARK. Further on we map WikiPL’s
functionalities with respect to our findings on §3.3 to desired
properties of SHARK tools presented in §3.4.

4.1 The WikiPL Approach
WikiPL is a programming environment in a wiki. Each article can be
a function, a class or any other piece of code in the Python
programming language [18]. WikiPL joins developers with different
backgrounds into collaboration, under a common programming
environment without strict central administration. Each developer
contributes programming content in the area of one’s own expertise.
The implementation of WikiPL is based on the MediaWiki content
management system, which is well known by its implementation on
the Wikipedia project [1].

In a WikiPL article, each section has a different functionality
[15]. The “Code” section is where the source code of the article
resides. When making an edit to this section, the code is checked for
syntax errors and a unit tests check is enacted. The edit is saved if all
the checks succeed. “Unit tests” are small snippets of code that
verify the integrity and satisfiability of another piece of code.
Another special section is the “Parameter” section, where a user can
define the parameters of the function that is hosted in an article and
its definition is converted to HTML form elements [15][18]. In
WikiPL, a method can be executed within an article in three different
ways: (a) by local downloading a bundle with the source code, the
calling functions and classes, and the running parameter; (b) by
copying this bundle in a remote server, i.e., Amazon EC2; or (c) by
converting the Python code into JavaScript that is subsequently
executed in the user’s browser [15]. A button for each execution
method is provided. The final special section is the “Permissions”
that contains lists of users with the edit permissions to the code, unit
test and documentation sections. WikiPL offers a Python library that
enables the downloading of the code, suited in a WikiPL article, into
a local Python namespace.

4.2 The WikiPL Experience
In its current form and use, WikiPL does not support architectural
knowledge but development knowledge. We experimented and tried
to treat this tool as a tool for SHARK that could be used in an
organization environment. All our actions were performed in a
sandbox of the existing implementation of WikiPL, thus the results
cannot be publically visualized.

 Figure 3: The layers and MVC architectural designs

Instead of adding articles that are pieces of Python code, we
created articles that document the relationship of different articles,
the order of their execution and their arguments. In this way we
simulated an architectural design concept in a small scale. These
articles are further on referred as design functions. The concepts we
committed to WikiPL were based on two known software pattern
designs; the layers pattern and the model-view-controller (MVC)
pattern [24].

SC@RUG 2009 proceedings

51

Figure 3 shows the article functions f1, f2 and f3, and their
possible architectural designs. The layered architecture imposes that
bidirectional communication between f1 and f3 is only performed
through f2. As an alternative, the MVC architecture imposes
bidirectional communication to be only performed between f1 and f3,
while f2 only sends data to f1 and f3. The preservation of the
communication architecture of the layers and MVC designs is
performed by unit tests. These unit tests are performed in the article
functions so as to satisfy the conditions of the relevant design
function. This means that if i.e. function f1 calls function f3, the f1
unit test for the layers design function, will not be satisfied.

For composing the code of a design function we used dependency
check functions, already provided by WikiPL. These return which
functions are being called from another function
(Get_links_from_wikipl_article) and which functions this specific
function calls (Get_links_to_wikipl_article). In this way we set
design conditions that must return True in order to be valid. The code
of the design_layers function is provided below:

def Sandbox_design_layers(f1, f2, f3):
 conditions = []

 #f1 is called from f2 and calls f2
 conditions += [f2 in Get_links_from_wikipl_article(f1)]
 conditions += [f2 in Get_links_to_wikipl_article(f1)]

 #f2 is called from f1 & f3 and calls f1 & f3
	 	 	 conditions	 +=	 [f1	 in	 Get_links_from_wikipl_article(f2)]	
	 	 	 conditions	 +=	 [f3	 in	 Get_links_from_wikipl_article(f2)]	
	 	 	 conditions	 +=	 [f1	 in	 Get_links_to_wikipl_article(f2)]	
	 	 	 conditions	 +=	 [f3	 in	 Get_links_to_wikipl_article(f2)]	
	
	 	 	 #f3 is called from f2 and calls f2	
 conditions += [f2 in Get_links_from_wikipl_article(f3)]
 conditions += [f2 in Get_links_to_wikipl_article(f3)]

return reduce(lambda x,y: x and y, conditions)

Code 1: The design function Layers in WikiPL.

For composing the unit tests in article functions we considered
which conditions should be satisfied. In the layers architectural
design, i.e. f1, f2 and f3 unit tests should satisfy (return True) the
design_layers function conditions. These conditions impose the
communication architectural design of the layers pattern, which we
described earlier. We noticed that the unit tests have large execution
time, as they need to check the satisfiability of multiple functions.
The unit test code of f1, f2 and f3 that satisfies the design_layers
function is provided below:

def test_for_architectural_design():
 if not design_layers(f1, f2, f3):
 return “function failed to satisfy the architectural
 design conditions”

 return True

Code 2: The unit test of function f1 in WikiPL.

In the documentation area a rationale of the decision of each
design is composed and the design functions and their relationships
are illustrated as blocks and arrows. The design function can be
executed and it can provide results that can justify or not the initial
conceptual rationale; i.e., high performance is required, thus the
design function should have shorter execution time than an
alternative one. There is also a sample unit test code provided that
the article functions should include. Furthermore, in the “See also”
section of the article we provided links with similar or alternative
architectural designs.

5 RESULTS
So far we discussed about the approach of WikiPL and our
experience using it as a tool for SHARK. In this section we provide
the results of our study; identification of WikiPL’s functionalitites

and the mapping between these functionalities and desired properties
of tools for SHARK.

5.1 Reviewing the WikiPL Approach
The approach of the WikiPL implementation is not semantic but we
identify this as a non-negative functionality. We provide the
rationale of this argument in this section that reflects our literature
review.

The semantic wikis combine the typical wiki functionality adding
meaning to the content. As Souzis stated [20], even for experienced
users, writing the required precise statements for achieving a
semantic concept is much more time consuming than writing
informal text. For having coherent, consistent and structured
semantic information, the ontology evolution and convergence
should be left to advanced tools in the hands of experts [21].
Provision of contextual presentation, improved navigation, semantic
search and reasoning [11][12] may be able to efficiently facilitate
SHARK in the near future, when advanced tools will prove fully
functional. On the other hand, it is very important for a wiki, like
WikiPL, to have a semantic infrastructure lying underneath its
surface. We do not provide any further information on semantic
wikis because it is outside the scope of this study.

5.2 Mapping WikiPL functionalities to Desired
Properties of SHARK tools

WikiPL uses the typical and well-known web-based approach of a
wiki. In this way it provides the user with comfort and increases the
learning time of the tool. In addition, it urges software development
decentralization; a participant may add the documentation and the
desired unit tests and “outsource” the development to a third-party
while at the same time ensures the validity of a potential code
contribution. Besides viewing the content, the user in this approach,
actually has the capability of executing it in the environment itself.

Using namespaces for separating different groups of stakeholders
is a functionality that WikiPL also provides. It is required though, to
have limited programming experience on the Python language for a
user to compose the code section of an article, so the manipulation of
the content cannot be considered as easy. The AK codification is
partly supported, as the users can document their rationale but
semantic infrastructure is not used. Searching for already proven
solutions in the current implementation does not constitute a WikiPL
functionality. Personalization on the other hand is supported, as
WikiPL offers traceability of authors and versioning. As every wiki
tool urges collaboration [2], so does the WikiPL. A discussion area
exists for participants to commit their comments and interact in an
asynchronous way. While providing certain permissions to users, or
groups of users, the collaboration may be restrictive but this
preserves the validity of the content. In the documentation area one
can provide details on the committed AK, while the code can be
executed, if applicable. In this way one can justify the decision of
designing and using this specific piece of AK.

Desired properties of

SHARK tools A B D E F G H I J

Support of WikiPL
functionalities + − − + + − + + +

Table 1: Mapping of WikiPL functionalities to desired properties
of SHARK tools

Table 1 provides an illustration of the arguments stated in the
previous paragraph. The desired properties of SHARK tools are
numbered as in §3.4, where also were defined. Property C is not
present in the table because a mapping to wiki functionalities could
not be established as discussed in §3.5. The second row of table 1
illustrates the support of WikiPL functionalities to the desired
properties. When the plus symbol is present it means that WikiPL

Wikis Support in Architectural Knowledge Management – Konstantinos Tselios and Manuel Martiarena

52

functionalities do support the desired properties and when the minus
symbol is present the WikiPL functionalities do not support desired
properties.

6 DISCUSSION
Our approach to use WikiPL as tool for SHARK can be further
evolved to provide large-scaled architectural designs, though it could
turn into a complicated task. Functions 1 to 3 used in §4.3 can be
replaced by modules, or other nested designs. An architect can also
design the architecture and just title it as an article, compose the
documentation and set parameters and unit tests for the functions-to-
be-developed.

Architects can commit their designs, while at the same time all
participants can execute them, if applicable. Moreover the WikiPL
provides semantic infrastructure, as it is a fork of MediaWiki. The
current format of WikiPL does not use ontologies, but this semantic
infrastructure could be used to set relations between design
functions. Searching in the environment for certain architectural
designs could facilitate the results of complex queries [11]. To
conclude, our approach proposes designing article architectures that
preserve the initial design via unit tests.

In the future there should be an implementation of WikiPL in an
organization environment and a case study for the evaluation of the
tool regarding SHARK should take place. Architects should be asked
to use WikiPL to commit large-scaled designs by following our
approach, which is mentioned in §4.3. There should be an
examination on how other architects can use it as a collaboration tool
and add comments, raise discussion and reuse the design-function
articles. This would make the identification of extra needed
functionality and drawbacks possible. Finally, there should be an
examination on how useful the developers find the tool for
deliverance of code, which follows the design guidelines by
satisfying unit tests.

7 CONCLUSIONS
Wikis prove themselves efficient and effective as knowledge
management tools as we defined in §3.2. It is a fact that wikis are the
most popular content management tool at the time being,
implementing several known applications for support in OS
communities (Linux, FreeBSD), commercial communities (Nokia,
IBM) and academic and learning communities; this can tell us a lot
for their success. Our review findings verify the capability of wiki
tools to support SHARK.

The approach of WikiPL supports software development
knowledge. We examined the tool with respect to SHARK and
simulated its support in small-scaled architectural designs. The
results of this small simulation were positive but did not support well
enough SHARK. Committing AK could become a complicated
procedure, but on the other hand once it is composed in a right way it
can be easily reused. The current implementation of the tool is also
restricted in the Python programming language, which makes it more
difficult be adopted by a large audience. On the other hand WikiPL
functionalities support most of the desired properties of tools for
SHARK, as discussed in §5.2.

ACKNOWLEDGEMENTS
The authors wish to thank Dan, Alexander and Alexandros.

REFERENCES
[1] Wikipedia: The Free Encyclopedia, “Wiki”, 2011,

http://en.wikipedia.org/wiki/Wiki [Online; Access date 16-03-2011]
[2] Cunningham, W., 2008, Wiki Design Principles, c2.com,

http://www.c2.com/cgi/wiki?WikiDesignPrinciples [Online; Access date
16-03-2011]

[3] Clerc, V., de Vries, E., & Lago, P., "Using Wikis to Support Architectural
Knowledge Management in Global Software Development", 5th Workshop
on SHAring and Reusing architectural Knowledge, 32th International
Conference on Software Engineering, ACM, 2010.

[4] Rennie, E., 2007, “Community Media in the Prosumer Era”, 3C Media
Journal of Community, Citizen’s and Third Sector Media and
Communication, Issue 3.

[5] Reinhold, S., “WikiTrails: Augmenting Wiki structure for Collaborative,
Interdisciplinary Learning”, The 2006 Symposium on Wikis, pp. 47-57,
Odense, Denmark, 2006. ACM, New York, NY, USA.

[6] De Boer, R. & Farenhorst, R., “In search of ‘Architectural knowledge’”.
3rd international workshop on Sharing and reusing architectural knowledge,
New York, 2008.

[7] De Boer, R. & Farenhorst, R., “Architectural knowledge Management:
Supporting Architects and Auditors”, 2009.

[8] Farenhorst, R., Lago, P., and Vliet, H.V., “Effective tool support for
architectural knowledge sharing”, Software Architecture, 2007, pp.123-138.

[9] Henttonen, K. & Matinlassi, M. “Open source based tools for sharing and
reuse of software architectural knowledge”, Joint Working IEEE/IFIP
Conference on Software Architecture & European Conference on Software
Architecture, 2009, pp.41-50.

[10] Rus, I., Lindvall, M.: Knowledge Management in Software Engineering.
IEEE Software vol:19, No:3, 2002.

[11] Shiva, Saijan G. & Shala, Lubna A. “Using semantic wikis to support
software reuse”, Journal of Software [1796-217X] Shiva, 2008, vol:3, Issue
4.

[12] Schaffert, S., “IkeWiki: A Semantic Wiki for Collaborative Knowledge
Management,” Proceedings of the 15th IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, 2006,
pp.388-393.

[13] Wikipedia: The Free Encyclopedia, “About Wikipedia”, 2011,
http://en.wikipedia.org/wiki/Wikipedia [Online; Access date 16-03-2011]

[14] Farenhorst, R., Lago, P., & Vliet, H.V., “ Experiences with a Wiki to
Support Architectural Knowledge”, 3rd Workshop on Wikis for Software,
2008.

[15] WikiPL, “Welcome to WikiPL”, http://www.wikipl.com [Online; Access
date 16-03-2011]

[16] Tang, A., Avgeriou, P., Jansen, A., Capilla, R., & Ali Babar, M. “A
comparative study of architecture knowledge management tools”. Journal of
Systems and Software, vol:83, No:3 2010, pp.352-370.

[17] Liang, P. & Avgeriou, P. “Tools and Technologies for Architecture
Knowledge Management. In Software Architecture Knowledge
Management”. Springer, Berlin, Heidelberg, 2009, pp.91–111.

[18] Freshmeat, “WikiPL”, http://freshmeat.net/projects/wikipl-10, [Online,
Access date 16-04-2011]

[19] Farenhorst, R. & de Boer, R., “Knowledge Management in Software
Architecture”, Software Architectural Knowledge Management: Theory and
Practice, Springer, 2009, pp.21-38.

[20] Souzis, A., “Building a Semantic Wiki”, IEEE Intelligent Systems, 2005,
vol:20, No:5, pp.87-91.

[21] Kousetti, C., Millard, D.E. & Howard, Y., “A Study of Ontology
Convergence in a Semantic Wiki”, Proceedings of the WikiSym 2008,
ACM, 2008.

[22] Hansen, M.T., Nohria, N. & Tierney, T., “What’s Your Strategy for
Managing Knowledge?”, 1999, Harvard Business Review 77(2), pp.106-
116.

[23] Kruchten, P., "The 4+1 View Model of Architecture", 1995, IEEE Software,
vol:12, No:6, pp.42-50.

[24] Avgeriou, P & Zdun, U., “Architectural Patterns Revisited - A Pattern
Language”, Proceedings of 10th European Conference on Pattern
Languages of Programs (EuroPlop 2005), Irsee, Germany, pp.1-39, 2005.

[25] Avgeriou, P., Kruchten, P., Lago, P., Grisham, P. & Perry, D.,
“Architectural Knowledge and Rationale – Issues, Trends, Challenges”,
ACM SIGSOFT Software Engineering Notes, 2007, vol:32, No:4, pp.41-46.

[26] R. K. Pandey, ”Architectural description languages (ADLs) vs UML: a
review”. (UICSA) and R. D. University, 2010, Jabalpur (M.P.) India.

[27] van der Ven, J.S., Jansen, A., Nijhuis, J. & Bosch, J., “Design Decisions:
The Bridge between Rationale and Architecture”, Rationale Management in
Software Engineering, Springer, 2006, pp.329-346.

SC@RUG 2009 proceedings

53

Variability Management in Business Processes:
Comparison of approaches

Ntembeko Mkhunyana & Sinazo Matyila

Abstract — Business processes specify main activities in an organization, some of which can be automated. It is often the case

that replication of activities across such processes occur and failure in identifying such issues result in organizational costs. This

leads to huge modelling and maintenance efforts if they are not properly managed. In this paper, we discuss approaches used to

manage variability in business processes and apply some of those methods into examples. We then compare these approaches

and draw conclusions as to which method is better to implement in order to manage variants of business processes in

organizations.

Index Terms — Variability Management, Business Processes, Provop approach, Process Variant Repositories (PVR),

Compositional and Parametric approach.

1. INTRODUCTION

Business Process Management has been implemented in many

organizations in order to maximize the quality and services provided to

customers. The major reasons for implementing this was to:- (a) help

an organization to get good profits in less time. (b) Visualize activities

within the organization. (c) Visualize data flow within the organization.

Without the use of BPM, organization would have not been able to

achieve the points just mentioned above. Business Process

Management is done with the help of using different tools that help in

capturing, modeling, designing, integrating, deploying, testing,

measuring, and managing several business activities. Each time a

new requirement is introduced, that requirement has to be also

included into the existing business process and the resulting process

is a variant of the main process an organization initially had. The

success or failure of an organization depends on how good or bad it is

able to manage the entire life cycle of its business processes.

��A business process is a collection of activities designed to produce a

specific output for a particular customer or market [1]. Business

processes play a major role in an organization as mentioned above

because they specify the main activities that must be followed and

they usually contain goals, specific inputs/ outputs, tasks that are

performed in a certain order, and resources. The number of processes

of a single organization can vary depending on how many

departments an organization has and how many activities each

department has to perform, and they can be very similar. It is often the

case that replication of activities across such processes occur,

however failure in identifying such issues results in organizational

costs [3] as well as huge modeling and maintenance efforts that have

to be done. So, we need a way to manage these processes.

Today there are methods and approaches that are widely used for

handling and managing changes that take place in business

processes and these will be discussed into detail in section 2 and 3 of

this paper. Some of these approaches make use of the full Business

Process Life Cycle and others just some parts of it. Based on [5],

variability management is the set of activities aimed to cover the

creation and support of differences in versions of reference processes.

This variability in business processes can be managed using the

following approaches: implementing the Provop approach [2],

compositional and parametric approach with Aspect-Orientation [3],

and through process variants repository (PVR) approach [4].

In this paper, we intend to present the methods or management

strategies as mentioned above, in section 2. In section 3, we apply

these methods to some of the examples given in [2], [3], and [5] which

include production change process in the automotive industry, mobility

& food allowance business process in the human resource domain,

and Generic process for obtaining a subsidized wheel chair,

respectively. Section 4, then compare these methods based on

similarities with respect to advantages and dis- advantages. What we

expect to find is the way to properly manage variability in business

processes since they play a major role in every organization.

2. METHODS TO MANAGE VARIABILITY IN BUSINESS
 PROCESSES

This section describes methods used to manage variability in business

processes. We make use of references [2], [3], [4] and [7] to discuss

three approaches that can be used which are (a) The Provop

Approach, (b) The Compositional and Parametric Approach, (c)

Process Variants Repositories (PVR).

2.1 PROVOP APPROACH

Provop approach is an approach used to manage variability in

business processes. It provides a very flexible solution to manage

process variants in the full business process life cycle. The basic logic

behind this approach is that, it takes all the variants in the process and

capture or combine them to form one process model that consists of

all those variant. For instance, if we let P represents a process model

with variants P1, P2 & P3; and we let T represents tasks or activities,

then we let P1 to consist of tasks T1a, T2a, T3a, T4a, & T5a; P2 with

T1a, T3a, T3b, T4a & T5a; and P3 with T1a & T5a. Syntactically, we

can represent it like this:

a) P: P1 {� T1a; T2a; T3a; T4a; T5a}
b) P: P2 {� T1a; T2a; fork: T3a, T3b; join: T5a}
c) P: P3 {� T1a; T5a}

Then apply the Provop approach to variants P1, P2, P3, we can have

a model consisting of process P with tasks similar to these: T1a, T2a,
T3a, T3b, T4a, T5a. that is: P {� T1a; T2a; fork: T3a, T3b; T4a; join:
T5a}. Provop approach is implemented using the full business process

life cycle. In this section we discuss Provop approach for process

variant management. The life cycle for modeling businesses consists

of the following phases: Modeling phase, Instantiation and Selection,

Deployment and Execution.

2.1.1 MODELING

Basic Process – The first step that Provop follow is to use the

characteristics of process variants and look at their similarities to the

original process model. This original process is usually called basic
process.
Change Operations – In this stage, change operations are defined in

the process. These change operations describe the differences

between the basic process model and the respective variant model.

The following are change operations that are applied to the variants:

INSERT, DELETE & MOVE process fragments as well as MODIFY

process element attribute.

Options – These are used to define more complex adjustments to

processes and they are grouped into a single object called options.

54

This consist of a name and a set of change operations.

Visualization of options – This section visualize options as they are

stored in the object named options. It shows all information of the

option and enables user-defined selection of the information to be

visualized.

Option Relation – This section describes relations that are applied

after modeling different options. These relations are: Dependency
means that the relation option is always dependent on the basic

process; Mutual exclusion allows to reduce the possible combinations

of options that can be applied to the basic process model; Execution
order constraint allows specifying orders in which options can be

applied to the basic process; & lastly, Hierarchy constitutes a

combination of the relation dependency and execution order.
Context-aware Process Configuration - In a first step the process

context has to be defined by utilizing context variables with a given

range of value. Provop distinguishes between static and dynamic

context variables. Static context variables are set once and

their value is then fixed throughout process execution (for instance,

product type). The value of dynamic context variables, in turn, may

change during process execution (for instance, development phase).

Process Context Constraints - Sometimes there are constraints

describing a relation between particular context variables. For

example, if a requested product change is of�high costs, its risks will

be high as well. This follows the IF THEN ELSE logic.

Context Rules - To connect options with process variants

configurations, a process context has to be defined. For this purpose,

context rules are defined.

2.1.2 SELECTION AND INSTANTIATION

In this phase, three things are used, that is. basic process, defined

options & the context model to configure models of different variants.

The following are the steps taken to achieve this:

Step 1: Select Options – Here, relevant options are defined either

explicitly or implicitly when configuring a process variant.

Step 2: Evaluate Relations – After selecting a set of options, their

relation is checked. This checks if a dependent option is missing, to

maintain consistencies in processes.

Step 3: Apply Options - After defining and evaluating the relevant set

of options, the related change operations are applied to the model of

the basic process. This process starts by applying static context

variables, then dynamic context variables.

Step 4: Check Consistency – This step checks for redundancies and

conflicts after applying changes in a basic process which may result in

deadlocks later on.

2.1.3 DEPLOYMENT AND EXECUTION

In this section, the resulting variant model is translated into an

executable work flow model.

2.2 COMPOSITIONAL AND PARAMETRIC APPROACH WITH
 ASPECT-ORIENTATION

In this section, the management of variability is based on a

compositional and parametric approach based upon Aspect-

Orientation. It leverages and extends an existing infra-structure with

new transformations, modeling of relevant artifacts (business

processes), their variability, and a new configuration knowledge

mapping features expressions to such new transformations [3]. This

approach is based upon the variability model of Modeling Scenario

Variability as Crosscutting Mechanisms (MSVCM) which also provides

a set of Haskell libraries [3]. This process works by configuring

processes in such a way that after applying it the main process called

basic process and advice processes are created. A basic process is

the main process that is common to all the departments in that

particular organization and an Advice process is the section in the

process that was causing variability in the main process. This

approach also present the BPMN extensions and transformations

using the Haskell functional programming language [3].

Business Process Modeling Notation - is a graphical representation

for specifying business processes in a business process model. An

example of this functional programming language is given below:

 data BusinessProcessModel =

 BPM { processes :: [BusinessProcess] }

 data BusinessProcess =

BusinessProcess {

 pid :: Id,

 ptype :: ProcessType,

 objects :: [FlowObject],

 transitions :: [Transition

 }

data ProcessType =

 BasicProcess |

 Advice {

 advType :: AdviceType,

 pc :: Pointcut

 }

 data FlowObject =

 FlowObject {

 fId :: Id,

 fType :: FlowObjectType,

 annotations :: [Annotation],

 parameters :: [Parameter]

 } | Start | End

 data FlowObjectType = Activity | Gateway

 data Pointcut = PC String

 type Transition = (FlowObject, FlowObject, Condition)

Listing 1: abstract syntax excerpt of BPMN extension in Haskell [3][7]

This syntax is a way of presenting an advice and a basic process after

applying this approach. A clear example of this approach is presented

in section 3.2 of this document. And the use of this syntax is shown in

a small table in the results of the example.

2.3 PROCESS VARIANTS REPOSITORY (PVR)

A process variants repository (PVR) approach is the process of

managing variants of a business process that are stored in the

repository. This approach uses a concept of Business Process

Constraint Network (BPCN) which reduces process specification to a

set of minimal constraints . Detailed information about BPCN is not

provided in this paper since the main focus is to present how PVR

works in terms of managing process variants of a business process.

All process variants of a business process satisfy the same set of

constraints though they may be different. Process variants stored in a

repository can result into a huge corporate resource which becomes

valuable and provides knowledge to an organization. But the question

how can we manage this process variant repository? The following will

provide answer to this question.

2.3.1 MANAGING PROCESS REPOSITORIES

Once a process variant is stored into a repository, a query statement

which is a statement of information needs, is formulated based on that

variant. This statement will then be used later on when reducing these

processes. A process repository creates a schema which defines the

structure according to which process variants are stored. Based on R.

Lu & S. Sadiq in [5], a process variant V is defined by process model

W, where W = (N, F) defined through a directed graph consisting N:

Finite set of nodes, F: Flow relation F is subset of NxN. Nodes are

classified into tasks (T) and coordinators (C), where C union T, C
intersection T = empty set. Task nodes represent atomic manual/

automated activities or sub-processes that must be performed to

satisfy the underlying business process objectives. C allows the

building of control flows structures, that is, fork, choice, loops, etc to

manage the coordinator requirements. Let's consider the following

SC@RUG 2009 proceedings

55

examples of variants stored in the process repository:

Figure 2.3-1: Examples of processes that show variability [4]

In the above processes, the constraint is as follows: in all process

variants, T1 must always be performed before T5; T2 & T4 must be

done in parallel. Let's consider the following queries that can be

applied to the variants shown above. Let the query can be defined as

Q, then two query statements can be defined as Q1 and Q2,

respectively:

a) Q: Q1 {� T1, fork, T2 & T3, join:Synchronizer, T8}

b) Q: Q2 {� T1, fork, T2, T3, & T4, join:Synchronizer}

After defining the query statement, a test can be made to check if the

the given variant is related with a specified query. An approach called

SELECTIVE-REDUCE approach is used. This approach used graph

reduction techniques to show the match. The steps that this approach

follow are as follows, it:- (1) Eliminates all task nodes that are not

contained in the query, (2) Reduces the flow relation using three

reduction rules, namely sequential – eliminates all task nodes that are

not part of the query statement, adjacent – redirects all adjacent “forks

& synchronizes” controls into one control, and closed – if there are two

flows coming from the same fork to the same synchronizer and one of

them contains the node of interest, only the flow with the node of

interest will be chosen. These set of rules are shown in [5], and

examples for them are shown diagrammatically. After applying these

rules to all process variants in Figure 2.3-1 (V1, V2, V3) for query Q1,

gives a reduced structure PV1, PV2 & PV3 as shown in Figure 2.3-3

below:

Figure 2.3-1: Outcomes of applying PVR to process variants [4]

3. IMPLEMENTATION OF METHODS

In this section we consider and discuss examples that clearly show

variability in business processes and what bottlenecks it has in

organizations if not managed well.

3.1 PRODUCTION CHANGE BUSINESS PROCESS

The first example that we look at is the production change business

process from an automotive industry [2]. This business process is

designed in such a way that it contains variants that are connected to

each product type, for instance, a car, truck or a bus. All these

business processes are designed with a specific goal in mind that has

to be achieved. In this example, let's consider the following business

processes as shown by figure 3-1 below, starting from 1a to 1d, for the

production change process.

Figure 3-1 Production Change Process [2]

Considering business process in (a), there is a change that is about to

take effect in a certain domain as shown by Activity 1: Change
request. The person responsible for coordinating changes request

comments from all the departments that are about to be affected by

this change. These departments are shown by Activities 3a, 3b, 3c
and the request for comments is issued by Activity 2. Once the

comments have been collected, an integration change document is

created by the project leader as shown in Activity 4, then it's passed

Variability Management in Business Processes – Ntembeko Mkhunyana and Sinazo Matyila

56

on to the decision board for approval, Activity 5. Once the document

has been approved by the decision board, implementation process

takes place, Activity 6; or else this step is skipped and the change

request gets filled. The process ends. Looking at business process in

(b), there is an additional department involved i.e. the quality

department, Activity 3d, for considering quality critical issues for the

requested change. Comments from this department play an important

role. Business process in Figure (c) shows a fastened process of

implementing the requested change. Activity 6 in Figure 1b is now

executed before the approval of the decision board. If the board

refuses to approve the change request, Activity 6b is executed and the

implemented change has to be undone. Business process in Figure

(d), will be required if the process affects quality critical issues but still

needs to be fastened. This business process is the combination of

Figure 1b and 1c and it inherits all the adjustments and activities from

these two processes or variants.

When processes have variants like the ones shown in Figure 1a to 1d,

they are usually kept in a separate process model as in Figure 1. This

results in huge amount of redundancies as variants are identical for

most parts, and there is no support for automatically combining

models into one. This makes it difficult for process designers to

analyze and combine these processes. To provide the solution to this

problem, we apply a method that has been discussed before called

the Provop (PROcess Variants by OPtion) approach for managing

large collections of process variants and make one model out of them.

The first step is to define figure 3-1 as the basic processes, then look

for alternatives that could join all variants into one mode and apply

Provop phases as discussed in section 2.1 of this document to Figure

3-1. The result will be a single model consisting of all the variants as

shown below:

Figure 3-2: The result of the business process using Provop approach [2]

3.2 MOBILITY AND FOOD BUSINESS PROCESS

In this example, we show how to manage variability of business

processes in the Human Resource domain. The variability analysis

focused on identifying variability patterns involving activities within

processes sharing a significant amount of similarity. A total of

approximately sixteen fine-grained variability patterns were identified,

which could be further classified into the following coarse grained

patterns: 1) insert/ removal/ replacement of activity/ flow of activities

before/ after/ around activity/ gateway/ sub-process; 2) parameter

value variability within flow objects; 3) variability of lanes to which

activities belong [4]. The following figure (see below, Figure 1)

illustrates the model that resulted in the analysis made by analysts in

a human resource domain. Two business processes that were

analyzed in this domain are shown below, that is, the Food Allowance

and Mobility Allowance. The results are shown below in Figure 3-3

and Figure 3-4:

Figure 3-3: Food Allowance business process [3].

Figure 3-4: Mobility Allowance business process [3].

In the above figures, that is 3-3 and 3-4, variability is shown by gray

areas. In figure 3-3, there is an added activity right after registration

and this makes the food allowance process differ from mobility

allowance process, though other activities are exactly the same. Such

processes represents variability in Human Resources domain

business processes. Taking from the discussion in section 2.2 above,

that is Compositional and Parametric approach with aspect-
orientation, we apply this method in this example.

The first step is to separate the common and variant behavior in

business processes in figure 3-3 and 3-4, that is, the method breaks

the business process into two parts, a basic business process with a

shared objects and transitions, same as Figure 3-4, and an advice
formed by the variant assets. This result in the following processes is

the same Figure in Figure 3-4 together with the variant shown below:

Figure 3-5: Advice configuration process – variant amongst Allowance

business processes and fragmentation of the configuration knowledge (on the

right side, respectively) [3].

The table below also forms a result of this approach, along with Figure

3-5

Feature Expression Transformations
Allowance selectBusinessProcess bpCommonAllowance

Food Allowance evaluateAdvice advFoodAllowance

SC@RUG 2009 proceedings

57

Table 1: Fragment of the configuration knowledge [3]

In this approach, all advice processes are kept aside from the basic

process. This help in order to have 1 common business process, then

variants belonging to that process separately, as advice processes.

The next step is to enable the configuration of the common business

process. We have to relate the feature expression Allowance to the

transformation selectBusinessProcess “bpCommonAllowance”, where

bpCommonAllowance is the identifier of the business processes that

handles the commonality among the allowance processes. Again, to

evaluate the Food Allowance advice (Table 1), we have to relate the

feature expression Food Allowance to the transformation

evaluateAdvice “advFoodAllowance”, where advFoodAllowance is the

identifier of the Food Allowance advice declared in the SPL assets.

Table 1 shows a fragment of the configuration knowledge with these

transformations.

3.3 PROCESS FOR OBTAINING A SUBSIDIZED WHEEL CHAIR

In this example, we consider the Netherlands as having 441

municipalities that has to implement the same national law but these

municipal sites have different sizes, IT infrastructure, business model,

etc. In 2007, the Wet maatschappelijke ondersteuning, Social Support

Act was approved to provide public subsidized wheel chair to people

in need. There were two ways of managing this national law, the first

one was to let each municipality implement the lay using the

interpretation document. The second was to make a formal and

generic process then send it to municipalities so that they can

customize it according to their organizational and IT structure. Figure

3-6 shows the second way of implementing this law.

Figure 3-6: Generic process for obtaining a subsidized wheel chair. [5]

In this business process, we see an activity for registering for a

subsidized wheel chair, then there is a placeholder in activity 2. After

that, there is a decision to be made by an authorized civil servant.

Based on the decision made, one of the three options have to be

chosen which are to determine the need for the wheel chair. Then the

decision to grant based on age is made. If the age is > 70, then the

wheel chair will be ordered on subsidy, else an invoice will be made

for that citizen and pay for the wheel chair.

Then, the following process (see below: figure 3-7) is the variant of the

process in figure 3-6. This is based on the wishes of other

municipalities when they customize the process. A home visit by the

municipal authority will be done after registration to assess the

situation before the wheel chair can be bought. In the Netherlands it is

possible for a municipality to outsource the indication to an

organization known as the CIZ (Centrum Indicatiestelling Zorg) for

handling the indication. Then, the last change to be made was to

change the age requirements from 70 to 65.

Figure 3-7: Process variant for obtaining a subsidized wheel chair. [5]

In solving this variability problem of these business processes, we

apply PVR to this example as our third approach to manage the

variability. This process reduces a process into a more manageable

and understandable process showing only the activities that cannot

be skipped. For instance, a situation has to be assesses in order to

grant a wheel chair, and two activities, that is, indication and self

indication are common in both processes but only one has to be

chosen at a time. The result of implementing a PVR approach leads to

the following:

Figure 3-8: Results of applying PVR to the variant in Figure 3-6 [5]

Figure 3-9: Results of applying PVR to the variant in Figure 3-7 [5]

4. EVALUATION

Advantages of Provop A pproach : Information is provided in a more

unified way to users since processes variants become a single

process. Maintains consistencies. Easier to learn and implement. It

follows exactly the full steps of a business process life cycle which

makes it easier to understand.

Disadvantage of Provop Approach : At times it can become too

complex and hard to analyze if it is implemented in a large

organization that has many departments executing their own

processes.

Advantages of PVR : It stores the process in a query for all the

processes that are running, and it keeps information in options which

makes it easy to communicate it to other stakeholders. It is easy to

understand since it reduces processes and only the relevant activities

remains which are those that are in the constraint. Process

repositories store high volume of processes which becomes useful

and valuable as a corporate resource. The information is modeled in

a structured format.

Disadvantage of PVR : Redundancies may occur in the repository if

not documented and managed properly.

Advantages of Compositional & Parametric approach with aspect
orientation : It simplifies processes by detaching the section that

causes variability in the process and leaves the main process which

is common to all departments in an organization.

Variability Management in Business Processes – Ntembeko Mkhunyana and Sinazo Matyila

58

Disadvantage of Compositional & Parametric approach with aspect
orientation: If the sections that are seperated from the main process

are not documented properly, they can cause lots of confusion to

other stakeholders.

5. CONCLUSION

In this paper, we discussed three approaches namely, Provop

approach, PVR, and Compositional and Parametric approach. Then,

we showed how these approaches are used to solve variability in

business processes using examples taken from different sources.

After applying the approaches mentioned above to the examples, we

compared them based on their advantages and disadvantages in

order to determine which approach is better and simple to use. The

results we got after doing an analysis is that not all of these

approaches are suitable to all organizations. For instance, Provop

approach combines all process variants into one model. So, using this

approach in a large organization can result in huge process analysis

problems since the final process would be a big process spanning all

the variants. Hence, this process can be best used in small

organization. On the other hand, PVR only focuses on the main

important activities of the organization, hence, eliminating some of the

activities in the process model. This one is works fine for both small

and large organizations. The last approach, compositional and

parametric approach is most suitable for large organizations with lots

of processes that are being implemented but it also fits well in solving

variability issues in small organizations business processes.

In comparing these approaches, all of these approaches are suitable

for certain organizations depending of the size and the number

activities the business performs. Further work on this issue: We are

still intending to further study in these processes and find out about

other approaches that are far more better than these one discussed

here. Then we can again produce more results based on those

processes.

ACKNOWLEDGEMENTS

We would like to thank all the anonymous reviewers for reviewing our

paper and providing feedback so that we can improve our work.

REFERENCES

[1] Sparx Systems, “The business Process Model”,
 www . sparxsystems . com .au . [online], 2004

[2] A. Hallerbach, T. Bauer, and M. Reichert, "Managing Process
 Variants in the Process Life Cycle", in Proceedings ICEIS (3-2),

 2008, pp.154-161.

[3] I. Machado, R. Bonifácio, V. Alves, L. Turnes, and G. Machado.

 “Managing Variability in Business Processes: An Aspect-Oriented
Approach”, in Proceedings EA '11, 2011, pp.25-30.

[4] R. Lu and S. Sadiq. “Managing Process Variants as an
 Information Resource”, in Proceedings Of 4

th Int. Conf. On BPM,

 2006, pp.426-431.

[5] M. Aiello, P. Bulanov, H. Groefsema. “Requirements and Tools for
Variability Management”, in Proceedings COMPSACW 2010 IEEE

 34
th Annual Conf, 2010, pp.245-250

[6] Lu, R., Sadiq, S., Padmanabhan, V., Governatori, G.: “Using a
 Temporal Constraint Network for Business Process Execution”. In:

 Proceedings 17
Th, Australasian Database Conference (ADC2006),

 2006, pp.157-166.

[7] K. Czarnecki and U. Eisenecker. “Generative Programming:
 Methods, Tools, and Applications”. Addison-Wesley Professional,

 2000.

SC@RUG 2009 proceedings

59

Comparison of MapReduce implementations

René Zuidhof & Jos van der Til

Abstract—Processing large data sets can be very time comsuming, especailly when only using one computer. To decrease this
processing time, one can try to share the processing time over multiple computers in a cluster. Therefore a framework is introduced
for splitting (mapping) and gathering (reducing) large tasks so that they can be parallelly processed in an distributed environment.
Since the introduction of the framework multiple implementations have been developed, each with their own features and limitations.
In this paper we compare three of the MapReduce implementations for some important features like performance, applicability and
scalability. The results are these features with their own ’winning’ implementation.

Index Terms—MapReduce, Hadoop, CouchDB, MongoDB, Distributed Computing, Parallel Computing

1 INTRODUCTION

Although computers are getting better and faster, processing large data
sets on one computer can be very time consuming. A solution to this
problem is to use multiple computers to solve one problem. This is
why the MapReduce framework was introduced. Some examples of
the MapReduce implementations are Hadoop, CouchDB and Mon-
goDB. In this paper we describe and compare the features and limi-
tations of these implementations. these comparisons are based on the
information available on the internet aswell as on experiments done by
ourselves.

1.1 MapReduce

MapReduce is a software framework introduced by Google to support
distributed computing on large data sets using clusters of computers.
Using this framework large quantities of data can be processed in a
short amount of time by doing two steps. The first step is the mapping
step, here the main task is splitted into multiple subtasks. These sub-
tasks can then be processed on the computers in the cluster and will
all result their own partial answer. The second step is to gather and
combine the processed subtasks to produce the final solution, this is
the reduce step. These steps can be compared to the divide & conquer
steps used in other algorithms, for example MergeSort, and is there-
fore not entirely new. But using this on a larger scale and over clusters
of computers, a new dimension of data processing is reached with its
own problems and difficulties. The MapReduce framework is used
by Google to completely regenerate Googles index of the World Wide
Web, and replaced the old ad hoc programs that updated the index and
ran the various analyses. Other uses of the framework are distributed
grep, distributed sort, web link-graph reversal, web access log stats,
document clustering and inverted index generation. [14] This last ex-
ample will be discussed in section ?? where we will analyse features
like performance, applicability and scalability for the different imple-
mentations of the MapReduce framework.

1.2 Map

A typical MapReduce framework takes key/value pairs as arguments
for their Map function. Using these pairs it will generate zero or more
output pairs. For our inverted index experiment the input for a Map
function would be a ¡line, docid¿ pair which would result in an output
with multiple ¡word, docid¿ pairs.

• René Zuidhof, Computing Science student (Software Engineering &
Distributed Systems) at the University of Groningen, e-mail:
h.j.zuidhof.1@student.rug.nl.

• Jos van der Til, Computing Science student (Software Engineering &
Distributed Systems) at the University of Groningen, e-mail:
j.r.van.der.til@student.rug.nl

1.3 Reduce
These output pairs are used to gather the input for the Reduce function.
This function is called for each unique key. The Reduce function than
gathers all values associated with the given key and returns these as
the ouput. For the inverted index the result would be a word with all
the document id’s in which the word was present.

2 APACHE HADOOP MAPREDUCE

Apache Hadoop MapReduce is a programming model and software
framework for writing applications that rapidly process vast amounts
of data in parallel on large clusters of compute nodes. [9] It is part
of the Apache Hadoop project, which aims at providing open-source
software for reliable, scalable, distributed computing. [4] The Hadoop
framework was inspired by Google’s MapReduce and Google File
System papers. The project is supported by a global community of
contributors of which Yahoo! has been the largest contributor to the
project and still uses Hadoop for their services. Hadoop was created
by Doug Cutting, who named it after his son’s stuffed elephant. [18]

2.1 Architecture
The core of the Hadoop framework is Hadoop Common, a set of util-
ities that support the Hadoop subprojects. This includes filesystem
utilities, Remote Procedure Call (RPC) and serialization libraries. The
filesystem utilities and libraries in Hadoop Common merely provide
access to the supported filesystems and should not be confused with
Hadoop Distributed File System (HDFS).

For effective scheduling of work all filesystems used by Hadoop
should provide their location. By doing so, they allow the server to
schedule jobs on servers closest to the data and thus reducing band-
width usage. One of the filesystems that supports location awareness
is the HDFS, more on this in section 2.2. [11]

Fig. 1. Example of an Hadoop infrastructure [7]

A typical Hadoop cluster will include a single master and multi-
ple slave nodes as shown in figure 1. The master node consists of a
jobtracker, tasktracker, namenode and datanode. A slave or compute
node consists of a datanode and tasktracker, as can be seen in figure

60

2. Hadoop requires JRE 1.6 or higher and SSH to be set up between
nodes in the cluster. [18, 11]

2.2 Hadoop Distributed File System

The HDFS is a distributed, scalable, and portable filesystem written
in Java for the Hadoop framework. Each node in an Hadoop cluster
typically has a single datanode, this situation is typical because a node
does not require a datanode to be present. Using the TCP/IP layer
for communication, the HDFS specifies a block protocol to send data
between the cluster of nodes. Using a file size of, ideally, a multiple of
64MB, large files are stored multiple times and over multiple nodes,
on default files will be replicated three times. Although this might
sound redundant this is done to achieve reliablity. Data nodes can talk
to each other to rebalance data, to move copies around, and to keep the
replication of data high.

The filesystem requires one unique server, the NameNode. This is a
weak point in the filesystem because if this node goes down the entire
filesystem is down. When the node comes back up it must replay all
outstanding operations which can take up over half an hour. To reduce
the time after a shutdown a Secondary NameNode is included, not to
take over when the Primary NameNode goes down, but to help the Pri-
mary NameNode after a restart. This is done by taking snapshots of
the Primary NameNode’s directory information, which is then saved
to local/remote directories. When the Primary NameNode restarts it
can use this directory information to restart without replaying all out-
standing operations.

Fig. 2. A multi-node Hadoop cluster [18]

A key feature of the HDFS is data awareness between jobtracker
and tasktracker. The jobtracker schedules map/reduce jobs to task-
trackers with an awareness of the data location. An example of this
would be if node A contained data (x,y,z) and node B contained data
(a,b,c). The jobtracker will schedule node B to perform map/reduce
tasks on (a,b,c) and node A would be scheduled to perform map/re-
duce tasks on (x,y,z). This reduces the amount of traffic that goes over
the network and prevents unnecessary data transfer. [18]

Hadoop can be used without the HDFS by using an alternative
filesystem. Examples of such filesystems are the FTP filesystem or
the HTTP(S) filesystem. When one of these filesystems are used the
feature of data awareness is not avaliable. This can have a significant
negative impact on the performance of job completion times, which
has been demonstrated when running data intensive jobs. [19]

Another limitation of HDFS is that it cannot be directly mounted by
an existing operating system. Getting data into and out of the HDFS
file system, an action that often needs to be performed before and after
executing a job, can be inconvenient. [8]

File access can be achieved through the Java API, the Thrift API, the
command line interface, or browsed through the HDFS User Interface
webapp over HTTP. Thrift is a software framework for scalable cross-
language services development. It combines a powerful software stack

with a code generation engine to build services that work efficiently
and seamlessly between C++, Java, Python, PHP, and Ruby. [6]

2.3 Features and limitations
This section covers some features and limitations.
Features

• Data awareness; Hadoop in combination with HDFS knows
which computer is closest to the data and will use this informa-
tion to schedule the work in a way that the data is close to the
actual process.

• API for multiple programming languages.

• Reliablity by multiplying files and save them over multiple
nodes.

Limitations

• If the server NameNode goes down the filesystem is offline

• For maximum parallelism, you need the Maps and Reduces to
be stateless, to not depend on any data generated in the same
MapReduce job. You cannot control the order in which the maps
run, or the reductions.

• It is very inefficient if you are repeating similar searches again
and again. A database with an index will always be faster than
running an MapReduce job over unindexed data. However, if
that index needs to be regenerated whenever data is added, and
data is being added continually, MR jobs may have an edge. This
inefficiency can be measured in both CPU time and power con-
sumed.

• In the Hadoop implementation Reduce operations do not take
place until all the Maps are complete (or have failed and been
skipped). As a result, you do not get any data back until the
entire mapping has finished.

3 COUCHDB
Apache CouchDB is a document-oriented database that can be queried
and indexed in a MapReduce fashion using JavaScript. Written in
Erlang, a robust functional programming language ideal for building
concurrent distributed systems. Erlang allows for a flexible design
that is easily scalable and readily extensible. CouchDB provides a
RESTful JSON API than can be accessed from any environment that
allows HTTP requests. Third-party client libraries are available that
make it easier to use CouchDB for different programming languages.
CouchDBs built in Web administration console speaks directly to the
database using HTTP requests issued from your browser. [11]

A CouchDB document is an object that consists of named fields.
Field values may be strings, numbers, dates, or ordered lists and asso-
ciative maps. An example of a document would be a forum post:

” S u b j e c t ” : ”CouchDB and MapReduce ”
” Author ” : ” John ”
” P o s t e d D a t e ” : ” 2 0 / 3 / 2 0 1 1 ”
” Tags ” : [” MapReduce ” , ”CouchDB ”]
”Body ” : ”How do I use MapReduce f u n c t i o n s

i n CouchDB”

A CouchDB database is a flat collection of these documents. Each
document is identified by a unique ID. Unlike SQL databases which
are designed to store and report on highly structured data, CouchDB is
designed to store and report on large amounts of semi-structured, doc-
ument oriented data. A built-in conflict management system is pro-
vided and the replication process is efficient and fast, copying only
documents and individual fields changed since the previous replica-
tion. With CouchDB, no schema is enforced, so new document types
with new meaning can be safely added alongside the old. The view
engine is designed to easily handle new document types and disparate,
but similar, documents.

SC@RUG 2009 proceedings

61

3.1 Views
Views are the primary tool used for querying and reporting on
CouchDB documents. They are built dynamically using JavaScript
and do not affect the underlying document. This means that the views
are not built when a file is saved but rather when the file is accessed.
This can cause the first access to take some time depending on the
amount of data. [13]

3.2 MapReduce
In CouchDB, each view is constructed by a JavaScript function that
acts as the Map half of a MapReduce operation. The Map function
transforms each document into zero, one or multiple intermediate ob-
jects, where the Reduce function is another user defined function to
combine the intermediate objects into the final result. The intermedi-
ate objects of the Map and the Reduce function are stored in the view
indexes. As the storage gets updated, the previous results stored in the
view indexes is no longer valid and has to be updated. [11]
Figure 3 shows the workflow of CouchDB with an explanation below.

Fig. 3. The CouchDB workflow [10]

1. CouchDB will walk the by seqnum B+Tree index of the storage
file. Where B+Tree is a type of tree which represents sorted data
in a way that allows for efficient insertion, retrieval and removal
of records, each of which is identified by a key.

2. Based on that, CouchDB get the latest revisions of all existing
documents.

3. CouchDB remembers the last seqnum and then feed each docu-
ment to the View Server using map doc.

4. View Server invokes the map(doc) function, for each emit(key,
value) call, an entry is created.

5. Finally, a set of entries is computed and returned back to
CouchDB.

6. CouchDb will add those entries into the B+Tree index, key =
emit key + doc id. For each of the B+Tree leave node.

7. CouchDB will send all its containing map entry back to the View
Server using reduce.

8. View Server invokes the reduce(keys, values) function.

9. The reduce result is computed and returned back to CouchDB.

10. CouchDB will update the leave B+Tree node to point to the re-
duce value of its containing map results.

11. After that, CouchDb moves up one level to the parent of the leave
B+Tree node. For each of the B+Tree parent node, CouchDB
will send the corresponding reduce result of its children nodes to
the View Server using rereduce.

12. View Server invokes the reduce(keys, values) function again.

13. Finally a rereduce result is computed and returned back to
CouchDB.

14. CouchDB will update the parent B+Tree node to point to the
rereduce value.

The rereduce is needed to reduce multiple intermediate results into
one. [10]

3.3 Scaling
The standard CouchDB implementations does not cover the possibility
to work in a cluster. Therefore CouchDB Lounge is needed. Lounge
is a proxy-based partitioning/clustering framework for CouchDB. It
provides redundant storage by duplicating data over atleast two nodes
to guarantee reliability. Besides the duplicating of information Lounge
also takes care of splitting partitions when they get to big. [12]

3.4 Features and limitations
Features

• API for most of the popular programming languages.

• Distributed Architecture with Replication: CouchDB was de-
signed with bi-direction replication (or synchronization) and off-
line operation in mind. That means multiple replicas can have
their own copies of the same data, modify it, and then sync those
changes at a later time. The biggest gotcha typically associated
with this level of flexibility is conflicts.

• ACID Semantics: Like many relational database engines,
CouchDB provides ACID semantics. It does this by implement-
ing a form of Multi-Version Concurrency Control (MVCC). That
means CouchDB can handle a high volume of concurrent readers
and writers without conflict.

• Fast atomic updates on documents (concurrent modifications of
single documents).

Limitations

• No standard scaling possibility. To get CouchDB to work in a
cluster Lounge has to be installed.

• No data awareness

• Just like the standard scaling possibility. It needs more third
party software to get some other features.

4 MONGODB
MongoDB is quite similar to CouchDB, it is also a collection-oriented,
schema-free document database. Like CouchDB documents consist
out of key-value pairs, however the serialization of the data is differ-
ent. Where CouchDB uses JSON for serialization of data, MongoDB
uses BSON or ’Binary Serialized dOcument Notation’. Like Hadoop
and CouchDB, MongoDB can be run in a cluster of independant Mon-
goDB ’shards’. An architectural overview of such a setup is visible
in figure 4, showing multiple shards, configuration servers and routing
processes. Since the sharding model is order preserving, adjacent, as
defined by shard key, tends to be on the same server. Thus reducing
bandwidth usage and response time when the data is processed. How-
ever, this does require that a good shard key has to be chosen, ensuring
that data is distributed evenly across the multiple shards.

In MongoDB MapReduce functions are written in Javascript,
this is because all MapReduce tasks run inside a Javascript
engine. The parameters to start a MapReduce task include:
the collection that stores the data to process, a map function,
a reduce function and a destination collection to store the re-
sults. Map functions feed data to the reduce functions by
performing an emit(key, value) call. Reduce functions
are of the following form: reduce(key, value_array),
receiving a key and a list of values. This operation should

Comparison of MapReduce implementations – René Zuidhof and Jos van der Til

62

Fig. 4. MongoDB sharding architecture [16]

be idempotent, e.g.: reduce(key, value_array) =
reduce(key, reduce(key, value_array)). MapReduce
tasks on large collections can benefit greatly from a sharded architec-
ture, as MapReduce tasks are run in parallel across all shards. This
is especially necessary for large data operations since MapReduce
tasks on a single mongod process are single threaded, this is due to a
design limitation of current Javascript engines. [15]

4.1 Features and limitations

Features

• Tuneable sharding architecture.

• Replication and High availability support.

• Enterprise support available.

• Fast atomic updates on documents

Limitations

• Authentication methods are extremely basic at best, no authenti-
cation when using replication or sharding.

• No support for storing data in a compressed format

• Document size limit of 4 MB in earlier versions, and 16 MB in
newer versions.

4.2 Comparison

This section covers the comparison of the different features and limi-
tations of the different implementations. The comparison is based on
a set of features, these features are performance, applicability, scala-
bility and reliability.

4.3 Comparison of features

Because we compare the implementations for their MapReduce per-
formance we only discuss the methods which have effect on these pro-
cesses. On default we will discuss the standard implementations if not
stated otherwise. This is done because Hadoop and the other two im-
plementations are not comparable in the way they do their work, e.g.
a software framework against a document-oriented database.

Features Hadoop CouchDB MongoDB
Distributed MapReduce yes no7 yes
Data awareness yes1 no2 yes
API’s for most popular pro-
gramming languages

yes yes yes

Indexed data no yes yes
Data replication yes yes yes
Sharding/Splitting data yes no6 yes
Enterprise support no3 no yes
Authentication no5 yes yes4

1.With its standard f ile system,HDFS
2.Possible when using GeoCouch.
3.T hird party,but only on their distribution.
4.Not when using sharding orreplication, trusted security environment is recommended.
5.Not yet, f uture releases will. [3]
6. yes when usingCouchDB Lounge.
7. yes when using BigCouch.

4.4 Performance
Because of the file system used by Hadoop (HDFS), data awareness
is supported. This is one advantage when checking the performance.
Because of this feature the processing will be done by the nodes who
hold the data, minimizing the time needed to transport data from node
to node. One minor thing which can be discussed for Hadoop is the
programming language. Hadoop is written in Java, compared to the
other programming languages used in the other implementations (er-
lang and c++), Java is the slowest. An advantage of CouchDB com-
pared to Hadoop is that it is a document-oriented database. This means
that the data is indexed which gives a good advantage for the perfor-
mance. An disadvantage for CouchDB is the lack of data awareness.
This means a lot of time might be spend to transport data from one
node to another. MongoDB has neither of these disadvantages. It is
a document-oriented database, written in c++ and does support data
awareness.

4.5 Applicability
This section covers the applicability of the implementations. This is
based on things we ran into during our own experiment aswell as the
documentation found on the internet.

Hadoop is specially developed for MapReduce processing. Setting
up a single node process is not a hard thing to do (on linux). But
when going from one node to multiple nodes, the configuration gets
a lot harder. There are a lot of config files (XML) which need to be
set. There is no support for authentication, yet. Apache Hadoop an-
nounced that this will be added in future versions [3]. API’s for most
popular programming languages are supported. Good documentation
is available.

Unlike the other two implementations, CouchDB does not support
distributed MapReduce in its standard implementation. Besides the
lack of the standard distributed MapReduce features, it also does not
support data awareness and the sharding of data. For these features
third party software is required, like BigCouch and Lounge. Setting
up a CouchDB node is not a lot of work if all its prerequisites are al-
ready installed. Installing these can be a lot of work because some
of them have to be build from source. CouchDB is the only of the
three implementation which supports authentication by default. Like
Hadoop, CouchDB also provides different API’s for most popular pro-
gramming languages.

Unlike CouchDB, MongoDB supports most features needed for dis-
tributed MapReduce processing by default. Authentication is avail-
able, but can only be used when the sharding and replicating features
are not used. When using on of these features, MongoDB recommends
a trusted cluster. Just like the other two implementations, API’s are
available for most popular programming languages.

SC@RUG 2009 proceedings

63

4.6 Scalability
This subsection will cover the scalability features for the various im-
plementations. Since MapReduce is intended to be used on large clus-
ters of computers, having a solution that is easily scaled across multi-
ple nodes is preferred.

Hadoop provides a clustering solution by default, however it should
be combined with the usage of HDFS to attain the best performance.
This is due to the location and data awareness features that HDFS
offers. Typically a Hadoop cluster contains one machine as the Na-
meNode and one machine as the JobTracker (primary nodes), the rest
of the nodes are DataNodes and TaskTrackers (slave nodes). [2] The
JobTracker is the first point of failure in the Hadoop cluster, if it goes
down all running jobs are halted. The NameNode is another point of
failure inside the cluster, if this goes down the entire HDFS filesystem
will go offline, and thus no data is available for the MapReduce tasks.
The NameNode can be supported by a SecondaryNameNode, but this
offers no real redundancy since it only creates checkpoints of the file
system. A BackupNameNode is planned for Hadoop 0.21+, but there
are currently not enough active contributors to make it Highly Avail-
able. [5]

Since MongoDB is a document database, the clustering solution
involves splitting the data over multiple nodes, this is a process called
sharding. This is because each node contains a ’shard’ of the entire
database, in this context we will refer to a node as a shard.

• Automatic balancing for changes in load and data distribution

• Easy addition of new machines

• Scaling out to one thousand nodes

• No single points of failure

• Automatic failover

Unlike Hadoop or MongoDB, CouchDB doesn’t provide a scaling
mechanism by default. However, third-party sharding mechanisms for
CouchDB are provided. One example is CouchDB Lounge, which acts
as a proxy (much like the mongos process from MongoDB) for incom-
ing requests. Another example would be BigCouch, which looks like
a fork of the original CouchDB code, adding clustering and sharding
functionality to CouchDB.

4.7 Reliability
Reliability is measured in terms of data protection, this is because all
three MapReduce implementations are able to store large quantities
of data. A solution that provides a good scheme for protecting data
against corruption is preferred.

Hadoop provides data integrity through its HDFS file system, by
using replication. It should be noted that a replication factor of three
or larger should be chosen, this is because silent corruption can occur
within the system. If corrupt blocks are not detected in a timely man-
ner, or if a software bug masks invalid blocks, then the system thinks
there are more valid blocks than there actually are. With only one
backup replica (replication factor of two), it is only when the backup
fails that the system detects that there are no block replicas, at which
point it is too late to recover data. With three replicas the system has a
chance to detect the silent corruption after the second replica fails, and
to re-replicate using the third replica. [17]

The greatest weakpoint of the Hadoop cluster is the NameNode, if
it fails, then the whole HDFS cluster is unusable. If the NameNode
proves unrecoverable, then all of the data in the cluster is unrecover-
able. In a data critical context this is catastrophic, a intricate backup
and recovery plan for the NameNode metadata should be in place. A
secondary NameNode is recommended and, should run on a separate
node to the primary. In the case of losing all of the primary’s data
(local disks and backups), the secondary can provide a stale copy of
the metadata. Since it is stale, there will be some data loss, but it will
be a known amount of data loss, since the secondary makes periodic
backups of the metadata on a configurable schedule.

MongoDB provides a reliability mechanism in two ways. The first
is by writing all actions to a journal (journalling) before perform-
ing them, and removing the journal once all the data is committed.
The second way is by using replication to replicate data over multiple
servers within a shard. Since each shard is actually a replication set of
multiple servers, and thus each server in a replication set contains all
the data stored in the shard. Sharding also uses automatic failover to
deliver high availability. MongoDB currently has no way of knowing
if silent data corruption occurs eg. by drive corruption.

MongoDB metadata is not as vulnerable as with Hadoop, since con-
figuration servers (the servers that store the metadata) can be run in a
automated failover cluster. Each config server has a complete copy of
all chunk information. A two-phase commit is used to ensure the con-
sistency of the configuration data among the config servers. Note that
config server use their own replication model; they are not run in as a
replica set. If any of the config servers is down, the cluster’s meta-data
goes read only. However, even in such a failure state, the MongoDB
cluster can still be read from and written to. [1]

The replication features of CouchDB are used in two ways, scaling
horizontally and replication of data for data security. Concurrency of
CouchDB is very strong due to it’s Multiversion concurrency control
mechanism, where each modification to the data is saved as a new
’version’ of the document. It does however require that the database is
compacted which removes unused sections created during updates, it
also removes old versions of documents (it does save some metadata
for conflict resolution). The amount of history removed is tuneable,
the default is to keep 1000 revisions.

5 DISCUSSION

In the previous sections we have discussed and compared the different
MapReduce implementations Hadoop, CouchDB and MongoDB ac-
cording to their performance, applicability, scalability and reliability.
In this section we will use these comparisons to conclude what is the
best implementation for MapReduce processing.

Hadoop’s strong points are that it is currently used in large cluster
(over 1.000 nodes) by Yahoo!, proving that it can be used successfully
in an enterprise setting. Also the location awareness feature of HDFS
allows Hadoop to replicate data to achieve good reliability. Even an
outage of an entire rack is possible, without compromising the avail-
ability of the data. The downside to using HDFS is the vulnerability
of the filesystem by using a single NameNode, as described this is a
very critical component for the cluster to function properly.

CouchDB has a strong concurrency model but, as it does not pro-
vide a way to scale horizontally by default, relies on third party solu-
tions to provide sufficient processing power. Therefore it can be con-
cluded that the default CouchDB implementation alone is not enough,
researching CouchDB Lounge or BigCouch was out of scope. So more
research in this area is needed.

MongoDB provides a strong and reliable scaling mechanism
through sharding, and provides good data protection by replication.
Also the vulnerability of a single NameNode is not present, since the
configuration servers provide their own replication scheme.

Based on this we conclude that MongoDB is in general the best
MapReduce solution at time of writing. Hadoop nor CouchDB provide
the same feature set that is available when using MongoDB.

REFERENCES

[1] http://www.mongodb.org/display/DOCS/Sharding+
Introduction#ShardingIntrodu%ction-ConfigServers,
Apr 13, 2011.

[2] The Apache Software Foundation. Cluster Setup - Installation,
08/17/2010 07:03:47. http://hadoop.apache.org/common/
docs/current/cluster_setup.html.

[3] The Apache Software Foundation. File Permissions and Secu-
rity, 08/17/2010 07:05:39. http://hadoop.apache.org/
hdfs/docs/current/hdfs_user_guide.html#File+Pe%
rmissions+and+Security.

[4] The Apache Software Foundation. What is Hadoop?, 10/14/2010
23:35:01. http://hadoop.apache.org/#What+Is+Hadoop.

Comparison of MapReduce implementations – René Zuidhof and Jos van der Til

64

[5] The Apache Software Foundation. NameNode - Hadoop Documenta-
tion, 2009-10-07 10:08:19. http://wiki.apache.org/hadoop/
NameNode.

[6] http://wiki.apache.org/hadoop/HDFS-APIs, 2011.
[7] http://hadoop.apache.org/common/docs/r0.14.4/,

01/23/2008 22:14:39.
[8] http://hadoop.apache.org/hdfs/docs/current/hdfs_

user_guide.html, 2011.
[9] T. A. S. Foundation. http://hadoop.apache.org/

mapreduce/, 03/20/2011 21:48:10.
[10] R. Ho. http://horicky.blogspot.com/2008/10/

couchdb-implementation.html, 2011.
[11] http://couchdb.apache.org/, 2011.
[12] http://guide.couchdb.org/draft/clustering.html,

2011.
[13] http://wiki.apache.org/couchdb/Introduction_to_

CouchDB_views, 2011.
[14] http://labs.google.com/papers/mapreduce-osdi04.

pdf, 2011.
[15] http://www.mongodb.org/display/DOCS/MapReduce,

2011.
[16] http://www.mongodb.org/display/DOCS/Sharding+

Introduction, 2011.
[17] T. White. Hdfs reliability. http://www.cloudera.com/

wp-content/uploads/2010/03/HDFS_Reliability.
pdf%, 2008.

[18] http://en.wikipedia.org/wiki/Hadoop, 2011.
[19] J. Xie, S. Yin, et al. Improving mapreduce performance through data

placement in heterogeneous hadoop clusters. http://www.eng.
auburn.edu/˜xqin/pubs/hcw10.pdf, 2010.

SC@RUG 2009 proceedings

65

High-performance log data analysis using MapReduce

Fernand Geertsema and Erwin Vast

Abstract— The performance of large server clusters can be monitored to optimize the efficiency and response to failures. This can
be done by analyzing the log data of all the servers. These log data contain for example the processor usage and memory usage.
Existing solutions which process log data in batches are not suitable for server clusters which generate a continuous stream of log
data. To analyze this large stream of data a distributed computer setup is needed. One promising solution to analyze large data sets
in a distributed setup is the MapReduce framework. In this paper we explain how the MapReduce framework can be used for log
analysis to monitor large computer clusters. To use the MapReduce framework in this problem domain of log analysis the following
questions arise. Which MapReduce framework should be used for analyzing log data? Which steps need to be included in an
algorithm for analyzing log data in a distributed setup? Based on the performance advantages, Apache Hadoop is the best framework
for log analysis. In this paper we describe the steps needed for analyzing log data and show the feasibility by applying these steps
in an application in a distributed setup. The results show that Hadoop is most useful for large data sets. Dividing the tasks over the
different systems takes a minimum amount of time regardless of the size of the data set. Therefore the MapReduce framework in a
distributed setup is ideal for pseudo real-time monitoring with a short delay (start-up time plus analysis time) in a large organization
with more than 50.000 servers.

Index Terms—MapReduce, Hadoop, high-performance, distributed computing, log data analysis.

1 INTRODUCTION

A computer cluster contains a lot of individual servers, each with its
own logging facilities. This makes it difficult for server administrators
to analyze the overall performance of an entire cluster. Combining log
files of the individual servers to one log file can be very useful to get
information about the performance of the cluster. The combined log
files make it possible to visualize the performance of the cluster and
detect problems in the cluster in a short amount of time. However,
storing server logs of a cluster for a few days results in data sets of
several gigabytes. Analyzing such a huge quantity of data requires a
lot of processing power and memory. A distributed system could be
the answer to this need for processing power and memory.

One promising solution to analyze large data sets is the MapReduce
framework. This is a framework for developing applications which can
analyze large data sets on a distributed system. There are already ap-
plications available for analyzing large data sets that use MapReduce,
like Aster Data [1] and IBM Netezza [2]. These solutions can be used
for analyzing web traffic [3] or matching names with identities using
fuzzy logic [4]. Another application available on the market for an-
alyzing log data is Splunk [5]. This solution is specifically built for
monitoring and analyzing an IT architecture based on various kinds of
logs, like application logs and performance logs.

However, this and other solutions process the data in batches, in-
stead of continuous data streams. Batch solutions run for example
once a day and are not very well suited for pseudo real-time monitor-
ing. The problem is therefore as follows: how can the MapReduce
framework be used for log analysis to monitor large computer clus-
ters? Pseudo real-time monitoring requires a MapReduce application
that continuously aggregates all log files, which are the base for an av-
erage overall performance report. To develop such an application, the
following two questions arise.

The first question is: Which MapReduce framework should be used
for analyzing log data? There are different implementations available
for the MapReduce framework, for example CouchDB, MongoDB,
Hadoop, Cassandra and HyperTable. The selection of the most suit-
able framework for analyzing large data sets will be based on the
database type used and the performance of the framework. The sec-
ond question is: Which steps need to be included in an algorithm for

• Fernand Geertsema is a MSc. Computing Science student at the
University of Groningen, E-mail: f.s.geertsema@student.rug.nl.

• Erwin Vast is a MSc. Computing Science student at the University of
Groningen, E-mail: e.vast@student.rug.nl.

analyzing log data in a distributed setup? In this paper we describe
the steps needed for analyzing log data and show the feasibility by
applying these steps in an application.

The goal of this paper is to describe how a MapReduce application
for log data analysis can be implemented and to show that the MapRe-
duce framework is the right solution for monitoring a large computer
cluster.

In the next section, we compare the MapReduce implementations
and explain which implementation is the best for log file analysis. Sec-
tion 3 explains the implementation details and the steps of the MapRe-
duce algorithm. In section 4 we describe how the application is tested,
what the results are and a discussion of the research results. Section
5 contains a summary and relates the results to the research question
and the general research area.

2 MAPREDUCE

This section introduces the MapReduce framework which is used for
analyzing large amounts of log data. The first subsection gives some
general information about this framework. There are different imple-
mentations available for MapReduce, which are further discussed in
subsection 2. Subsection 3 discusses which of the implementations
can be used best for analyzing log data.

2.1 General
MapReduce is a programming model for problems with large data sets
that cannot be solved by a single machine. Such problems often are
accompanied by data sets of several petabytes. Programs using the
MapReduce framework are therefore parallelized and executed on a
large cluster of machines, also called nodes [6]. Problems that could be
solved by MapReduce are inverse indexing, count word occurrences
and distributed sorting [6]. The framework is inspired by the map and
reduce function in functional programming languages, however, the
functions are not used in the same way [7].

The MapReduce model can be split in two essential functions: the
Map function and the Reduce function.

Map: The map function takes an input key/value pair and parti-
tions it into smaller sub-problems and distributes this to worker nodes.
Each worker node groups together all intermediate values for the
same intermediate key and passes them to the Reduce function.
Reduce: The reduce function accepts an intermediate key and a set of
values for that key. It merges these values to create a smaller set of
values.

66

The map and reduce functions are visualized in figure 1. First the
input data is sent to the map functions, which maps every key/value
pair to a reducer function. The reducer function sorts, groups and
aggregates all the values for a certain key. The output of each reducer
are the merged values of a key.

Placeholder Placeholder

placeholder

Input data

M

Map task 1

Input data

M

Map task 2

Merge values

Sort and group by key 1

R

Reduce task 1

Sort and group by key 2

R

Reduce task 2

intermediate key 2 : value 2

Partitioning function

intermediate key 1 : value 1

Merge values

key 1 key 2key 1 key 2

intermediate key 1 : value 3

Partitioning function

intermediate key 2 : value 4

intermediate key 1 : value 1

intermediate key 1 : value 3

intermediate key 2 : value 2

intermediate key 2 : value 4

Fig. 1. MapReduce functions

If the map functions can be run independent from each other, then
they can run in parallel on different computers. The same is valid
for the reduce function. An advantage of running the functions on
multiple computers is a higher performance of the overall process.

An example problem where the map and reduce functions can be
used, is to count the number of occurrences of a word in a large collec-
tion of documents [8]. The pseudo-code used for the map and reduce
functions in this example is shown in listing 1.

1 map(String key, String value):
2 // key: document name
3 // value: document contents
4 for each word w in value:
5 EmitIntermediate(w, 1);
6
7 reduce(String key, Iterator values):
8 // key: a word
9 // values: a list of counts

10 int result = 0;
11 for each v in values:
12 result += ParseInt(v);
13 Emit(AsString(result));

Listing 1. Counting words with MapReduce

The map function takes the document name and the document con-
tents and emits for every word the intermediate number 1. The reduce
function takes the word as key and a list of occurrences of that word
for every document. The function sums the number of occurrences for
that word and emits the total amount of occurrences of a word for the
complete document collection.

2.2 Implementations
A common setup that can be used with the MapReduce framework
is shown in figure 2. This involves a database which supplies the in-
put data and a MapReduce framework which writes the results to the
database. Certain types of databases support MapReduce operations,

Output

Input

Database
Map

Reduce

Input

Output

MapReduce framework

Fig. 2. MapReduce communication with database

for example CouchDB and Cassandra [9]. Although the MapReduce
framework does not require a database, it is common to use one. The
MapReduce implementations that do not use a database require only
a file system for storing data. For example Hadoop uses Hadoop Dis-
tributed File System (HDFS) for data storage and Google’s MapRe-
duce implementation uses the Google File System. However, Hadoop
can use the HBase database which runs on top of HDFS. These and
other MapReduce implementations can be compared by looking at
their functionality, performance, documentation, database type or us-
ing the ACID (atomicity, consistency, isolation, durability) properties
[10]. The choice for one of these criteria is depending on the structure
of the log data.

All machines of a computer cluster have similar types of informa-
tion to log, for example processor usage, hard disk usage and num-
ber of running processes. For that reason, the log data of the ma-
chines are structured in the same manner. This structure makes it
easier to filter data by information type or selecting the data within
a time window. However, these operations require a database, because
a database can store the data in an efficient manner. Storing log data
in a database prevents that all data from log files have to be read when
only a small amount of information is requested. Therefore we com-
pare the MapReduce implementations by database type.

Most of the existing databases that are used are relational databases.
In relational databases the data are stored in tables, consisting of rows
and columns. The data are managed by the Structured Query Lan-
guage (SQL). Database types that intentionally do not use SQL, are
NoSQL databases. Some advantages [11] of NoSQL databases over
relational databases are: better distributable across multiple servers,
support for unstructured data and better performance. Log analysis
of a cluster is accompanied with very large data sets, that practically
cannot be stored on a single filesystem. Therefore the choice is made
to use a NoSQL database, that can distribute the data over multiple
servers. There are three kinds of NoSQL databases available [11].

The first kind is a key-value database. As the name implies, this
database type stores the values which are accessible by a certain key.
A key-value database is very useful when the database scheme has
to be flexible. Key-value stores also often use cache mechanisms to
retrieve data which need frequent access. An example of a key-value
store is Amazon’s SimpleDB.

Column-oriented databases, the second kind, stores closely related
data in a single extendable column. Examples are HBase and Cassan-
dra. An advantage of this type of database is that it is very efficient
in doing calculations for a single column, for example averaging all
the values of the column memory usage. Column oriented databases
are also very useful for distributed storage. A disadvantage of this
database type is that it is not flexible. The database structure has to be
determined before storing the data and cannot be changed afterwards.

The third kind, a document-based database, stores the data in docu-
ments where each document can contain a different number of fields.
CouchDB and MongoDB are examples of document-based databases.
Document-based databases are useful when the database scheme has
to be flexible.

2.3 Which implementation to use
Key-value stores and document-based databases are primarily devel-
oped for applications that need to be flexible. However, flexibility is
not the primary concern. The log attributes, for example processor and
memory usage, are not going to change frequently.

SC@RUG 2009 proceedings

67

Therefore, the structure of the log data is stored in a predefined
matter in the database which is not going to change frequently.

However, performance and distribution are important requirements
for log analysis. Column-oriented databases provide these attributes.
The flexibility of key-value and document-based databases is less im-
portant and therefore the column-oriented database type is the best
type for log analysis. The column-oriented database type consists of
the following implementations which support MapReduce: Hadoop,
Cassandra and Hypertable. Two criteria are important when choosing
one of these implementations.

When analyzing logs with MapReduce, read performance is an im-
portant criterium. Gigabytes of data have to be read to aggregate all
the logs of a computer cluster. Read speed is therefore an important
criterium for choosing one of the three implementations. Another cri-
terium is the available documentation of the implementations. To test
the algorithm, the MapReduce implementation has to be installed on a
distributed system. The success of this task depends on the available
documentation created by the developers and other MapReduce users.
Based on these two criteria an implementation is chosen.

Hypertable is an open-source implementation based on Google’s
Bigtable. According to the developers, Hypertable performs better for
larger data sets than Hadoop [12]. However, Hypertable’s documenta-
tion and information about other benchmarks is very limited. Hadoop
is more popular, has a larger user community and supports the HBase
database. There are many installation guides and answers to com-
mon problems, which is very helpful for developing MapReduce ap-
plications. Cassandra is slightly faster in writing data than HBase, but
HBase is much faster in reading data [13].

The higher read speed is an important advantage of HBase. The
popularity and large amount of documentation is an advantage of
Hadoop. Therefore, we use the Hadoop MapReduce framework, in
combination with the HBase database.

3 SOLUTION

This section describes the implementation to analyze the log data. In
the first subsection, an explanation of the Hadoop framework is given.
The way the database is structured is explained in subsection two. The
last subsection describes the algorithm for the MapReduce framework
to analyze log data.

3.1 Hadoop

By default, Hadoop works with HDFS, the Hadoop Distributed File
System. This file system is created by the Hadoop user community
to save files in a distributed environment, where the data are stored
on multiple servers. Storing data on multiple servers has as advantage
that the analysis of the logs can be spread over the servers.

The distributed Hadoop system can be split in two parts [14]: the
processing part and the storage part. The processing part focuses on
the MapReduce tasks and distributing the tasks among the several
nodes that are available. The storage part is for retrieving the
data which are needed for processing and writing the results. The
processing and storage services are distributed over master nodes and
slave nodes. The master nodes are responsible for distributing the
tasks to the slaves. The slave nodes do the actual processing.

The storage part of the Hadoop system has the following services:
NameNode: this service manages the namespace, file system and ac-
cess control. There is one primary and one secondary NameNode in
each cluster. The secondary NameNode is for fault-tolerance.
Datanode: this service holds the file system data, and can be repli-
cated over multiple DataNodes. If the Hadoop cluster contains only
one DataNode, the data cannot be replicated.
The processing part of the Hadoop system has the following services:
JobTracker: this service assigns the different tasks to the slave nodes.
Each cluster has one JobTracker.
TaskTracker: this service carries out the map and reduce tasks. It is
recommended to have multiple TaskTrackers to get benefits from the
distributed setup.

The structure of the Hadoop system is illustrated in Figure 3. It
shows three blocks which represent the servers in the system. These
servers run multiple services. For example the master server is a
Jobtracker and a NameNode. This server manages the different
MapReduce tasks and is also in control of the filesystem of the cluster.
The other servers work as slaves for the master. Each slave is both
a TaskTracker and a DataNode, because the TaskTrackers need the
data from the DataNode when running MapReduce [15]. Each slave
therefore processes the MapReduce tasks and stores data. The master
server can split his tasks and run the JobTracker and the NameNode
on two separate servers. This will improve the performance of the
analysis while executing large MapReduce tasks. Most Hadoop
applications run on a distributed system, but it is also possible to run
all processes on a single machine, also called a single computer setup.
This is mostly used for development and testing purposes which
involve smaller MapReduce tasks.

JobTracker

NameNode

DataNode

TaskTracker

DataNode

TaskTracker
Processing Layer

Storage Layer

Processing Layer

Storage Layer

Fig. 3. Hadoop process structure

3.2 Log data in HBase
To get knowledge about the performance and statistics of a cluster,
there must be some logging done by the individual servers. These logs
can be stored to log-files which have to be retrieved by a logging server
or will be sent directly to the logging server. The Simple Network
Management Protocol (SNMP) can be used for sending logs [16] to
another server. This protocol is developed specifically to retrieve per-
formance of servers from a central point. Normally a SNMP-server is
a good way to collect log data from a cluster. However, there are no
log-files from a large cluster publicly available for analysis.

Therefore, for the test in section four the log-files are created by
a Java application, which generates pseudo random statistics, further
called attributes, and writes these attributes to a database. These at-
tributes describe the current state of a server and include the follow-
ing twelve values of a server: ”cpu usage”, ”kernel memory commit”,
”physical memory commit”, ”physical memory swap”, ”processes”,
”threads”, ”handles”, ”hard disk read”, ”hard disk write”, ”network
usage”, ”uptime” and ”round trip time”. Every minute that a server
runs, simulated by the Java application, it creates a log file. Our simu-
lation creates up to 1.440 log-files per server for each day. As will be
described in chapter four, large companies can have more than 50.000
servers. This can lead to 72.000.000 log-files per day. This number of
log-files results in 86 GB of data per days.

The log data created by each server are sent to the HBase database.
This database system is column-oriented, therefore all data are stored
in columns and not in the traditional row system. This gives perfor-
mance gains when there are many rows (values) needed and only a few
columns are affected. HBase has its database built in the same way as

High-performance log data analysis using MapReduce – Fernand Geertsema and Erwin Vast

68

Google’s BigTable [17]. The database structure used to store log data
is shown in figure 4.

server1 100
78server2

row-identifier
column-family
record <key, value>

server1 976
739server2

server1 15
9server2

cpu_usage

memory_usage

2011-03-21-14-38

472server3
processes

number of records
may differ

Fig. 4. Database structure

The row-identifier contains the date, because this makes it easier to
retrieve the data from a specific time span. If we would, for example,
use the server name as the row-identifier, we would have to retrieve all
the data for a single server. This is not very efficient, because we only
want data from all servers from a specific time span. For monitoring
applications, such time windows would be several minutes wide.

The column-family contains the attribute (e.g. cpu usage) and not
the name of the server. Using the name of the server prevents that ma-
chines can be added to or removed from the computer cluster. In sec-
tion 2 it was described that column-oriented databases are not flexible.
Therefore, the column-families cannot be changed after initializing the
database. As a result, the column-families are not constructed with the
names of the server. This makes it possible to change the amount of
servers after initializing the database.

The record contains the statistical data. The key of the record is the
name of the server (e.g. server1). The value is the data of the attribute
(e.g. 100). Each column-family contains the attributes for that family
(e.g. cpu usage) for all machines of the cluster.

3.3 MapReduce tasks
As explained in section 2.1, the MapReduce framework depends on
two fundamental functions: the map and reduce functions. For the log
analyzer these functions are as follows.

Map function: The input of the map function are multiple rows from
the database. Each row stores the log of one timestamp, for example,
one minute. In this case a time window of five minutes is used.
Because these five minutes include the attributes of all the servers that
are monitored, this leads to many gigabytes of data. Therefore the data
are split at each attribute, like ”cpu usage” or ”network throughput”.
An intermediate result is created. This intermediate result has a key
(e.g. cpu) and a value (e.g. 100). The key of this intermediate result
is the attribute. The value of the intermediate result is the value of the
attribute. This intermediate result is sent to the reduce function.
Reduce function: All the same keys (e.g. cpu, memory) of the map
function are mapped to a reducer function. This leads to one reducer
per attribute. This reducer collects all the values of that attribute
for the last five minutes. The reduce function sorts the incoming
intermediate result by the keys. The values of the attributes are
extracted and averaged. This computed average is then saved to the
database. In this way the attributes of the servers for a time window
of five minutes are stored.

Both functions are listed in pseudo code in listing 2. To visualize
the MapReduce process, the flow of the map and reduce functions is
displayed in figure 5. The map function is visualized in Map task 1 and
2. These tasks receive each one minute of log data. In this example
the attributes cpu and memory of two servers are processed. Map task
1 and 2 decode each a minute of log data and extract the attributes.
These attributes are then put into an intermediate result and sent to

the reducer. These messages have as keys ”cpu” and ”mem”. For
example the ”cpu” attribute of server 1 is shown in the block ”(s1) cpu
: v1”. The cpu attribute for the second minute is shown in block ”(s1)
cpu : v5”. The intermediate results with the key ”cpu” are received by
Reduce task 1. This reduce function collects all the cpu attributes. The
memory attribute goes to Reduce task 2. The reducers calculate the
sum of all the values received. This sum is then divided by the number
of intermediate results received, which gives an average value. For the
cpu attribute the values v1, v2, v5 and v6 are added up and divided by
four. This gives the average cpu usage of two minutes. The average
cpu usage is stored in the database with the timestamp and the type of
attribute (i.e. cpu).

1 map(RowData row):
2 // row: contains a minute of log data from the

database
3 String familyName;
4 // familyName: is the attribute (e.g. cpu)
5
6 for each column c in row:
7 familyName = new String(c.getFamilyname());
8 int value = ParseInt(c.getValue());
9

10 // Send attributes to the reducers, with key=
familyName

11 EmitIntermediate(familyName, value);
12
13 reduce(String key, Iterator values):
14 // key: a familyName
15 // values: a list of values of the familyName
16 String timestamp = job.getName();
17 long sum = 0;
18 int numberOfValues = 0;
19
20 for each v in values:
21 sum += ParseInt(v);
22 numberOfValues++;
23
24 int average = (sum / number_of_values);
25 saveAverageInDatabase(timestamp, key, average);

Listing 2. Counting words with MapReduce

Placeholder Placeholder

placeholderplaceholder

HBase record (1 minute)

M

Map task 1

HBase record (1 minute)

(s2) cpu : v6 (s2) mem : v8

Partitioning function

M

Map task 2

Average of all servers for the cpu
value type

Sort and group by value type

R

Reduce task 1

HBase record (average 2 minutes)

Sort and group by value type

R

Reduce task 2

(s1) cpu : v5 (s1) mem : v7
(s2) cpu : v2 (s2) mem : v4

Partitioning function

(s1) cpu : v1 (s1) mem : v3

(s2) cpu : v6
(s1) cpu : v5

(s2) cpu : v2
(s1) cpu : v1

(s2) mem : v8
(s1) mem : v7

(s2) mem : v4
(s1) mem : v3

Average of all servers for the mem
value type

HBase record (average 2 minutes)

cpu memcpu mem

Fig. 5. MapReduce process structure for log analysis

SC@RUG 2009 proceedings

69

4 TESTS

In this section the implementation is tested. The first subsection de-
scribes the test setup that is used for testing the application. The results
of the tests are described in subsection two. The last subsection con-
tains a discussion over the test results.

4.1 Setup

An important aspect of a potential solution is to test it. The main qual-
ity attribute for the implementation is performance. To test the perfor-
mance, the application is tested on a distributed system and a single
computer setup. For running a distributed system, we use the Amazon
Elastic Compute Cloud, also called Amazon EC2. This web service
of Amazon makes it possible to create virtual machines remotely [18].
The number of virtual machines in use depends on the load at a certain
moment in time. Our distributed system consists of one master node
and four slave nodes, therefore five virtual machines are needed. The
single computer setup consists of one node which runs all the required
services that were described in section 3.1.

Amazon offers several types of machines, each with its own hard-
ware specifications. For this test, we used the Large Instance type.
This type [19] consists of 7.5 GB memory, 4 EC2 Compute Units, 850
GB allocated storage and high I/O performance. One EC2 Compute
Unit is comparable to a 1.0-1.2 GHz 2007 Opteron processor. All EC2
instances are located in the same region to increase network speed.
The single computer setup runs on a machine with 4.0 GB memory,
500 GB allocated storage and a 2.4 GHz dual core processor.

For large companies with many servers, the performance of the
cluster is essential because it affects many customers. Statistics [20]
show that large companies like Google, Microsoft and Amazon have
more than 50.000 servers. In our test case we therefore analyze the
logs of 50.000 servers to reflect these large computer cluster sizes. To
simulate this scenario, the following two applications are used for the
test.

The simulator simulates a cluster and stores the data in HBase. It
stores the log data of 50.000 servers each minute. This is a constant
stream of log data.

The log analyzer applies the MapReduce functions that were de-
scribed in section 3. The log analyzer retrieves the log files from the
database, combines these, and stores the combined logs in a separate
table in HBase. To create pseudo real-time monitoring, the application
retrieves the data for a given time window. The time window is five
minutes for this test. As a result each MapReduce function analyzes
a collection of 250.000 log files each with twelve attributes (e.g. cpu
and memory usage). The log analyzer retrieves and analyses every five
minutes the new logs the simulator stored in the database during those
five minutes.

4.2 Results

For this test five different sizes of log data sets have been analyzed
using the MapReduce framework in a distributed computer setup and
in a single computer setup. Table 1 shows the results of this test. Five
minutes of log data from 50.000 servers leads to 250.000 log files each
with twelve attributes. The log data sets for the test cases have the
following sizes: 250.000, 500.000, 1 million, 2 million and 4 million
server logs. The MapReduce framework is used in this test for the log
analysis of each log data set. The test is performed three times per log
data set to get an average analysis time.

Figure 6 shows the performance results as a graph. The square
points represent the single setup and the triangle points show the re-
sults of the distributed setup. The single setup has only three points,
because the tests of the single setup could not finish for 2 million and 4
million server logs. The last two test cases are too large to process for
the single setup. When analyzing more than 1 million logs, the hard
disk is not fast enough to read the data for analysis and write the log
data from the simulator. Both processes get increasingly more behind.
Therefore the last two test cases are never completed for the single
setup. The results show that in each test case the distributed setup can
process the log data.

Table 1. Performance results

Number of
server logs

Size data set
(megabytes)

Average analysis
time (seconds)
(distributed setup)

Average analysis
time (seconds)
(single setup)

250.000 218 52 131
500.000 437 67 259

1.000.000 1101 99 625
2.000.000 2862 146 *
4.000.000 4770 247 *

* The test could not finish

50000 500 1000 1500 2000 2500 3000 3500 4000 4500

700

0

100

200

300

400

500

600

Size of server logs (megabytes)

Av
er

ag
e

an
al

ys
is

tim
e

(s
ec

on
ds

)
Distributed setup

Si
ng

le
 se

tu
p

Performance results of distributed setup vs. single setup

Fig. 6. Performance results

The results show also that the distributed setup can process the
largest test case under five minutes. This proves that the distributed
setup can be used for pseudo real-time analysis of large log data sets
with only a short delay. The single setup is only able to run the first
two test cases in less than five minutes. The third test case finished in
more than 10 minutes. This shows that a single setup is not suitable
for pseudo real-time monitoring of large log data sets.

The above results prove that the MapReduce framework can be used
for analyzing log data to monitor large computer clusters. For each log
analysis the MapReduce framework has some start-up time, therefore
a time window of the log analysis has to be larger than the minimum
time needed to analyze the log data. Therefore the MapReduce frame-
work in a distributed setup is ideal for pseudo real-time monitoring
with a short delay (start-up time plus analysis time) in a large organi-
zation with more than 50.000 servers.

4.3 Discussion
The tests were performed on a log data set with twelve attributes (e.g.
cpu and memory usage). These attributes represent normal perfor-
mance data, which are common in log files. The number of monitored
attributes can differ per analyzed computer cluster. Analyzing more at-
tributes will lead to an increase in the size of the log data and a higher
average analysis time. To manage this increase in analysis time, the
distributed setup can be expanded by using more slave nodes to pro-
cess the log data.

The distributed setup used for the test was created by using the
Amazon EC2 service. With this service the user has to pay per hour
for each virtual machine. The continuous analysis of log data requires
that the distributed setup is always online. The Amazon EC2 service is
provided to give users a flexible way to cope with changing needs for
processing power. Because the log analysis is a continuous process,
costs could be reduced by creating a distributed setup locally instead
of using Amazon EC2. Another advantage of running a distributed
setup locally is that the log data remain on the servers of the company.

High-performance log data analysis using MapReduce – Fernand Geertsema and Erwin Vast

70

5 CONCLUSION

The question that was asked in the beginning of this paper was ”How
can the MapReduce framework be used for log analysis to moni-
tor large computer clusters?” To answer this question the subques-
tions ”Which MapReduce framework should be used for analyzing
log data?” and ”Which steps need to be included in an algorithm for
analyzing log data in a distributed setup?” have to be answered first.

For analyzing log data with the MapReduce framework, the Apache
Hadoop framework is a favourable choice based on the support for the
column-oriented database HBase. By using this database in combi-
nation with the Hadoop framework a powerful toolset is created that
has a high performance. The Hadoop framework is better documented
than other MapReduce frameworks.

The steps needed for analyzing log data include distributing these
log data over multiple systems and sorting these by attribute (e.g. cpu
usage). After sorting these log data, the values of these attributes are
averaged. This creates an average value per attribute for the whole
cluster.

By answering these subquestions an implementation with the use
of the Hadoop framework can be built. The built implementation is
tested on a distributed computer setup of five machines and a single
computer setup. The results show that for large sizes of log data the
single computer setup could not analyze them. The distributed setup
analyzed all the different test cases of which the largest log data set
consists of 4 million server logs and finished each test case in less than
five minutes. This makes the MapReduce framework in a distributed
setup ideal for pseudo real-time monitoring with a short delay (start-up
time plus analysis time) in a large organization with more than 50.000
servers.

The log data that was used to test the implementation originated
from a simulator. For future research, real log data of an existing com-
puter cluster can be used. Another improvement is to test with larger
log files to further analyze the scalability of the implementation.

REFERENCES

[1] Aster Data. Big Data Analytics, MapReduce for High Performance In-
Database Analytics, Deep Data Mining, March 2011. http://www.
asterdata.com/.

[2] IBM Netezza. Data Warehouse Appliance, Data Warehouse Appliances,
and Data Warehousing from Netezza, March 2011. http://www.
netezza.com/.

[3] Aster Data. MySpace.com Scales Analytics for All of Its Friends,
2009. http://www.asterdata.com/resources/assets/
cs_Aster_Data_4.0_MySpace.pdf.

[4] IBM Netezza. M3Name Searching with Fuzzy Logic Using Netezza
OnStreamTM Analytics, 2009. http://www.netezza.com/
documents/NET7032_MTI_DS_6.pdf.

[5] Splunk. Operational Intelligence, Log Management, Application Man-
agement, Security and Compliance, 2010. http://www.splunk.
com/.

[6] Google, Inc. MapReduce: Simplified Data Processing on Large Clus-
ters, 2004. http://labs.google.com/papers/mapreduce.
html.

[7] Wikipedia. MapReduce, March 2011. http://en.wikipedia.
org/wiki/MapReduce.

[8] Communications of the ACM, vol. 53, no. 1. MapReduce: A Flexible
Data Processing Tool, January 2010.

[9] NOSQL Databases, March 2010. http://nosql-database.
org/.

[10] Wikipedia. ACID, 2010. http://en.wikipedia.org/wiki/
ACID.

[11] Computer, vol. 43, no. 2, IEEE. Will NoSQL Databases Live Up to Their
Promise?, 2010. http://www.leavcom.com/pdf/NoSQL.pdf.

[12] Hypertable. Hypertable vs. HBase Performance Evaluation Test, 2010.
http://www.hypertable.com/pub/perfeval/test1.

[13] Benchmarking Cloud Serving Systems with YCSB, June 2010. http:
//research.yahoo.com/node/3202.

[14] Brandeis University. Hadoop Cluster Setup, 2008. http://pages.
cs.brandeis.edu/˜cs147a/lab/hadoop-cluster/.

[15] Hadoop. Cluster setup, 2010. http://hadoop.apache.org/
common/docs/current/cluster_setup.html#Slaves.

[16] Wikipedia. Simple Network Management Protocol, 2011.
http://nl.wikipedia.org/wiki/Simple_Network_
Management_Protocol.

[17] Google. Bigtable: A Distributed Storage System for Structured
Data, November 2006. http://labs.google.com/papers/
bigtable.html.

[18] Amazon. Amazon Elastic Compute Cloud (Amazon EC2), 2011. http:
//aws.amazon.com/ec2/.

[19] Amazon. Amazon EC2 Instance Types, 2011. http://aws.amazon.
com/ec2/instance-types/.

[20] Datacenter Knowledge. Who Has the Most Web Servers?, February
2011. http://www.datacenterknowledge.com/archives/
2009/05/14/whos-got-the-most-web-servers/.

SC@RUG 2009 proceedings

71

Context Inconsistency Management
in Pervasive Systems

Samuel Esposito Alexander Jurjens

Abstract—Thanks to the pervasive computing paradigm more and more computer systems in utility buildings and industry are
context-aware. They use a representation of the world they operate in to reduce the human-computer interaction necessary for
their operation. Unfortunately reasoning based on contexts is not without flaws and context inconsistencies are the main reason for
context-aware applications’ incongruous behavior. Context consistency management is not adequately studied in existing literature
and approaches for detecting and resolving context conflicts are not suited for pervasive computing [3].
In this paper we present two complementary approaches for improving the mitigation of context inconsistencies. First we present
partial constraint checking for timely identifying context inconsistencies at runtime. An extra constraint layer is added to the traditional
ontology based context model and conflicts can be detected by locally checking partial constraints in the ontology. This dramatically
improves performance compared to iterative evaluation of an entire ontology [3]. Secondly we discuss the extension of the traditional
ontology model with context life cycles to more accurately represent the environment of context-aware applications. This information
can then be used to estimate the relative reliability of contexts in a conflict set and discard the contexts with lowest reliability [2]. Apart
from resolving context conflicts it is also possible to represent inconsistencies into the context model itself [5]. In this paper we present
a case study in which we explore the possibilities of incorporating inconsistencies into context models using fuzzy ontologies.

Index Terms—Pervasive Computing, Context Ontology Model, Partial Constraint Checking, Context Lifecycle, Context Inconsistency
Resolution, Fuzzy OWL.

1 INTRODUCTION

In pervasive computing applications use contexts to represent their
changing environment and adapt their behavior to it. Due to envi-
ronmental noises contexts can be imprecise or incorrect, resulting in
context inconsistencies. These inconsistencies may set a pervasive ap-
plication in a wrong state or misadjust its behavior. Therefore it is
important to timely detect and resolve context inconsistencies.
In the next chapter we start with an overview of the existing so-

lutions for handling context inconsistencies and argue why these so-
lutions do not meet the requirements of pervasive applications. Next
we present Partial Constraint Checking: an algorithm for constraint
checking on huge sets of contexts that is far more efficient and effec-
tive than the existing approaches. In addition we discuss a Context
Inconsistency Resolution algorithm that allows for resolving conflict-
ing context sets without human intervention. Finally we propose a
whole new approach to context inconsistencies: incorporating incon-
sistencies in to the context model by using fuzzy ontologies. We show
that this approach makes conflict detection and resolution superfluous
and has a lot of potential for an efficient implementation using Partial
Probability Calculation.

2 RELATED WORK

Pervasive or ubiquitous computing is a fast-developing discipline that
has been receiving increasing attention from both researchers and soft-
ware developers [3]. In the past decade, many context-aware systems
have been developed, ranging from smart room environments to ware-
house and supply chain management systems. A lot of effort has been
put into building middleware infrastructures that handle vast amounts
of sensory data and extract the context information relevant for perva-
sive applications. Examples of such systems are CoBrA [4] and COR-
TEX [1]. Various modeling approaches have been proposed for cap-
turing context information, of which the ontology based context model
appears to be most promising for most pervasive applications [2].
Context management for consistency however has not been ade-

quately studied in the existing literature. None of the studies on
context-awareness discusses a way for detecting context inconsisten-
cies for reliable pervasive computing [3, 2]. Even though other dis-
ciplines as artificial intelligence and software engineering conducted
related research, it does not provide adequate support for context in-
consistency detection in ubiquitous computing. In addition the strate-
gies proposed in literature for resolving context conflicts are not suited
for pervasive computing. Some are based on assumptions that may not

apply to general pervasive environments. Other require human partic-
ipation for conflict resolution, which is usually expensive and slow for
pervasive computing [3]. Finally no research has been done on the
potential of fuzzy ontologies to represent inconsistencies in the en-
vironment or the perception of this environment instead of trying to
resolve them [5].
In this article we aim at putting a milestone for context management

by presenting an efficient inconsistency detection algorithm based on
a constraint language extending the traditional ontology based context
model [3]. In addition we put forward a conflict resolution algorithm
which is based on a context reliability heuristic [2]. Finally the use of
fuzzy ontologies representing context inconsistencies as a promising
alternative to conflict resolution is explored.

3 PARTIAL CONSTRAINT CHECKING

Constraint checking techniques have been extensively studied in soft-
ware engineering. Existing constraint checking algorithms focus
on checking software artifacts that do not change rapidly or fre-
quently [3]. Context-aware applications require more efficient algo-
rithms because they use a huge set of contexts, which can change very
rapidly and frequently (in the range of milliseconds). An inefficient
software solution for this does not only require massive computing
power, but interestingly also induces a higher inconsistency detec-
tion miss rate. Because of the computing delay conflicting contexts
slip through the context buffer before they are detected by the soft-
ware [3]. One example of an inefficient approach is non-incremental
checking: whenever there is a change in the set of software artifacts
these artifacts are each checked against the entire set of consistency
constraints to find out all detectable inconsistencies. An improvement
to this would be incremental checking: only a subset of all constraints
are checked, namely those that are affected by the specific change in
the artifact set. But Xu et al. made the most substantial progress by
replacing the traditional entire constraint checking approach by par-
tial constraint checking based on a consistency computation tree [3].
Their idea is that constraints can be represented as trees with nodes
for logical operations and leaves for specific properties of contexts or
context sets. Whenever a context is added to or deleted from a context
set in time, the branch corresponding to this context can respectively
be added to or deleted from the tree (see Fig. 1). Because intermedi-
ate values are retained in the tree nodes after calculation, they can be
reused whenever the tree changes. More specifically, when a branch is

72

Fig. 1. Consistency Computation Tree: branches can be added or
deleted to represent changes in a context set. Source: [3]

added, only the values of the new branch itself and of the nodes from
the branch top to the tree root need to be calculated. When a branch is
deleted, only the values for the nodes from the branch top to the tree
root have to be recalculated.
With their partial constraint checking algorithm Xu et al. attained a

time complexity between O(n) in the worst case and O(1) in the best
case when a context is added to the set and O(1) when a context is
removed. Compared to traditional constraint checking with an overall
complexity of O(n), this is a dramatical improvement. In their ex-
periments Xu et al. showed their performance is 15 times better than
the traditional approach and in a case study the inconsistency miss
rate dropped from 52.2% in traditional checking to 0.1% with partial
checking [3].

4 CONTEXT INCONSISTENCY RESOLUTION

Now that we have an efficient method for detecting inconsistencies,
the task of resolving the conflicts remains. As discussed above the
strategies for conflict resolution in literature are not well suited for
pervasive computing because their assumptions do not apply or they
require human participation [3]. What is really needed is an algorithm
that in the case of a conflict between two or more contexts decides
which context has the highest reliability and retains that context. Bu
et al. show us that this is possible through extending the ontology
based context model with additional information about the context’s
status and temporal properties [2]. More specifically they propose an
algorithm that retains for every conflict set the context with the highest
relative frequency: frequency of context updates relative to update in-
terval and context age (see Fig. 2). This is based on the assumption that

Fig. 2. Context inconsistency resolution in action. Source: [2]

contexts that are most stably perceived by a system are most likely to
be correct. This assumption is applicable to most of the environments

in which pervasive systems run and is applied in many domains as a
domain specific approach [3].

5 FUZZY ONTOLOGIES

In pervasive computing traditionally first order logic is used to model
the environment of an application. This results in a so called ontology
based context model. Every observation that does not exactly fit in
this model results into a conflict. This conflict can lead to misadjusted
behavior in applications, unless it is timely detected and resolved [3].
Because it is impossible to perfectly model the unpredictable environ-
ment in which context-aware applications run, it would be nice if the
context model was more resilient to unexpected observations. This re-
silience can be obtained by using a fuzzy ontology: a stochastic model
representing lower level contexts (for instance sensory data) and their
probabilities in the presence of higher level contexts (for instance user
activities). The most simple approach to this would be using a hidden
Markov Model1: a statistical model of the environment with unob-
served states (the higher level contexts) in which future states only
depend on the present state. The use of such a model is illustrated in
the case study below.

5.1 Case Study
Suppose we want to build a context-aware application that has a cer-
tain notion of teacher’s activities to assist them in the best possible way
(for instance automatically opening slides when a lecture starts). In the
traditional approach we could build an ontology specifying where lec-
tures take place and that a lecture starts when the teacher appears at
the lectern. If now an unpredicted observation is made (sensor cross
read or teacher momentarily leaves the room), an inconsistency occurs
that has to be resolved for the application to proceed with its normal
operation. In the fuzzy ontology approach these unpredictable events
can be modeled so that the ontology is more robust and always yields
the most apt interpretation of the environment without the need for
conflict resolution. A simplified hidden Markov model for this ontol-
ogy is depicted in Fig. 3. As the numbers in this model indicate, the

Fig. 3. Fuzzy ontology specifying a teacher’s activities and the probabil-
ities of different locations in the presence of these higher-level context.

most probable location of a teacher while lecturing is at the lectern (L).
In the aisle (A) is less probable and at the office (O) is very unlikely.
For the activity of performing other work (denoted as Working in the
model), the probabilities are the other way around. This fuzzy ontol-
ogy model can now be used to calculate the relative probability of each
higher-level context (c.q. Lecturing and Working) based on a set of
low level contexts observed within a certain time window. A possible
set of observations could be [L1, L2, L3, A1, A2]: the teacher was ob-
served three times at the lectern and twice in the aisle in this time win-
dow. The probability of the Lecturing activity can now be calculated
by multiplying the probabilities of the observations in the presence of
this higher level context2: pLecturing= .80∗ .80∗ .80∗ .15∗ .15∗c1 =
.01152 ∗ c1 = 0.9998. The probability for Working can be calcu-
lated in a similar way: pWorking = .05 ∗ .05 ∗ .05 ∗ .15 ∗ .15 ∗ c1 =
0.000002813∗c1 = 0.0002. The probabilities indicate that the teacher
is still lecturing, even though the teacher being observed in the aisle
conflicts with being observed at the lectern. Another example of ob-
servations could be [L1, A1, A2, O1, O2]: the teacher is observed
at the lectern once, twice in the aisle and twice at the office. The
probabilities for Lecturing and Working are calculated as follows:

1http://en.wikipedia.org/wikiHidden Markov model
2We multiply the results with a constant c to obtain a valid probability value

in the end.

SC@RUG 2009 proceedings

73

pLecturing = .80 ∗ .15 ∗ .15 ∗ .05 ∗ .05 ∗ c2 = 0.000045 ∗ c2 = 0.059
and pWorking = .05∗ .15∗ .15∗ .80∗ .80∗c2 = 0.00072∗c2 = 0.941.
The probabilities now indicate that the teacher is doing work other than
lecturing, even though the observation of the teacher at the lectern is
definitely conflicting with the observations at the office.

5.2 Results

The case study shows that a fuzzy ontology allows us to always define
the most probable higher-level context given the observations, regard-
less of any inconsistencies in the observed context set and without the
need for conflict detection and resolution.
Another observation we can do is that the hidden Markov model

for a fuzzy ontology has a tree-like structure. This structure allows
for very efficient incremental Partial Probability Calculation (PPC).
The PCC principle works as follows: the probability of a high-level
context is calculated by multiplying the probabilities of its children
contexts. When a new context is added to or removed from the obser-
vation set and thus from the tree, only the probabilities of the obser-
vation’s ancestors in the tree up to the root have to be recalculated. In
case of adding a context, the probability of an ancestor in the tree can
be recalculated by simply multiplying its previous probability with the
probability of the new or updated child. In case of removing a context,
the probability is divided by the probability of the new or updated
child. Because the recalculation only takes place in part of the tree
and allows us to preserve previous calculations for later use, it is par-
tial. And because this recalculation only happens in trees that contain
the added or removed context as a leaf, the calculation is incremen-
tal. We illustrate the PPC process using an extension of the hidden
Markov model from the case study (See Fig. 4). In this figure the

Fig. 4. Fuzzy ontology specifying the Lecturing activity and the proba-
bilities of different contexts in the presence of this higher-level context.

usesSlides context is added to the observation set at some point. This
change in the context set requires us to recalculate the probabilities of
the higher-level contexts. For this we use PPC: we recalculate only
the values of the ancestors if the usesSlides context (c.q. isPresenting
and isLecturing). The probability of isPresenting is .85∗ .90, because
the usesSlides context is its only child. The probability of isLecturing
has to be recalculated. This can be done by simply multiplying its pre-
vious probability with the probability of the new child isPresenting:
isLecturing= 0.0004104∗ .90∗ .85 = 0.0003139563.
The time complexity of the PPC principle is related to the height

of a hidden Markov tree, because recalculations only take place on
the path from a leaf to the root. Since this height remains constant at
runtime, the time complexity of adding or removing a context is O(1).
It is possible to extend the hidden Markov model used in the case

study by specifying start and transition probabilities for the higher-
level contexts. With this extension the probability of a higher-level
context does not solely depend on the contexts in the observation set,
but also on the previous most probable higher-level context.

3Note that this value has to be multiplied with a constant in order to get the
real probability value

6 DISCUSSION

In this article we started with presenting partial constraint checking: an
efficient algorithm for timely detecting inconsistencies in huge sets of
contexts which change frequently. Partial constraint checking was 15
times more efficient than the traditional greedy approach and reduced
the conflict detection miss rate from 52.2% to 0.1%. This algorithm is
clearly a dramatic improvement of the traditional approach and vital to
any context-aware application that has to handle frequently generated
contexts.
After that we shed light on ways to resolve the detected conflicts

and discussed a context inconsistency resolution algorithm which es-
timates the reliability of conflicting contexts and only retains the most
reliable context from every conflict set. This algorithm allows for
timely conflict resolution at runtime without the need for human par-
ticipation. The algorithm is a valuable addition to the research on con-
flict resolution in pervasive computing, but when applying it one has
to verify the aptness of the heuristic used for context reliability estima-
tions in the domain at hand. In particular the assumption that contexts
with the highest relative frequency are most reliable has to apply in the
domain.
Finally the use of fuzzy ontologies for modeling the environment

of context-aware applications seems promising. By incorporating pos-
sible inconsistencies in the model, the need for context inconsistency
management vanishes, vastly reducing the complexity of the used mid-
dleware. Fuzzy ontologies always yield the most probable higher-level
contexts, regardless of the inconsistencies in the observed context set.
In addition the calculation of the probabilities in a fuzzy ontology has
great potential for optimization by using incremental Partial Proba-
bility Calculation. When using fuzzy ontologies one however has to
take into account the required training of the system for obtaining well
defined probabilities in the context model.

7 CONCLUSION

In conclusion we can say that the partial constraint checking algorithm
can dramatically improve the performance of context-aware applica-
tions where context consistency management is needed. And with this
performance improvement we get an impressive reduction of missed
context inconsistencies for free. The context inconsistency resolution
algorithm is a good solution in most domains for timely resolving
context conflicts without human intervention. The fuzzy ontology ap-
proach seems a promising alternative to traditional context modeling,
but needs extensive further research in order to determine its real value
for context-aware applications.

REFERENCES

[1] G. Biegel and V. Cahill. A framework for developing mobile, context-
aware applications. In Pervasive Computing and Communications, 2004.
PerCom 2004. Proceedings of the Second IEEE Annual Conference on,
pages 361 – 365, 2004.

[2] Y. Bu, S. Chen, J. Li, X. Tao, and J. Lu. Context Consistency Management
Using Ontology Based Model, volume 4254, pages 741–755. Springer
Berlin / Heidelberg, 2006.

[3] W. C. Chang Xu, S.C. Cheung and C. Ye. Partial constraint checking
for context consistency in pervasive computing. ACM Transactions on
Software Engineering and Methodology, 19, 2010.

[4] H. Chen, T. Finin, and A. Joshi. Semantic web in the context broker ar-
chitecture. In Pervasive Computing and Communications, 2004. PerCom
2004. Proceedings of the Second IEEE Annual Conference on, pages 277
– 286, 2004.

[5] H. Kong, G. Xue, X. He, and S. Yao. A proposal to handle inconsistent
ontology with fuzzy owl. Computer Science and Information Engineering,
World Congress on, 1:599–603, 2009.

Context Inconsistency Management in Pervasive Systems – Samuel Esposito and Alexander Jurjens

74

The Role of Standardized Web Services in Electric Utility Control
Center Applications Integration

Divya .S. Avalur*

Abstract— The power system operation applications of the Electric Utility Control Center such as Energy Management Systems
(EMS) / Supervisory- Control-And-Data-Acquisition (SCADA) are installed as stand alone systems.The power system operations
applications are highly specialized and complex in nature. Due to this, the integration of power system operation applications with
business applications of the Electric utility becomes quite challenging. The applications at business end of the electrical utility
control center are well integrated using standardized web services and Service Oriented Architecture(SOA) middleware. The paper
details out the standardized web services and its role in the integration of power system operation applications using International
Electrotechnical Commission(IEC) standards. In particular, the paper concentrates on IEC 61970 and IEC 61850 standards. It further
aims to explore various aspects of standardized web services like implementation and testing using a case study.

Index Terms—Generic Interface Definition(GID), Common Information Model(CIM),IEC 61970, IEC 61850, EMS/SCADA, SOA

1 INTRODUCTION

An Energy Management System (EMS) is a controlling and moni-
toring system of computer-aided tools allowing operators of electric
utilities to monitor, control and optimize the performance of the gen-
eration and/or the power system. The Supervisory-control-and-data-
acquisition(SCADA) system is used to data gathering and monitor-
ing of automated sytems, their conditions and control. These services
when implemented in an open-source fashion have certain specific ad-
vantages compared with other sources [1]. They enable the reduction
of costs in upgrading, application integration, application decoupling
and ease of development. The integration of power system opera-
tions applications of the Electric Utility Control Center such as En-
ergy Management Systems (EMS)/ Supervisory- Control-And-Data-
Aquisition (SCADA) with business applications of the electric utility
like finance, customer information systems and asset management is
quite a challenging task. The approach used in earlier technologies
consisted of stand alone systems with highly specialized applications.
They interfaced with the power systems using communication based
protocols. The major drawback in earlier technology was its inability
to integrate the power system applications with business applications
of utility. To eliminate this problem, International Electrotechnical
Commission (IEC) has come up with a set of standards that enable web
services and Service-Oriented-Architecture (SOA) middleware tech-
nology for the integration of systems. Due to these services, the cost
of infrastructure, programming effort and complexity has decreased
dramatically [2].

The following is the organisation of the paper. In Section 2, we
shall discuss about the web services, its fundamental components and
demerits of the normal web services. In Section 3, we discuss various
aspects of International Electrotechnical Commission (IEC) standards,
give a description of the selected IEC standards and later discuss the
need for the standardized web services. In Section 4, we discuss var-
ious aspects of IEC 61970 standard such as its components and bene-
fits of implementing these components together. In Section 5, we dis-
cuss the application of a particular component of IEC 61970 in Energy
Management Systems (EMS). In Section 6, we present a case study of
application of the standardized web services using open source imple-
mentation.

2 WEB SERVICES

We make use of the web services in our day to day environment by
describing product or service using web pages. Semantic web ser-
vices are the improvements of the known concept of the web services.

* Johann Bernoulli Institute of Mathematics and Computing Sciences,
University of Groningen, The Netherlands. e-mail:
d.avalur@student.rug.nl

Fig. 1. Webservice Architecture[2]

The term web services is used to describe many activities as men-
tioned above, and hence is highly context-dependent. In this paper,
we are concerned about the application integration of the electric con-
trol utility center using web services. As far as application integration
is concerned, web services are referred to as structured architectures
on which various computer applications can be integrated with each
other using eXtensible Markup Language (XML) over network archi-
tecture like World Wide Web(WWW). The main goals of the web ser-
vices is to build an integration architecture that not only provides reuse
of existing infrastructure but also allows the clients to utilize the ser-
vices and data supported by the server. The web services also provide
framework for integration development using tools like Java, .NET
etc. The fundamental components of web service technology are as
follows (see Fig.1) [2]:

1. Universal Description, Discovery and Integration (UDDI):
This framework determines the location and definition of the
web services. It can be considered as a successor of Uniform
Resource Locator (URL) used on WWW.

2. Web Services Description Language (WSDL): This component
is used to describe the various services that operate on XML mes-
sages pointed to UDDI. It is considered as a successor of Hyper-
Text Markup Language(HTML) on WWW.

3. Simple Object Access Protocol (SOAP): This component is an
XML based protocol for exchanging information in distributed
environment. It is considered as a successor of HyperText Trans-
port Protocol (HTTP) on WWW.

75

3 INTERNATIONAL ELECTROTECHNICAL COMMISSION (IEC)
STANDARDS

The activities of the Technical Committee 57 (TC 57) of the Inter-
national Electrotechnical Commission (IEC) are concerned about the
development of the standards for power systems management and as-
sociated information exchange. This work has been spilt into various
working groups. Two among them are developing standards for appli-
cation integration in utility control center. Their details are as follows:

1. Working Group 13 (WG 13): This is developing IEC
61970 standard for the Energy Management Systems (EMS)/
Supervisory- Control for- Data Acquisition (SCADA) [5].

2. Working Group 14 (WG 14): This is involved in developing
IEC 61968 standard for distributed systems [6].

3. Working Group 10 (WG 10):The IEC 61850 standard is for
designing a Substation Automation System (SAS) [4].

3.1 Need for IEC Standardized Web Services
The International Electrotechnical Commission has proposed a certain
set of standards for the web services for the application integration in
the power utility systems. The main objective behind the introduction
of these standards is that the normal web services are lacking in a few
aspects:

1. Point-to-Point integration: An application that needs to inter-
act with a web service in an external application will need to es-
tablish independent links with each external application. It may
work fine if it involves one or two applications. But for n num-
ber of applications it needs to establish n(n-1) integration paths.
Thus it fails to provide point-to-point integration for even mod-
erately sized applications.

2. Lack of Standardized Data Model or Service Definitions: The
World Wide Web Consortium (W3C) does not offer any defini-
tion for standardizing the data exchanged between applications.
If two vendors utilize a web service interface, one vendor will
provide a different set of services using a different data model
compared to a similar system from another vendor. Due to this,
we need to customize the application integration for a specific
set of applications. This results in a high dependence on the cus-
tomization for such off the shelf applications.

The issues related to the web services can be solved with the help
of GID and CIM.

1. Point-to-Point integration: To eliminate point-to-point inte-
gration issue, the standardized web services make use of Ser-
vice Oriented Architecture (SOA) using Enterprise Service Bus
(ESB). Enterprise Service Bus is an application framework
which takes the applications and divides them into individual
business functions and processes which are referred to as ser-
vices. The SOA wraps all business functions from the new and
existing applications with an interface using W3C standards. The
main function of ESB is to combine SOA with message routing,
transforming messages using publish/subscribe to provide a sin-
gle point of integration. Due to this, an application gets a single
view of all the applications thereby eliminating the need for es-
tablishing separate links with each external application.

2. Lack of Standardized Data Model or Service Definitions: To
eliminate the issue of lack of standardized data model or service
definitions, the standardized web services make use of Generic
Data Definitions (GID) for standardized definitions and Com-
mon Information Model (CIM) for standardized data models
(GID and CIM are dealt with in the sections 4.1 and 4.2 respec-
tively). The web service interfaces which conform to GID and
CIM standards can interoperate with one another without pro-
gramming. The CIM used in applications from two different
vendors could support exactly the same data model thereby elim-
inating the need for customization.

4 IEC 61970
The IEC 61970 standard consists of the Common Information Model
(CIM), Common Interface Specification (CIS), a system topology for
exchanging of graphical schematic information. The interface services
used in IEC 61970 are a part of CIS. These interface services are called
as Generic Interface Definition (GID) [2].

4.1 Common Information Model (CIM)
The Common Information Model (CIM) is used as a standardized data
model for exchanging the power system data. It is used in the elec-
tric domain for distribution and transmission energy management sys-
tems. The CIM model is developed using Unified Modeling Language
(UML). The need for CIM was evolved due to deregulation and the
upcoming needs for the exchange of power data between companies
using systems of different vendors connected via web technologies.
The aim to develop a common data model for power data representa-
tion and an exchange format became more and more evident. In CIM,
the objects are represented as classes having attributes and relations to
other classes[3], as is in the usual way in UML.

4.2 Generic Interface Definition (GID)
The main goal of Generic Interface Definition is to provide standard-
ized interfaces for the applications. The applications use this definition
interface for exchange of information. They also help to map specific
technology profiles which provide standardized interfaces supporting
interfaces based on C++ programming language and interfaces based
on World Wide Web Consortium (W3C) [2].

The GID interfaces defined by IEC 61970 are further categorized
into four seperate interfaces:

1. Generic Data Access (GDA): This interface is based on the
concept of request/reply service that provides access to generic
data. The specification of GDA includes services that are helpful
in implementing a master resource identifier (MRID), a unique
identifier for the construction of any power system resource de-
fined in Common Information Model (CIM). It also includes the
namespace generation for avoiding the element name conflicts.
It provides the services to access and manipulate an object ori-
ented server using the CIM and a method by which the CIM
model server can issue notices to the client applications. The
working of GDA is based on the work of other standard organi-
zations including the Object Managements Groups Data Access
Facility (DAF) [7].

2. High Speed Data Access (HSDA): This interface is designed
to enable the systems to exchange real-time data. It allows the
clients to browse through the servers for exchange of data as well
as ask for updates to the data-points using namespace derived
from Common Information Model (CIM). The HSDA interface
can be used to interoperate with the other IEC interfaces. The
HSDA is specialized to real time applications. It also supports
subscription and read/write operations. It also helps to write new
values to the server. This interface is platform independent and
is based on the work of the other standard organizations like the
OPC Foundation Data Access (DA) [8].

3. Time Series Data Access (TSDA): This interface is designed to
enable the systems to exchange historical (time series) data. It
allows the clients to browse through the servers and query for
the data which existed at a specific point of time or over a range
of time using the namespace derived from the Common Informa-
tion Model (CIM). This interface also supports subscription and
read/write operations. The TSDA is specialized for the historical
data applications. The TSDA interface is platform independent
and is based on the working of other standard organizations like
OPC Foundations Data Historical Access (HDA)[9].

4. Generic Eventing and Subscription (GES): This interface is
designed to enable the publishing and subscribing of generic
XML based messages and also the messages specified under IEC

The Role of Standardized Web Services in Electric Utility Control Center Applications Integration – Divya .S. Avalur

76

Fig. 2. Communication in EMS [3]

61970. GES helps the subscribing application to browse the mes-
sages that a publishing application supports using the namespace
derived from the Common Information Model (CIM). It deals
with generic data exchange as compared to HSDA and TSDA,
which deal with specialized applications [10].

Implementation of CIM along with GID serves the following bene-
fits [2]:

1. Off-the-Shelf Interoperability of Applications: GID, in com-
bination with the CIM would help in the integration of two in-
dependently developed applications without extensive program-
ming and customization.

2. Enablement of Third Party Market: The interfaces and data
models in proprietary format is unique to the specific application
supplier. This reduces the possibility of working of the third
party applications. With GID, the interfaces and data models
are standardized thereby allowing the independent development
of applications. The Third party market will benefit from the
interoperability of products resulting in an increase in product
availability and competition.

3. Reduced Configuration Costs: The GID interfaces provide the
information in the context of the CIM. The configuration of ap-
plications can be obtained in an automated manner thereby re-
ducing the integration configuration costs.

4. Improved Usability of Integration Infrastructure: The client
application fails to understand the data representation that each
server application use internally. This is due to the fact that data
accessed using GID services is represented in the context of the
CIM. The data that is placed in the integration infrastructure us-
ing CIM will not only lower the training costs but also helps in
improving and understanding of the data exchange in an inte-
grated system.

5. Future Flexibility: Due to portability of GID services, they can
be based on widely used technologies such as SOA, Enterprise
Service Bus (ESB) and the web services. In the future, we expect
the same GID services can be ported into the new technologies
thereby making the transition simple and easy.

5 APPLICATION OF CIM IN EMS

An Energy Management System is composed of a set of different sub-
systems and services building the whole functionality of the entire sys-
tem. Although the subsystems may be produced from different ven-
dors working on different system platforms and data exchange for-
mats, there is always a need to exchange data between subsystems
[3]. For example, a substation A calculates the optimized load sched-
ules for a power grid. It provides the input data for a subsystem B
which calculates corresponding load estimate for distributed power
grid. There is a subsystem C which verifies the load schedules using
simulation and again sends the result to subsystem B.

This communication can be shown as in Fig.2 The following are
some of the benefits of CIM in EMS:

Fig. 3. Implementation based on Websrvices and IEC Standards [1]

1. Support of a Service-Oriented Architecture (SOA) by using
a common language: A communication and integration plat-
form can be used to provide communication and data exchange
between the different systems in a heterogenous environment.
For efficient communication it is necessary to build adaptors for
the transformation to get data interpretation. The building of
adaptors is very expensive. The CIM provides various options
to support communication between systems in a heterogenous
environment. The systems connected to EMS provide internal
data based on CIM and provide external CIM-compliant inter-
faces. Due to this, there is less data conversion routines within
adaptors and systems can work on same data models. A service-
oriented architecture supports CIM standard to provide an inte-
gration platform for various subsystems.

2. Improvement in commercialisation: The commercialisation of
a system depends on the functionality as well as flexibility to in-
tegrate with other systems. This helps in the reuse of existing
infrastructure and also improves the overall performance of the
system. The scope of commercial products in the market de-
pends on the standards set by themselves.

6 A CASE STUDY: THE ROLE OF WEB SERVICES IN CONTROL-
LING AND MONITORING SERVICES FOR EMS/SCADA

In the following section and thereafter, we shall present a case study
of the role of web servies in controlling and monitoring services for
EMS/SCADA . The implementation is open source based which aims
at decoupling applications, reducing upgrading costs and facilitating
easy procurement process of the new applications [1]. In the case
study, the choice of information exchange has been based on a IEC
standardized data model using the webservices. The model aims to
maximize network centric operations which are summarized in Fig.3

6.1 Methodology to support implementation testing
The implementation testing is basically used to validate the web
server that is being developed. The methodology which supports im-
plementation testing is the database design. The IEC services for
EMS/SCADA systems are basically related to monitoring and con-
trolling activities of physical devices. In the database design, physi-
cal devices are represented by database tables and their characteristics
are represented by database table attributes. The Entity-Relationship
(ER) is used in database design for representing physical devices like
meters, generators, breakers etc. The main aim is to simulate the read-
ing actions on physical devices on IEC-compliant databases.The data
model designed is based on the HSDA interface and TSDA interface,
which are disccused in Section 4.2. The CIM is used for object-
oriented representation for the data model. As the CIM is based on
Unified Modeling Language (UML) notation, it is used to define the

SC@RUG 2009 proceedings

77

Fig. 4. New entities defined for IEC 61850 substation data model repre-
sentation [1]

name for each class, its attributes and relationships with other classes.
This scenario deals with the translation of CIM UML notation into
ER notation. The HDSA interface provides direct access to the de-
vices represented by database tables. It also provides the direct in-
teraction with the simulated device in terms of reading and setting
controllable parameters. The TSDA interface described in IEC 61970-
407[11] standard is used for reading and writing time-series data. The
TSDA database design is similar to HSDA design. The main objec-
tive is that if the value in the physical device attribute stored in the
HSDA database table is updated, this updated value is stored in time-
series database. The important function of TSDA database manager
is to keep a record of historical data and also uses primary key of the
system as a code to represent the identifier of the insertion.

6.2 Integration and Extension of IEC Standards
In this section, we discuss about the integration of IEC 61970 and IEC
61850 data models. The IEC 61850 is a standard for the design of
Substation Automation System (SAS). For a detailed exposition, the
reader is referred to [12],[13],[14], we omit these details due to the
space limitations. Substation Automation System (SAS) defines the
communication between devices in the substation and the related sys-
tem requirements. In order to integrate the data models of IEC 61970
and IEC 61850, we generate an extension for SAS data models (IEC
61850) and IEC 61970 data model and CIM. The Electric Power Re-
search Institute(EPRI) provided a basic extension for the integration
of both the data models. The articulated extension involves merging
of IEC 61850 -7-3 [13] and IEC 61850-7-4[14] into IEC 61970. The
IEC 61850-7-3 standard describes common data classes and the IEC
61850-7-4 standard describes the logical node classes. Fig.4 shows
that the new entities have been defined to represent IEC 61850 substa-
tion information into IEC 61970. The new entities defined in the Fig.4
represent the logical nodes of IEC 61850-7-4 standard. These entities
are exploited to acquire the specific information and characteristics re-
lated to SAS devices. The new entities displayed in the Fig.4 includes

Fig. 5. Interaction between webservices and service proxy [1]

Fig. 6. Interaction Scenario [1]

circuit breaker, metering, generator and circuit switch. As discussed
earlier, the IEC 61850-7-4 standard presents the logical node classes
and attributes represented as common data classes (IEC 61850-7-3)
but not as simple types. We need to define them as simple types for
designing the database models. This can be done by merging the in-
formation obtained by IEC 61850-7-4 and IEC 61850-7-3 standards.
This can be done by mapping with simple data types of IEC 61850-7-3
is provided for the attributes of the logical nodes related to a specific
common data class (IEC 61850-7-4). The new attributes have been
defined by a composition of logical node attributes and common data
classes. For example, the attributes defined in circuit- breaker entity
are Loc StVal, Loc Q and Loc TS. The Loc is the name of the arribute
of the logical node specified by the IEC 61850-7-4 standard. This at-
tribute also represents the common data class single-point status(SPS)
provided by IEC 61850-7-3 standard. The attributes defined in the
SPS include status value StVal, quality Q and time-stamp(TS). Loc at-
tribute of the circuit-breaker logical node is composed with StVAl, Q
and TS. Therefore, a new set of attributes like Loc StVal, Loc Q and
Loc TS are obtained.

6.3 Implementation of Standardized Web Services
The implementation of standardized web services is realized by Java
Apache Axis2 web services [2]. The monitoring and controlling ser-
vices like EMS/SCADA use HTTP as the transport layer. The IEC
standard interface requires the implementation of asynchronous and
synchronous calls as well as event handling. Java Axis2 is not capable
of providing an event module. The exchange of structured informa-
tion is done by Simple Object Access Protocol (SOAP). SOAP is an
XML- based protocol which consists of different parts and is the foun-
dation of web services stack layer. The implementation pattern used
for monitoring and controlling services for EMS/SCADA is called as
Service proxy pattern. This integration pattern is a part of Domain
patterns. The main objective of this pattern is to perform application
decoupling. The interaction between parts is shown in Fig.5. This fig-
ure represents three proxies which contain Java methods. These meth-
ods represent services provided by the web services. In order to access
IEC-compliant web- services we need to include IEC-compliant proxy
server. The main function of proxy modules is to provide data format-
ting when the invocation of service returns different data types. The
advantages of using proxy servers are there is no direct interaction be-
tween client and service.

It also permits reusing of implemented services in other parts of
application. The idea behind using a service proxy can be explained

The Role of Standardized Web Services in Electric Utility Control Center Applications Integration – Divya .S. Avalur

78

with the help of the following Fig.6. This figure shows the interac-
tion between Graphical User Interface (GUI), web services and phys-
ical devices. The steps involved in this process are as follows:- The
GUI/client sends a request for a specific service. This request is man-
aged by the service proxy which is local to the client application. The
service proxy invokes the web services. The service implementation
at web services provides the reading of the database table which con-
tains the required information. The last step is to come back to the
GUI/client which provides result visualization in a real implementa-
tion. The realized server provides the writing and reading of typi-
cal values stored in database tables which represent physical devices.
The services offered by Axis2 includes how to get and set parame-
ters of physical devices and also to read time series data stored in a
database. Timestamp management is also take into account for the
conversion between java.sql.Date and java.util.Date[2]. This is be-
cause the database treats the date as java.sql.Date whereas web ser-
vices treat it as java.util.Date.The implementation phase involves im-
plementation of several Java and XML files. The Java files are relative
to proxies and services implementation. XML files are implemented
to configure Axis2 web services for correct compiling of source code,
classpath settings and execution instructions. It also used to specify
message receivers and an operation list. Web Services Description
Language (WSDL) in XML format is used to describe the network
services as a set of endpoints on messages in document- oriented or
procedure oriented information.

7 CONCLUSIONS

In this paper, we have discussed the role of the standardized web ser-
vices in the integration of Electric Utility Control Center applications.
The normal web services suffer from disadvantages like point-to-point
integration and lack of standardized data models, which led to the de-
velopment of the standardized web services. The International Elec-
trotechnical Commission is responsible for the development of these
standardized web services. Various standards have been proposed
among them IEC 61970, IEC 61850 focus mainly on the applications
of electric utility control center. These standards help in overcoming
the demerits of the normal web services. They also help in the suc-
cessful integration of the business utility applications with the power
system operation applications, which is quite a challenging task. There
are certain benefits which result in combining CIM and GID compo-
nents of IEC 61970 standard in Energy Management Systems. These
are explained in detail in the paper, which substantiates the role of the
standardized web services in the electric utility control center applica-
tions integration. Further the case study about the open source imple-
mentation of web services as well as integration and extension of IEC
61970 and IEC 61850 standards is discussed in the paper. These are
investigated in the context of controlling and monitoring services for
the EMS/SCADA system. We find that the standardized web services
are suitable for dynamic working environments. It is also observed
that the timelines are reduced dynamically by building the integration
infrastructure for operational applications. Further, the cost, complex-
ity and programming effort to build and maintain the integration in-
frastructure is also effectively reduced using these standardized web
services.

REFERENCES

[1] Andrea Mercurio, Alessandro Di Giorgio, Pierfrancesco Cioci, “Open-
Source Implementation of Monitoring and Controlling Services for
EMS/SCADA Systems by Means of Web Services IEC 61850 and IEC
61970 Standards”, 1148-1153, Volume 24, 2009,IEEE transactions on
power delivery.

[2] R.E.Mackiewicz, “The Benefits of Standardized Web Services Based
on the IEC 61970 Generic Interface Definition for Electric Utility Con-
trol Center Application Integration”, 491 - 494,Oct. 29 2006-Nov. 1
2006 , Power Systems Conference and Exposition, 2006. PSCE ’06.
2006 IEEE PES.

[3] Mathias Uslar, Tanja Schmedes, Andreas Lucks, Till Luh-
mann, Ludger Winkels, Hans-Jurgen Appelrath, “Interac-
tion of EMS related systems by using the CIM Standard”,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.1546.

[4] IEC TC57 - WG10/17/18, http://tc57wg10.info.
[5] IEC 61970 - Energy management system application program inter-

face (EMS-API); International Electrotechnical Commission, Geneva
Switzerland, http://www.iec.ch/

[6] IEC 61968- Application integration at electric utilities - System inter-
faces for distribution management; International Electrotechnical Com-
mission, Geneva Switzerland, http://www.iec.ch/

[7] Object Management Group, Utility Management Systems, Data Access
Facility (DAF), June 2005, http://www.omg.org/spec/

[8] OPC Foundation, OLE For Process Control Data Access Specifications,
June 2002, http://www.omg.org/spec/

[9] OPC Foundation, OLE For Process Control Historical Data Access
Specifications, January 2001, http://www.omg.org/spec/

[10] OPC Foundation, OLE For Process Control Alarms & Events Specifi-
cations, October 2002, http://www.omg.org/spec/

[11] Energy Management System Application Program Interface (EMS-
API), Part 407: Time Series Data Access (TSDA), 2007 IEC 61970-
407, Int. Electrotech. Comm. [Online]. Available: http://webstore.
iec.ch/webstore/webstore.nsf/artnum/038213?opendocument.

[12] Communication Networks and Systems in Substations, Part 7-2: Ba-
sic Communication Structure for Substation and Feeder Equipment,
Abstract Communication Service Interface (ACSI), 2003 IEC 61850-
7-2, Int. Electrotech. Comm. [Online]. Available: http://webstore.
iec.ch/webstore/webstore.nsf/artnum/030581?opendocument.

[13] Communication Networks and Systems in Substations, Part 7-3:
Basic Communication Structure for Substation and Feeder Equip-
ment, Common Data Classes, 2003 IEC 61850-7-3, Int. Electrotech.
Comm. [Online]. Available: http://webstore.iec.ch/webstore/webstore.
nsf/artnum/030583?opendocument

[14] Communication Networks and Systems in Substations, Part 7-4: Ba-
sic Communication Structure for Substation and Feeder Equipment,
Compatible Logical Node Classes and Data Classes, 2003 IEC 61850-
7-4., Int. Electrotech. Comm. [Online]. Available: http://webstore.
iec.ch/webstore/webstore.nsf/artnum/030606?opendocument.

SC@RUG 2009 proceedings

79

Online Voting: Yes or No

Klaas Mussche, and Edwin-Jan Harmsma

Abstract— We introduce a new design of an online voting system, based upon a concept called trusted persons and the usage of
public-key cryptography. Online banking systems and government services via the Internet gain popularity, but voting is not often
done via the Internet. We think that this is because people tend to distrust online election systems, since they have to guarantee
properties like fairness, transparency and anonymity.
In our research we look at the requirements for fair elections and translate these to technical and social requirements for online
voting systems. We identify the general problems online voting systems have to deal with. We present a system that meets these
requirements and addresses potential problems. Finally we compare our system with two already existing systems, the Rijnland
Internet Election System (RIES) used in 2004 for the elections of the Dutch local authorities for water management, and a secure
anonymous Internet voting system designed by Yu-Yi Chen, Jinn-Ke Jan and Chin-Ling Chen.
This paper focuses on online general elections, like for the House of Representatives of the Netherlands (Tweede Kamer). We assume
that all votes are handled by the online voting system and that for example voting with paper ballots is not allowed.

Index Terms—Cryptography, Elections, Online voting, Online democracy.

1 INTRODUCTION

Nowadays more and more tasks are performed online. A lot of people
are currently using online banking systems and some government re-
lated tasks can also be performed online. However, elections are still
rarely performed via the Internet. In this paper we describe how elec-
tronic voting systems could be used for national elections, e.g. for the
House of Representatives of the Netherlands (Tweede Kamer). The
main research question in this paper is: What are the requirements,
possibilities and problems for online national elections?

First, we show an overview of the technical requirements for such
a system, and most important, we explain the difficulties of these re-
quirements. The interesting part of this is that some requirements like
transparency and anonymity might conflict at first sight. However,
some of these issues can be solved by using public-key cryptography
in a smart way.

Secondly, with these requirements in mind we introduce and de-
scribe the design of a new online voting system. This system opens a
new perspective for generating the private keys of the voters, this task
can be performed by both the voter itself or by the government party.
While in existing systems this is always performed by a selected party
or the government itself. Another important aspect is that our system is
able to distinguish votes that are submitted in a regulated voting place
and votes that are submitted via the Internet. This is done by having
a specific trusted person for these regulated votes. Finally, the user is
able to select his own trusted person for voting via the Internet, this
makes the system more robust since no single party is responsible for
the fairness of the system. We assume that all votes are handled by the
online voting system, and that voting with paper ballots is not allowed.

During our research we studied two different online voting systems;
The Rijnland Internet Election System used in 2004 for the elections of
the Dutch local authorities for water management and designed by En-
gelbert Hubbers, Bart Jacobs and Wolter Pieters [5] and the proposed
system in The design of a secure anonymous Internet voting system
by Yu-Yi Chen, Jinn-Ke Jan and Chin-Ling Chen [3]. Finally, we dis-
cuss the suitability for national elections of these two existing voting
systems, and compare these systems with our proposed system. A de-
tailed comparison with respect to the discussed requirements is shown
in the end.

• Klaas Mussche is master student at the University of Groningen, E-mail:
klaasmussche@gmail.com.

• Edwin-Jan Harmsma is master student at the University of Groningen,
E-mail: ejharmsma@gmail.com.

2 PROBLEM STATEMENT

An online voting system must guarantee several important require-
ments to become accepted in a democracy. Requirements can be tech-
nical, for example to prevent voting more than once, but also be more
social related, for example if people do understand the voting process.
In this paper we will mainly focus on the technical requirements, how-
ever, we will first briefly discuss some important social requirements.

2.1 Social requirements
Social requirements do not relate directly to the design and implemen-
tation of the system. However, these requirements will influence the
design of the system in a more general way.

The requirements listed below are in more detail described by
Stephen Coleman in [4].

Turnout A high percentage of the eligible voters should participate
in an election to have a good reflection of the public’s will.

At this point online voting could play an important role, since it
in general becomes easier to vote if people can do it at home or
work.

Representativeness The final outcome of the election should be a
good reflection of the socio-demographic composition of the el-
igible electorate. This might be in contrast with the Turnout re-
quirement, since a higher turnout does not directly improve the
representativeness.

Especially online voting might affect the representativeness of an
election in a negative way because the participation of a group
that is more familiar with computers might increase, while lower
educated or elderly people might get under-represented.

Transparency People must understand the democratic system, and
how the voting procedure is fulfilled. Voters should be able to
understand that their vote is handled secure and anonymous. Fur-
thermore, the overall process of voting (e.g. the process of count-
ing the votes) should be clear for a nontechnical voter.

This social requirement might become a real problem, since the
majority has no clue about the mathematical details that are re-
quired to understand for example the encryption that ensures the
privacy. On the other hand, the mass society currently uses on-
line banking systems without having any knowledge about tech-
nical details.

An online voting system is only transparent if the voters can en-
sure that no one else knows their private key. Each voter might

80

need a private key. If this private key is generated by the gov-
ernment or another third-party organization, then voters cannot
be sure that this organization has really deleted their private keys
and thus cannot be sure no one is able to vote in their name.
Therefore, a transparent voting system requires or at least allows
voters to generate their own private key.

2.2 Technical Requirements

We used the requirements from Yu-Yi Chen et al. [3] as starting point
for our research. The requirements listed in this paper are not specif-
ically designed for national voting systems. However, the basic prin-
ciples described in this paper are suitable for national elections. To
make the requirements more suitable we modified some of them as is
shown below.

Fairness No one can learn the outcome before the tally.

Eligibility Only permitted voters are allowed to submit a vote that
contributes to the outcome of the election.

Equality Every voter contributes equally to the final outcome.

Uniqueness Every voter can only contribute once to the final out-
come. But a voter should be able to submit his vote multiple
times to prevent family voting.

Yu-Yi Chen et al. describe in [3] that a voter must not be able
to vote more than once. We modified this requirement so the
voter can vote more than once, but only the last submitted vote
contributes to the final outcome. This preserves family voting
because a voter can now resubmit a ballot until a certain dead-
line. Family voting is in this case only prevented if the bribed
or suppressed voter is able to go to another (public) computer
before the deadline. If the voter is in a suppressed environment
short before the deadline then family voting is still possible, but
this is solved by the Freedom requirement.

Freedom A voter should be able to submit his ballot in a regulated
place. In practice this means that a ballot which is submitted in
a trusted polling place should overrule all previous and potential
upcoming submissions.

In this way it is guaranteed that a voter is able to perform his vote
without being influenced by others.

Uncoercability A voter can not prove (afterwards) how he voted.
This is highly related to the Freedom requirement and is required
to prevent bribery.

Anonymity There is no way to derive a link between the voter’s iden-
tity and the marked ballot.

Accuracy A voter’s vote can not be altered, duplicated, or removed.

Efficiency The computations can be performed within a reasonable
amount of time.

Robustness A malicious voter cannot frustrate or disturb the election.

Mobility A voter should not be restricted in the place where he or
she submits his ballot. This is also related to the Freedom aspect,
because the voter should also be able to vote in a regulated place.

Practicability No extra skills should be required to vote, but some
additional equipment might be required (e.g. equipment to iden-
tify the voter).

This is required to allow every person that is part of the democ-
racy to participate in the elections. (Representativeness)

3 DESIGN

Traditionally, people who are eligible to vote can cast their vote for a
certain candidate on the day of the election in a voting station. Voting
is then done by filling in a box on a voting ballot. Those ballots are
collected in ballot boxes. After the time to vote has passed, people
will count how many votes each candidate has. This is called the tally.
Formal procedures are used to ensure that no one can vote more than
once and that no one can influence the results or count the already
collected votes before the tally. It usually is possible for voters to let
another voter vote in their name as well.

This scheme more or less stays the same when elections are held
via the Internet. The traditional paper ballot will be replaced with a
digital version. Physical boxes are no longer necessary to gather the
ballots. Time consuming manual counting of the votes can be avoided:
instead, computers can do the tally, probably faster and more accurate
than humans can ever do. However, some of the formal procedures
to guarantee fair elections cannot be applied digitally, and have to be
replaced, for example with a cryptographic solution.

3.1 Most important requirements

Probably the most important requirement for an online voting system
is transparency. When we assume that people do trust the traditional
voting system, than it is a good choice to design our online voting
system in such a way that it resembles the traditional system. For ex-
ample, with traditional voting voters can verify that their name is not
on the ballot, so they know that voting is anonymous. The formal pro-
cedures at the voting center ensure that nobody can vote more than
once, and the counting of the votes is done by other humans. Every
online voting system will have the drawback that laymen cannot verify
for themself that the system guarantees fair elections. But if the on-
line voting system resembles the traditional system, then laymen might
trust the system. Professionals with enough technological knowledge
should be able to verify the correctness of the system for themself.

Online voting must feel inherently safe. To obtain this feeling, it
is necessary to replace the formal procedures which cannot be applied
via the Internet with technical procedures which work via the Internet.
Most people might not be able to understand the technical procedures
in detail, and even the tiniest uncertainty about the validity of the sys-
tem can scare lots of people. To let the system feel safe, it should
not be designed as a set of computer programs, but as a set of proto-
cols and algorithms. Computing scientists can verify that those do not
leave any possibility for abuse. That way no company, organization
or individual can have such a role in the process, that voters can think
that they might be able to influence the results.

Laymen probably trust other people better than machines and algo-
rithms, because they do not understand the latter at all. In our system
we introduce the concept of trusted persons. In the traditional scheme,
people have to trust the voting center staff. This staff secures the votes
until the tally, and ensures that all votes will contribute to the final
outcome. Using our trusted persons approach, voters can choose for
themself who they want to trust with securing their digital vote. How-
ever, these trusted persons should not have the ability to influence the
final outcome.

3.2 Technical overview

Security keys

Each voter has to get a public and private key prior to the election day
itself. An online voting system needs a cryptographic key scheme for
encryption, decryption and signing of the votes. Traditionally, people
who are eligible to vote get a voting pass by name, so the voting center
staff can verify that the person is eligible to vote. The voting center
will keep the voting pass, so people cannot vote more than once. We
replaced the traditional voting pass with a public and private key for
each voter. Some other schemes like [3] and [5] do have a central au-
thentication center which creates the key pair for each person eligible
to vote. However, voters do have to trust that the authentication center
will not abuse the private keys to influence the election.

SC@RUG 2009 proceedings

81

Voter

Trusted person

Government

Register key pairs

Send remaining key pairs

Election day

Release private key

Tally

Fig. 1. Timeline of the election process.

Trusted persons do have another public and private key pair. The
public key of this pair is published before or at the start of the election
day, and voters have to use this public key to encrypt their ballot. At
the end of the election day, all trusted persons publish their private key
as well, therefore allowing everyone to decrypt all ballots.

Voting
The actual voting is done by a voter by creating a valid digital ballot.
To create a valid digital ballot, the private key of the voter is necessary,
as well as the public key of one trusted person. The resulting digital
ballot is encrypted, which means that it is impossible to find out which
candidate the voter supported, unless the private key of the trusted
person is known. Digital ballots do not contain any link to the original
voter, but for each pair of digital ballots it is possible to verify that
these ballots where created using different voter private keys.

Figure 1 shows a timeline of the voting process. Initially, all voters
do have the time to create and register their own key pairs. After the
time for voters to create their own key pairs has passed, the govern-
ment will create key pairs for those who did not do it themself, and
sent these keys to the voters. The government in principle does have
the time to do this until the election day. Trusted persons can create
and register key pairs also from the beginning and till the election day.
At the day of election, all voters can cast their vote. After the time to
vote has passed, a short time is given to the trusted persons, so they
can release their private keys. When that is done, everyone is able to
do the tally by downloading all data and counting the valid votes.

Figure 2 shows another overview of the voting process. It basically
shows that there are four keys involved in each vote: the public and
private key of the voter, and the public and private key of the chosen
trusted person. The voter public key can be used to verify that the
voter was eligible to vote. The keys are used to create a digital ballot,
which is then stored in the digital ballot box.

Digital ballot box
All digital ballots are gathered into a digital ballot box. The digital
ballot box should fulfill the following properties:

1. Everyone should be able to submit digital ballots to the digital
ballot box via the Internet without authentication.

2. Voters should have the possibility to verify that their vote was
received and stored correctly by the ballot box.

The digital ballot box is a very crucial part of the voting system, be-
cause no one can vote if there is no digital ballot box available. For
example, a DDoS attack on the digital ballot box can seriously disrupt
the elections. However, we think that the digital ballot box does not
have to be a weak part of the system. All digital ballots are encrypted
on the machine used to create and submit the ballot to the box. No one
can decrypt the ballots without knowing the private keys of the trusted
persons, so the content of the digital ballot box only give informa-
tion about how much people have voted, but no preliminary election
results. So if one is able to break the digital ballot box, no secret infor-
mation can leak to the public. However, all digital ballots are sent to
the digital ballot box via the web proxies, so the digital ballot box may
be on a private IP address so that a DDoS attack becomes more un-
likely. In addition it is possible to use multiple redundant servers and

(commercially) available DDoS defense solutions to further secure the
digital ballot box.

Vote counting
Everyone can count the votes for each candidate when the election is
done. All ballots are published after the election, but no one is able to
determine who created which ballot except for their own.

Fig. 2. Overview of the online voting system

3.3 Technical details
The digital ballots are created by the voter, but the voter should not be
able to choose the timestamp of the ballot. The web proxies are con-
trolled servers, so they can be used to create the timestamp. However,
to give the voter the idea that he or she can verify the timestamp, the
user should explicitly accept the timestamp as added by the web proxy
to the ballot. So, the voter first creates the digital ballot, but without an
timestamp. This ballot is then send to a web proxy, which adds a time-
stamp to the ballot and remembers that it had added that timestamp to
the ballot. The ballot including the timestamp is then send back to the
voter, who can verify the timestamp and sign the whole ballot again,
thereby declaring that the timestamp is correct. The signed and time-
stamped ballot is then again send to the web proxy, which verifies if
the user did not change the timestamp and then finally forwards the
ballot to the digital ballot box.

This extra step of signing the ballot again might look somewhat
tedious for people. Also, in controlled voting stations this is not re-
ally necessary. So governments might choose to give voters the op-
tion to immediately say that they do trust the attached timestamp. In
that case, some information is added to the plaintext ballot indicating
that no explicit timestamp signing is necessary. However, in that case
the timestamp on the ballot can be changed after it has been put into
the digital ballot box without any way to detect it, because the com-
bination of ballot and timestamp has never been signed. This can be
solved by letting the voter add a automatically accept timestamp range
to the plaintext ballot. If the web proxy sees that the timestamp for the
ballot is within that range, then no explicit re-signing by the voter is

Online Voting: Yes or No – Klaas Mussche, and Edwin-Jan Harmsma

82

necessary. This timestamp range should not span more then a certain
maximum amount of time.

The life of a digital ballot is as follows (see also Figure 3):

• The plaintext ballot is created by the voter, and contains only the
candidate identifier the voter wants to support.

• The encrypted ballot is obtained by encrypting the plaintext bal-
lot with the trusted persons public key.

• The signed ballot consists of the encrypted ballot combined with
the unencrypted public keys of the voter and the trusted person,
and signed with the voter private key.

• The voter sends the signed ballot to a web proxy. This web proxy
ensures that information like IP addresses are not stored together
with the ballot, and will create the time-stamped ballot by adding
a time stamp to the signed ballot.

• The web proxy returns the time-stamped ballot to the voter, who
verifies the time stamp, and again signs the ballot. The resulting
ballot is the time-stamped signed ballot.

• The voter sends the time-stamped signed ballot back to the web
proxy.

• The web proxy forwards the time-stamped signed ballot to the
digital ballot box.

• At the tally, the public keys of the voters are used to invalidate
all votes but the last of voters who voted more than once.

• The public keys of the trusted persons are used to select to private
key of the trusted person for each ballot.

• The plaintext ballot is again obtained by decrypting the ballot.

Timestamp

Candidate

ID

Voter public key

Trusted person public key

1

2

3

Fig. 3. Digital ballot structure. 1: Encrypted with trusted person public
key. 2: Signed with voter private key. 3: Again signed with voter private
key.

Each voter and each trusted person does have a public and private
key. Trusted persons probably are voters as well, and thus they will
have two public and two private keys. These key pairs cannot be the
same, each key pair has to be unique. Those keys are used in the
following situations:

1. Trusted person public key is used to encrypt the plaintext ballot.

2. Voter private key is used to sign the encrypted ballot twice.

3. Voter public key is used to verify the sign of the encrypted ballot.

4. Trusted person private key is used to decrypt the plaintext ballot.

Submission of digital ballots is done via a web proxy and over a
SSL connection. The web proxy is responsible for removal of all infor-
mation which might comprise the anonimity of the voter, like sender
IP address, and attaches a time stamp to each vote. The SSL connec-
tion ensures that man-in-the-middle attacks or eavesdropping is not
possible.

Our system does not really solve the threat of man-in-the-browser
attacks. People who vote should use their own computer, and thus
are themself responsible for a secure system. People who don’t have
access to a trusted computer should cast their vote in the regulated
voting center.

Implementation of the overruling behaviour of votes cast at an of-
ficial voting center is easy possible with the trusted persons approach.
Each voting center is another trusted person, and by voting at a vot-
ing center the voter implicitly chooses to trust the persons at the voting
center instead of someone else. This requires that the public key of vot-
ing centers will only be published after the election, because otherwise
anyone can just use a voting center public key to create an ’overruling’
ballot.

3.4 Practical issues
A correct tally is impossible if one or more of the trusted persons do
not publish their private key. This might happen due to illness or ac-
cidents. A solution might be to use trusted groups instead of trusted
persons. Every member of the group knows the private key, and thus
can publish the key. However, trusted persons or groups might happen
to be not really trustworthy: the whole group might have the goal to
not publish the private key and thus disrupt the election. It is probably
not possible to prevent this, just ignoring all votes encrypted with this
private key is the only option. Voters have to choose which trusted
person they do really trust.

People are not good in remembering large and random sequences
of text, like the public and private keys. When people create their own
key pair, they can store the private key on their computer. The public
key has to be registered at the government, but this can be done digital
(using for example DigiD for authentication).

4 COMPARISON

In this study we have done research about existing voting systems as
well. We compared the systems described in [3] and [5] with our de-
signed system. We reflected how these online voting systems impact
the requirements introduced in Section 2.1 and Section 2.2. The results
of this comparison are shown in Table 1.

4.1 The Chen, Jan and Chen Voting System
The voting system introduced by Yu-Yi Chen, Jinn-Ke Jan and Chin-
Ling Chen in [3] is an important base for the design of our system.
We share the idea of most of the requirements listed in this article.
However, as with RIES, all the certificates are generated by one single
party, which has in our opinion a too important role in the election
process.

The system designed by Chen, Jan and Chen prevents bribery since
it not possible to verify the voting outcome. If they would allow voters
to verify the voting outcome it will be possible for each voter to prove
what they have voted. To keep this process transparent for the public,
they have chosen to introduce a ”supervisor center” that verifies the
processes that are performed by the ”tally center”.

Also is the fairness of the system guaranteed by the fact that the
”supervisor center” will monitor if the private keys for decrypting the
votes is not released before the voting deadline.

4.2 The RIES Voting System
The most important difference of the RIES system is the principle of a
”pre-election table”. This table is generated before the election starts
and contains all possible votes. This table requires that the private
DES key of the potential voter is known since the data in this table is
created by using this key.

After the creation of the ”pre-election table” the DES keys must
be distributed among all potential voters. It is essential that the DES

SC@RUG 2009 proceedings

83

keys will be destroyed after this step, since this is required to keep the
voters anonymous. In case that the keys are not properly destroyed the
party that generates the keys can create new votes and modify votes
afterwards.

Another important aspect of this system is that it allows the user
to verify the outcome of the election, and even verify if the submitted
vote is actually processed and counted. However, this aspect is of
course in conflict with the uncoercability requirement. The voter can
now prove what he has voted as long as he saves his key.

4.3 The Harmsma and Mussche Voting System
The most important and essential difference between our system and
the two previous systems is that the private keys can be generated by
the voters itself. In this case, the voter has only to submit his pub-
lic key to the government, so they can verify the signature. In this
process it must be guaranteed that the government will not store the
voters personal information attached to the public key. Otherwise, the
government would be able to relate the decrypted votes to the voters.
If a voter does not want to create his own key-pair, the government is
still able to generate the key-pairs for the voters that did not submit a
public key in the key-pair registration period. In this case the usability
of the system is preserved and suspicious voters are able to keep the
important and private information away from the ”evil” government.

Another unique property of our system is that a voter can choose his
own trusted person. The trusted person is similar to the ”tally center”
in the system of Chen, Jan and Chen. But in our case there can be
multiple trusted persons, and in this case the robustness of the fairness
requirement is increased.

Related to this final aspect is that the voter is able to go to a reg-
ulated place to cast his ballot. The regulated place is in our case just
a ”special” trusted person. Votes submitted that are encrypted with
a regulated place key have a higher priority than the votes submitted
from other places, the regulated vote will overrule all the other votes.
In this case, family voting is very unlikely since a voter can still submit
a vote in a regulated place which can be done secretly.

5 DISCUSSION

An online voting system requires much more than just a web site where
people can cast their vote. This is probably something where people
are not aware of. This might cause people to think that the procedures
and implementation of online voting systems is unnecessary complex:
even if they understand the requirements for an online voting system,
they might still be unable to understand how the proposed online vot-
ing system guarantees fair elections. However, our trusted persons ap-
proach does not only guarantee fair elections, but also gives the voters
themselves the control about the fairness of the elections.

Our online voting system does have some disadvantages as well. If
people want to cast their vote in a regulated voting station, then they
have to carry their public and private key to the voting station. Storage
on a digital medium like a memory card is an option, but might be
too expensive. Printing it on paper is also an option. Then the voter
probably has to type this code over by hand, but he or she might do
this wrong. Of course, when people have created their private key on
their own computer, and vote online, then key storage is not a problem
at all because the key can just be stored on their own computer.

In our scheme the government creates the private keys for lazy vot-
ers, who didn’t do this themself in time. This still gives the government
a possibility to influence the results. It might be possible to prevent
creation of private keys by the government and key storage problems
at all. By adding a key generation facility to the voting stations, voters
do have two options: either vote online, which requires the creation of
a key pair prior to the election day, or vote in the regulated voting sta-
tion and create the keys immediately prior to the actual voting. Then
they only have to carry a traditional voting pass to the voting center.

6 CONCLUSION

In Section 3 we presented an online voting system which meets the
requirements as stated in Section 2. Due to our trusted persons ap-
proach, the ability for voters to create their own private key, and the

possibility to vote using your own hardware, we think that our system
is trustworthy. The idea of trustworthiness for e-government systems
is defined by Carter and Bélanger in [2].

Due to Antoniou et al. trust plays “a mayor role in the way people
view and use information systems, lack of trust renders even expensive
and sophisticated information systems completely useless” [1]. Trust
is not based on “some publicly available systematic design process,
but rather on the reputation of the system’s implementor” [1]. We
did not give the exact implementation of our online voting system, but
only the high-level scheme as well as the cryptographic requirements.
This means that the design process nor the system’s implementor play
a mayor role in determining the trustworthiness of our system.

The problems introduced by letting people use their own computer
to cast the vote via the Internet introduces a whole new class of design
challenges. Volkamer et al. did some more research about this in [8].

Online voting is not new, it has already been used. Both the Nether-
lands and the UK have used online voting for certain elections. A case
study of the online voting discourses in the UK and the Netherlands is
performed by Pieters and Van Haren [7]. Estonia recently used online
voting as well [6].

We do think that online voting is something which should really
be considered. It has several advantages over traditional voting, and
therefore is a good alternative for traditional voting. In this article we
described the RIES system [5] and the system by Yu-Yi Chen et al. [3].
There are more systems not covered in detail in this article, like the one
used in Estonia. We think that our system is a good start if a country
wants to start using online voting, however more research in several
aspects is required. Some points that might require further research
are:

1. The possibility of man-in-the-browser attacks.
2. Do people really use the possibility of creating their own private

keys or are almost all voters “lazy”.
3. Technical implementation of the various parts.

ACKNOWLEDGEMENTS

We want to thank dr. F. B. Brokken for doing an expert review of our
work.

REFERENCES

[1] A. Antoniou, C. Korakas, C. Manolopoulos, A. Panagiotaki, D. Sofotas-
sios, P. G. Spirakis, and Y. C. Stamatiou. A trust-centered approach for
building e-voting systems. In EGOV’07, pages 366–377, 2007.

[2] L. Carter and F. Bélanger. The utilization of e-government services: citi-
zen trust, innovation and acceptance factors. Information Systems Journal,
15(1):5–25, 2005.

[3] Y.-Y. Chen, J.-K. Jan, and C.-L. Chen. The design of a secure anonymous
internet voting system. Elsevier, January 2004.

[4] S. Coleman. Just how risky is online voting? IOS Press, 2005.
[5] E. Hubbers, B. Jacobs, and W. Pieters. Ries - internet voting in action.

IEEE Proceedings of the 29th Annual International Computer Software
and Applications Conference (COMPSAC’05), 2005.

[6] E. Maaten. Towards remote e-voting: Estonian case. In Electronic Voting
in Europe - Technology, Law, Politics and Society, pages 83–90, 2004.

[7] W. Pieters and R. van Haren. E-voting discourses in the UK and the Nether-
lands, August 2007.

[8] M. Volkamer, A. Alkassar, A. reza Sadeghi, S. Schulz, and S. Ag. En-
abling the Application of Open Systems Like PCs for Online Voting. In In
Proc. of Workshop on Frontiers in Electronic Elections, 2006. [81] Dennis
Volpano and, 2006.

Online Voting: Yes or No – Klaas Mussche, and Edwin-Jan Harmsma

84

Table 1. Comparison with two other online voting systems

Requirement Chen, Jan and Chen RIES Harmsma and Mussche
Fairness The vote is stored encrypted at the Tally

Center. And can only be encrypted af-
ter the voting deadline, this is ensured
by ”supervision center”.

SURFnet stores all ”technical votes”
which are encrypted and can only be de-
crypted after the voting by TTPI.

The vote is stored encrypted in the digi-
tal ballot box and can only be decrypted
with the private keys of the thrusted per-
sons, who will release these keys after
the voting process.

Eligibility It is not possible to vote without a ”per-
sonal certificate” that is generated by the
”certificate authority”.

Only voters with a valid DES key, which
is generated by TTPI can submit a vote
that contributes to the final outcome be-
cause the vote will be checked according
to the ”pre-election” table.

Voters can create their own key-pairs or
wait until the government will create the
key-pairs. In both cases a vote is only
valid if the public key is registered at the
government, in this way it is ensured that
only eligible voters can contribute to the
final outcome.

Equality Every vote contributes equally to the fi-
nal outcome.

Every vote contributes equally to the fi-
nal outcome.

Every vote contributes equally to the fi-
nal outcome. Moreover, a voter can sub-
mit multiple votes, but only the last one
or the one submitted in a regulated vot-
ing place contributes to the final out-
come.

Uniqueness Each voter has only one possiblity to get
a ”voter-pseudonym signature” from the
authority center. Only with this signa-
ture it is possible to submit a valid vote.

All duplicate votes are removed, so if a
voter submits multiple votes all his votes
are invalid and will not contribute to the
final outcome.

A timestamp will be attached to every
submitted vote, which can be checked
by the voter. The signed vote includ-
ing this timestamp is send to the digital
ballot box, this ensures that only the last
submitted vote of the voter is counted or
if present only the regulated vote.

Freedom All votes can only be performed with the
online system. The user is not able to
go to a regulated place to submit an un-
changable vote.

The user is not able to vote in a regulated
place.

The user can vote in a regulated voting
place. In this case all the other votes are
overruled by the regulated vote.

Uncoercability A voter cannot prove what he has voted
afterwards.

A voter can prove what he has voted af-
terwards by performing an election veri-
fication.

A voter can prove what he has voted af-
terwards by performing an election veri-
fication.

Anonymity The private keys of the voters are gen-
erated by the ”certificate authority”, this
party must remove the private keys af-
ter distributing it to the potential voters
in order to keep the process anonymous.
Also must the process of distribution of
the private key be performed secure.

Anonymous elections can only be guar-
anteed if the secret DES keys will be
destroyed by TTPI. The SURFnet party
is responsible for removing user critical
data like IP adresses and timestamps.

A voter is allowed to create and regis-
ter his own key-pair. In this case no one
else will ever see the private key of the
user, the government has only a registra-
tion of the public key. The proxy servers
will guarantee that no other information
is send to the government than neces-
sary.

Accuracy Both the ”tally center” as ”supervision
center” must collaborate to get the cor-
rect result. By this separation of duties
it is unlikely that votes can be altered,
duplicated or removed.

All voters are able to validate their own
vote and count the submitted votes.

All voters are able to validate their own
vote and count the submitted votes.

Efficiency The ”tally center” will check for du-
plicates for each submitted vote. This
might make the voting process less ef-
ficient if the database of votes becomes
large.

During the voting process SURFnet only
stores the votes that are send via a
HTTPS connection. After the elections
all the data has to be decrypted and val-
idated, but efficiency at this part is not a
big issue.

During the voting process the digital bal-
lot box only stores the votes that are send
via a HTTPS connection. After the elec-
tions all the data has to be decrypted and
validated, but efficiency at this part is not
a big issue.

Robustness The system might be susceptible for
DDoS attacks since the efficiency of the
voting submission process can become
a problem if the system is flooded with
fake votes.

Less susceptible for DDoS attacks since
the efficiency of the voting phase is
higher.

Less susceptible for DDoS attacks since
the efficiency of the voting phase is
higher. Also can the digital ballot box be
hidden from the public internet, in such a
way that only the proxy servers can con-
nect to the digital ballot box.

Mobility A voter must submit his vote via the In-
ternet.

The real intention of the system is to be
only available via the Internet. However,
during the elections of the Dutch local
authorities of water management it used
a hybrid system where people also were
able to vote via the regular mail. But the
”outcome check” can only be performed
on the online votes, in this case security
is not guaranteed for the mail voters.

The voter can submit his vote via the In-
ternet, and also submit his vote in a reg-
ulated voting place.

Practicability The voter must receive his ”personal cer-
tificate” in order to be able to vote. No
extra equipement is necessary.

A voter must have a secret key to be able
to vote. This is done by printing a six-
teen characters long key on the ballot.
Verifying the election outcome requires
additional software and technical knowl-
edge, but this action is not performed by
every voter.

The private key must be distributed or
created by the user with an application.
The actual voting process does not re-
quire an application and can be per-
formed by a normal web browser.

SC@RUG 2009 proceedings

85

Google tools and SEO for efficient web page development

Darius Karremans, Konstantinos Theodorou

Abstract—In this paper we are explaining how Google classifies websites in a search result and which specific tools it
provides to improve this classification. Our approach is to explain two specific tools the Webmaster’s tool and Google
Analytics, useful for most webmaster’s, in a way that it is easily understandable by the most people that have a website. These
tools can be proven the driving force for a website that wants to increase its visitors and to appear higher in the search engine’s
results. After analyzing these two tools, we will u1se them in different experiments in order to find the significance of the
improvement that is offered.
Index Terms— Google, SEO, search engine, Webmaster’s Tools, Google Analytics, website.

1 INTRODUCTION
In the internet times that we live, creating a website or a simple

web application is less than complicated to do. Content management
systems (CMS) and Rapid Application Development tools (RAD),
allow people with no particular coding experience to create a good
looking website that will serve their purposes. Whatever these
purposes are, profit or non-profit, informational or propagandistic,
none creates something with having in the back of his/her mind that
it is going to fail. Success is the word that surrounds any idea and
although translating the word success for a website, we might take
several result, we believe that the most important is “visitors”.

For a website to be accessible by many visitors it has initially to
be easy to be found. Easy to be found is interpreted in our research as
the appearance in the results of the first page of a search engine, by
using a specific query. We set as a standard the usage of the Google
Search Engine, considering that Google is one of the dominant firms
in the field. For this purpose we are also using two web tools of
Google which help in the Search Engine Optimization (SEO),
Google Webmasters Tools and Google Analytics. These two tools
are not magic wards that will drag your website to the first page of
Google results, but with the right use they improve a websites
potential to this way. It is obvious at this point that we are going to
introduce Google friendly techniques.
In this paper we start with some common used techniques for SEO
and some that might improve the accessibility of a website. We talk
about the recent change in the Google’s search algorithm that
changes the way SEO analysts were thinking and sets quality as the
indexing “King”. Furthermore, we simply explain the usage and the
benefits of Google Webmasters Tools and Google Analytics.
Moreover we show some experimental results derived from real
websites that use these tools. And finally we conclude with our
personal idea over these tools and some suggestions.

2 SEO FOR GOOGLE
As SEO, are defined all the actions that a webmaster makes in

order to place his/her website as high as possible in the result page of
a search engine, always when the user rights a query of specific
syntax and/or spelling.

There are many SEO techniques on the internet nowadays.
Almost every SEO analyst has created a few by his/her own by
trying to understand how Google Search works better for the
websites that he/she is responsible. Website directories like DMOZ,
social networks like Facebook or Twitter, web advertisements like
Google Ads or even spamming by using e-mails, forum messages
and comments in popular websites, can improve significantly the
traffic of a website.

However it is not our purpose to criticize these techniques in this
section, but to present how Google understands SEO. Moreover we

present some layout techniques, derived from internet surveys that
might help improving the accessibility and the quality of a website.

A metric that made Google the number one search engine is
PageRank [2]. Today it remains a mystery whether or not Google is
taking under serious consideration PageRank, as there are many
discussions on the internet which say that Google have not given a
good updated PageRank the last period. Perhaps all these rumors had
to do with what Google said “Today we use more than 200 signals,
including PageRank”. Recently, in March 2011, they also updated
their search algorithm with the Panda algorithm, which impacts
11.8% of the search queries [5] and intends to quality search results.
It is currently noticeable in US only, but in time will be applied
globally.

As we mentioned above the new algorithm indexes better quality
websites. This means that websites that don´t try to trick their way to
the top of search engine results and provide the users with a better
web surfing experience will be ranked higher [6]. Of course we are
not discussing ways to write unique content or how to be creative in
design, but how they can have a better ranking by understanding the
contents structure initially and what they can do to improve it.

In research made by Brandon Falls et. al [1] they tried to review
100 results of the Google products engine. What is interesting for us
is that in the on page optimization part of the research they found out
that half of the websites need improvements in header tags or Logos
[table1]. For optimizing quality but also identifying ways to improve
the user experience on a website, Google provides two free to use
tools, Webmaster’s tool and Google Analytics.

Topic Products Passing Grade
Heading tag use 68% (61/90) Satisfactory
<h1> tag use 43% (26/61) Needs Improvement
Logo image link
destination 39% (38/97) Needs Improvement

Logo image alt text 58% (57/99) Needs Improvement
Descriptive internal
anchor text 67% (67/100) Satisfactory

Table 1 – On-page optimization [1]

3 GOOGLE TOOLS
As mentioned in the previous section Google created two tools

that can improve the quality of a website, but how can an
inexperienced webmaster start using them and extract some valuable
information, will be presented in this section as well as in section 4
where experiments on real websites are presented.
The very first thing that a new webmaster, with his/her website only
a few minutes online, is to check how to it appears in Google Search

86

and then is when the first disappointment comes. The second one
comes when webmasters realize that the visitor’s counter, which they
have implemented, does not provide much information about the
visitors, new or old ones. For the first task webmasters can use the
webmaster’s tool, while for the second one the Google analytics.
However, this might only be the very first reason to use these tools
as their functionality extends way more than this.

3.1 Webmaster’s Tools
What is it – Webmaster’s tools is a collection of web based

applications, provided for free by Google, that help webmaster’s to
improve the quality of a website as it matters the content and the
technical part.

How does it work – The webmaster has initially to add the URL
of the website. For the added URL he has to select a type of
verification. He can place a script that the tool is generating, inside
the body tag of the website’s html code or if he already has a Google
analytics account, to verify his URL through this.

What does it offer – Webmaster’s tools offers a variety of
applications and reports, which we are going to present in this
section.

After adding your website and verifying it, the first page that you
will notice is the Dashboard. The Dashboard is a summary of a few
sub-tools that provide you with some information such as sitemaps
and crawl errors.

Sitemaps: The first thing a webmaster should do is to add his
sitemaps. The sitemap protocol [7] helps the web crawlers to better
retrieve information from a fast growing web. Usually sitemaps are
formed in XML format and they are translating the website’s
structure to Google. Webmasters tool has a 500 URLs limit in the
URLs submitted. However, allows webmasters to upload more than
one sitemaps.

Crawler access: Since the crawlers are more than one, there is
need for rules that will instruct the crawlers how to crawl a website
[8]. The robots.txt is an instructions document that regulates the
crawlers accessing a website.

Websites might have pages that the webmasters do not want
Google to index (Login private areas, RSS feeds or crucial data).
Webmasters can block these sensitive areas by writing a robots.txt
and placing them in the root directory of their websites. Google in
order to help with this procedure provides 3 useful tools “Generate
robots.txt” that creates the txt file, “Remove URL” that can block a
page or directory and the “Test robot.txt” that can simulate the
access of the Google crawler on a website. More particularly, the
robot.txt is a necessary component of a quality website, due to the
fact that better crawler accessibility implies better search engine
indexing. Note that with robots.txt you do not block only pages for
the Google search, but for any web search engine.

Sitelinks: Webmasters have not many choices dealing with the
sitelinks. The sitelinks are inner links that are generated
automatically by Google. The webmaster has the choice to block the
ones that they seem him/her not appropriate.

Additionally to these tools, some interesting reports are available,
as we mentioned above.

Site Performance: In the second section we talked about the new
algorithm of the Google search. We said that the user’s experience is
also one of the quality attributes for better indexing. The speed of
loading a website is considered as a fact that can impact the user’s
experience. In the Site Performance menu, it is presented the site’s
loading time. Faster websites are offering better user’s experience
even for the ones that are using slow internet connections.

Search Queries: The Search Queries report is the most important
as it matters the content and the keywords of a website. It shows the
search queries that have returned pages from the website, with which
keywords, and the improvement and significance of these keywords
through time. This report can help people understand which

keywords fit better to the websites description and thus can improve
the websites traffic through search engines. A detailed example
about the usage of this report in a real website is showed in the
“Expirement #1”.

3.2 Analytics
What is it – Analytics is a web based tool offered by Google in

which you may view different statistics about a web site. It shows
how visitors use a website, and by this way someone can change the
website’s design depending on what users want. In combination with
the Webmaster’s tool, it can also increase the visits of the website,
by providing useful information.

 How does it work – Firstly it has to be activated. It activates by
placing a script under the <head> tag of a website’s html code, as
exactly with the webmaster’s tools. In case that the website is using a
separate html file for every page, the script must be placed in all the
files. Google´s script will be triggered every time a user enters the
site and gathers valuable information. As the company assures, the
data collected will not be shared with any third party company. Have
also in mind that Google does not collect personal information about
the users that visiting a website.

What does it offer – Google Analytics offers a huge variety of
reports and statistics and it even lets webmasters to make their own
customized reports.

Visitor Reports:
1. Visits: The number of visits the website has had, per time

period. There are also unique visitors which are visitors that came
once to the site in time period. The problem with this is how does
Google know the visitor is unique? They do it by placing a cookie on
the visitor’s computer. But if the cookie is deleted the visitor will be
recounted.

2. Page view: The quantity of pages in the website that where
viewed in a time period.

3. Time on site: The amount of time users stay active in the
website in average

4. Bounce Rate: The number of users that leave the website after
visiting the first page.

5. Map Overlay: Shows from which countries the visitors are
native from.

6. Languages: Which languages the users speak.
7. Browser Capabilities: Of each user it identifies the Operating

System, the browser, JavaScript enabled, flash enabled etc.
8. Mobile: From which mobile device someone accessed the

website.

Traffic sources: These reports show from where the user came.

The traffic source might be a search engine like Yahoo! and Google,
an advertisement, some other websites that back-links to the specific
one, or direct (used the browser bar). Also it tells us about the
browsers used to access our site and what screen resolution is most
popular. Analytics retrieves the data from the computer which the
visitor is using, so if the language of the computer is English but the
visitor speaks French as native language we will not know this. The
same counts for the country of origin, since it’s not really the country
of origin of the person but the country from which he/she entered the
site.

Content: In these reports it shows which pages in the website the
user explored, where he went out and time on each page. Also which
page the user entered first and where he traveled next.

One interesting service provided here is “In-page Analytics”
which provides the webmaster a visualization of the site and which
links are mostly clicked.

Goals: Goals are a way of measuring how many times a visitor
does something you wanted him to do. For example, if you wanted
users to access a certain page after viewing certain pictures in your

SC@RUG 2009 proceedings

87

gallery, or, how many people accessed the reservation page in hotels
web site.

Alerts: An alert is simple a notification about something that has
happened on the website, you may choose to receive these
notifications through an email. For example, you want to be notified
when a user lasts more than 5 minutes on the website.

All these reports can be combined in the custom reporting option,
so visualization of the data completely users choice, they may also
be compared in the time line. These reports may be applied to more
than one websites; Analytics lets you add as many websites as you
want to this tool.

For most graphs there is also the option of motion charts, which
flow in a period of time and explain the change of pages through
time.

Interpreting data – The most important aspect of using this
report is interpreting their data correctly, and maybe this task is
independent to the site since each site has its own goals and targets.
For example a blog site about a country has a geographical target for
that country and does not really care about visits from other
countries.
Tables – Let us start with some basics, the visit count against the
bounce rate, which is influence by the content of the site and how it
is displayed. As we explained before a bounce from your site is a
visit in which the visitor did not proceed to any other pages within
the site and left it before 30 seconds of being there.

Day Visitors Bounces
Mar 14, 2011 32 13
Mar 15, 2011 23 5

Table 2 –Google Analytics bounce vs. visitor table

Most people think that by having a bigger visitor’s number the
website has more popularity and it is better build than if it is having
fewer visits. This might be true in some cases, but in Table 2 we see
that the visits in March 14th is greater than in March 15th and still
the amount of people that bounced from the site in the 14th is 13, so
actually the site only got 19 real visits against 18 from the 15. Does
this mean the 14th had 1 more useful visit, or that the 15th had 8 less
unproductive visits? In our point of view it’s more valuable the ones
you lost than the ones you gained.

To read correctly the statistics presented it is very important to
take in account all measurements before drawing conclusions.

Time lines - The data in Google Analytics is mostly graphed in
time lines; these graphs have the possibility to compare different
time periods, so for example you would like to compare January
2011 with December 2010, view fig. 1.

fig. 1 – Google Analytics Time line

The time lines looks very nice, but they do not tell much, this is
why under the graph we see a much clearer comparison per stat. To
change the time line to any of these stats we simply click on them,
for example observe that as from January the Bounce rate has gone
down 35% which is very good.

Custom reporting – Google Analytics offers as a customizable
tool, after all, businesses have different goals in what’s important for
them.

4 EXPERIMENTS

In the section 3 we introduced the tools. In this section we are

going to use the tools on real websites and derive some valuable
information for their improvement, through a number of
experiments.

Experiment #1, rating keywords: In this experiment we are
using the Webmaster’s tool and specifically the Search Queries
report. The experiment was on a Greek blog, for this reason most of
the queries in fig. 2 will not be readable from the majority of the
readers. However, the letters are hard to read due to the size of the
picture. The most important is the numbers, which fluctuation we are
going to explain.

We selected 15 of the queries. A few of those there were already
in the description of the website, but most of them were not.

fig. 2 –Search Queries

The query “n.1” is a keyword in the websites description. What
we mention here is that although it has 22 clicks, these clicks are
coming from 2.500 impressions. This means that 2500 people saw
this result but only 22 clicked it. Immediately, it makes us think that
this keyword should be better removed or replaced by another which
is more representative of the website’s content.

A second observation has to do with the query “n.2”. This query
had to do with a specific article. This article fast attracted visitors
and as the fig.2 shows 3% of the impressions was turned into visits.
For going further with this observation, two more articles were
written about this subject and the first part of the query changed in
Greek, query “n.3” and placed in the description of the website. In
just a week 11% of the impressions turned to visits and actually
quality visits, which brought the query in 6th position of the search
results (5.9 Avg. Position). This means that in every query the
website is shown on the first page of Google search results, which
might be translated with potential higher traffic.

Finally, our last observation had to do with another keyword of
the blog’s description. Queries “n.4” and “n.5” represent exactly the
same phrase with some minor notation differences. Although,
combined they have 500 impressions, they have less than 10 clicks,
which means not enough information to classify them. This
observation bring us to the result of the first observation, when was
mentioned that the keyword should be possibly removed or replaced.

Experiment #2, bounce rate improvement: Table 3 shows the

result of some minor changes we applied, which we will explain in
more detail.

Day Visitors Bounce

Rate
Bounces

Mar 17 29 13% 4
Mar 16 28 25% 8
Mar 15 23 18% 5
Mar 14 32 38% 13
Mar 13 28 39% 13

Google tools and SEO for efficient web page development – Darius Karremans, Konstantinos Theodorou

88

Mar 12 26 34% 11
Mar 17 29 13% 4
Mar 16 28 25% 8
Mar 15 23 18% 5

Table 3

The Visit number of each date is approximately the same, and it
is a good number for the web site in question. But we did see that the
bounce rate of our site was too high, we had to do something. The
reason this happened so often was unclear, so we decided to view
other web sites related to ours that had a good page rank, and we
found out that by placing some text of what the site was about or
what you could do in it and links to these services or activities in the
index page would make the users get much more interested in the
site.

This also meant the site had more “useful” impressions by
Google searches, by useful we mean that It appear in the search for
people who were looking for something related to the site.

In conclusion, your start page is the most important page in your
site; it will determine how many surfers will bounce off and how
many will not. Make it interesting; place some fast and
understandable text, use images with proper tagging, place links
within your site (not flash based, we will explain this latter on) and
use as little adds or commercials as you can.

Experiment #3, site esthetics and colors: The time line in fig. 1
shows how the site has changed its statistics from December to
January.

The colors and design of a site will reflect what the company is
all about, users respond directly to elegance, neatness and
aggressiveness. Our site is a hotel site in the mountains, the moment
you read this you probably thought of green. The original designer
decided to make it with orange vivid colors, and we decided to
change this to more dark green colors in the back to cool green
colors in the front. The new site was launched as from the first of
January 2011, and immediately it made spectacular changes in stats.

Neatness and elegance, this is completely dependent on who is
viewing the site, but for most users a well constructed site makes
them much more comfortable. What does “well constructed” mean?
Elements should not surpass others in width if they belong to the
same layer, menus should be readable don’t place all your links
cramped up, make subcategories, and as a maximum set 5-6 head
categories. It is always a good idea to have white background to text
and images areas, but a light color could also work. Keep content
and colors in different pages to the title of the page, use navigational
links, for example; if the content talked about a certain tour link this
tour to that text.

Aggressiveness, this also depends on your site, but in general, do
not use capital letters in body text,on the other hand menus could
make use of them. The body font size should not be more than 14px
big and use bold only for important words and titles. Do not use
highlighted text; it will look desperate for public. Colors must not be
blinding or blinking, so don’t use sharp reds, greens or yellows.

Experiment #4, removing flash: It is not that we hate flash; it
just that Google does not like it. The truth is that Google announced
in 2008 that it could identify text content follow links in flash
websites, but it is not fully SEO friendly [9]. The reason is that flash
consists of animated elements in one page which the Google-bot will
not read properly, so images in these elements for example, will be
ignored by Google.

Fig 3 – Google search results

Fig. 3 shows that the first 8 results on Google with the above key
words are of our site; this is not very impressive since
guayabolodge.com is our site domain. But normally the results of
typing the sites name are one or two, then why did we get 8? It is
simple, indexing within the site is very important for Google. In our
old site the designer had placed the links in a flash, making it
impossible for the Google-bot to read these links. So we changed our
links to plain html and indexed them in the sitemap.xml and ror.xml
pages for Google to index them correctly. The result after some
weeks for Google to index the correctly was incredible. This also
goes for images, do not place them into a flash animation, and try
using other technologies like JQuery.

Experiment #5, adapt to the circumstances: More than an

experiment it is to make the web page meet the needs to most of the
users. We changed our site depending on what most of the user’s
use, like the browser, the screen resolution, if they had flash and
JavaScript enabled.

Browser Visits Visits %
Internet Explorer 437 44%
Firefox 365 36%
Chrome 104 10%
Safari 85 8%
BlackBerry9100 1 <1%
Mozilla Compatible

Agent
1 <1%

Table 4 – Google Analytics browser reports

In table 4 we observe that IExplorer is the most used browser
within users that access the website, for this we adapted the site for
IExplorer and then took in account FireFox´s standards, we also
tested the site in Google Chorme.

Screen
Resolution

Visits Visits

1024x768 162 16%
1280x800 162 16%
1280x1024 150 15%
1440x900 87 8%
1366x768 85 8%
1600x900 55 5%
1920x1080 49 4%
1024x600 30 3%
1680x1050 24 2%
1152x864 21 2%

Table 5 – Google Analytics Screen resolution report

In table 5 it is clear that most users have a 1024x768 screen

resolution, so when designing the new site our maximum content
width was 900px.

SC@RUG 2009 proceedings

89

5 CONCLUSION
As it is mentioned in the introduction, it is particularly easy to

create and maintain a website in our days. The difficult part is to
target the appropriate audience. In our paper we discussed the way to
do this through the search results of a search engine and specifically,
the most used search engine, Google search.

Google offers tools to improve websites and make you aware of
what is happening in them. Websites are virtual hang outs and
information centers, make visitors interested and they will invite
more friends to check out the site. However, this will not affect its
position in the Google search results. What will change that is the
way that a website fulfills the Google search requirements. We
talked about the changes in the Google search algorithm and the
quality characteristics [5] that affect the result. We introduced the
two Google tools that are capable of improving the quality of a
website. And we finally showed, through a number of successful
experiments, how to improve the content, the target and the layout of
a website and thus its quality.

Although, uniqueness, creativity and attractiveness are the most
important ingredients for a popular website, using these tools in the
way that we introduced, a less popular website could see a
significant improvement in visits, which can be respectively
satisfying whether it is a personal or a business website.

In our experience site development is very complicated, but if
you want to make it worth we recommend using these tools as a
reference on how to make the site much better.

REFERENCES
[1] Brandon Falls, Andi Goradia, Charlene Perez. Google’s SEO report

Card. March 1 2010..
[2] A.N.Langville and C. D. Meyer, Google’s Page Rank and Beyond.
[3] Avanish Kaushik. Google Analytics uses in ecommerce and other web

applications, second edition.
[4] Justin Cutroni, Google Analytics description manual book.
[5] Finding more high-quality sites in search.

http://googleblog.blogspot.com/2011/02/finding-more-high-quality-
sites-in.html (retrieved in April 2011)

[6] Webmasters guidelines.
http://google.com/support/webmasters/bin/answer.py?answer=35769
(retrieved in April 2011)

[7] Uri Schonfeld, Narayanan Shivakumar. Sitemaps: Above and Beyond
the Crawl of Duty, WWW 2009 Madrid

[8] Santanu Kolay, Paolo D’Alberto, Ali Dasdan, Arnab Bhattacharjee. A
Larger Scale Study of Robots.txt, WWW 2008 Beijing

[9] Eric Enge, Stephan Spencer, Rand Fishkin, Jessie C. Stricchiola. The
Art of SEO, Mastering Search Engine Optimization, O’Reilly 2010

Google tools and SEO for efficient web page development – Darius Karremans, Konstantinos Theodorou

90

Digital Image Forensics

Jan Kazemier and Michiel Heijkoop

Abstract—Digital photography has made image manipulation (i.e. “photoshopping”) increasingly easy and common. However, the
authenticity must be relied on in legal proceedings and journalism. Detecting whether or not a digital image has been manipulated is
a difficult task. In this paper we will look at several of these techniques to demonstrate the state of the art. We will show that while
certain methods can provide strong indicators of manipulation, a definitive answer cannot be given.

Index Terms—Digital image, analysis, forensics, photoshop.

1 INTRODUCTION

As Popescu and Farid [18] explain, a digitally altered photograph,
often leaves no visual clues of having been tampered with. This means
it can be indistinguishable from an authentic photograph. As a result,
photographs no longer hold the unique stature as a definitive recording
of events.

Ashwin Swaminathan et al. [21] say that with increasing popularity
of digital imaging and the availability of low-cost image editing
software, the integrity of digital image content can not longer be taken
for granted.

This poses an interesting challenge for the field of image analysis
to find and propose techniques to detect such image tampering. This
can, for example, be important in legal proceedings where a digital
photograph can used as evidence.

Therefore, there is a need for a method to reliably determined
whether or not an image has been tampered with.

Using watermarks[13] would be a good way to ensure an image is
authentic, but is not feasible in practice as most cameras do not provide
this functionality. This is unlikely to change in the short term.

Several researches propose different approaches for detection. In
this paper we will illustrate and explain several different techniques
described in literature. Some other techniques are listed under
references.

2 INTRINSIC FINGERPRINTS

Ashwin Swaminathan et al. [21] describe a technique detecting
traces left by image processing processes, called “intrinsic finger-
prints”. Their proposed method is based on the observation that many
processing operations, both inside and outside acquisition devices,
leave distinct intrinsic traces on digital images, and these intrinsic
fingerprints can be identified and employed to verify the integrity of
digital data.
In their paper they propose a novel mothodology for digital image
forensics of color images. They present techniques to identify which
traces are left behind in the image when it goes through different stages
in the information processing chain. These specific traces are here
reffered to as the “intrinsic fingerprints”.

2.1 Intrinsic fingerprint estimation of in-camera process-
ing

First an estimation of the intrinsic fingerprint as a result of the in-
camera processing by a detailed imagaging model and its component
analysis is performed. The intrinsic fingerprints caused by postcamera
operations is estimated by a model of a manipulation filter. Swami-
nathan suggests that the absence of camera-imposed fingerprints from

• Jan Kazemier is a Computing Science student at the University of
Groningen, E-mail: j.kazemier@gmail.com.

• Michiel Heijkoop is a Computing Science student at the University of
Groningen, E-mail: mheijkoop@gmail.com.

Figure 1: Image acquisition model in digital cameras [21].

an image indicates that the image is not a camera output and is
possibly generated by other image production processes. Any change
or inconsistencies among the estimated camera-imposed fingerprints,
or the presence of new types of fingerprints suggest that the image has
undergone some kind of processing after the initial capture [21].

2.1.1 Image Acquisition
Most digital cameras use a color filter array (CFA) to sample the real-
world scene [21]. In figure 1 the system model of the digital image
acquisition is shown schematically. The CFA consists of three color
sensors (red, green and blue), which capture the real color of the real-
world schene at the corresponding pixel location. This yields a 3D
array of the size H×W×C, where H and W denote the height and with
of the image in pixels, and C denotes the number of captured colors,
three in this case. After capturing the color values, intermediate pixel
values are interpolated using the neighboring pixel values. Then the
three images corresponding to the three color components go through a
postprocessing stage. Here, depending on the camera, the images may
undergo different processing operations [2], [1], which might include
white balancing, color correction, gamma correction, lens vignetting
correction, lens distortion removal, denoising, etc.

2.2 Estimating Camera Component Parameters
As every step in the acquisition uses different algorithms, that may
be particular to the camera manufacturer, brand, or mode, they leave
intrinsic fingerpint traces on the output data. In an earlier work,
Swaminathan et. al [20] describe methods to estimate these in-camera
fingerprints from outputs from the camera model. The CFA pattern
and the color interpolation coefficients can be jointly estimated from
the output image [20] in the following way. For every CFA pattern
p in the search space P, linear models are fitted, in order to compute
the interpolation coefficients in different types of texture regions. The
image is divided into three types of regions based on the gradient
features in a local neighborhood. We find the horizontal gradient
(H , Equation 1) and vertical gradient (V , Equation 2) using simple
gradient filters on the image, yielding the following functions:

Hx,y = |Ix,y−2−2Ix,y + Ix,y+2| (1)

Vx,y = |Ix−2,y−2Ix,y + Ix+2,y| (2)

Where Ix,y is the pixel value in the output image at position (x,y). The
image pixel at position (x,y) is classified into one of the three regions:

• Region R1 contains those parts of the image with a significant
horizontal gradient (i.e. Hx,y−Vx,y >T), where T is a suitably
chosen threshold;

91

Figure 2: Recursive algorithm to determine estimates of the coeffi-
cients of the manipulation filter [21].

• Region R1 contains those parts of the image with a significant
horizontal gradient (i.e. Vx,y−Hx,y >T), where T is a suitably
chosen threshold;

• Region R3 contains the remaining parts of the image; primarily
smooth regions.

Using the final camera output, a set of linear equations for all the
pixels in each region is obtained and solved to obtain the interpolation
coefficients, which are called αRi. Once estimated, they are used
to reinterpolate the image and and the interpolation error. The CFA
pattern that gives the lowest error gives the estimate of the CFA
pattern. The estimates are also shown to be robust to moderate levels
of postprocessing operations, such as JPEG compression, and white
balancing done inside the cameras [20].

2.3 Estimating intrinsic fingerprints of postcamera manip-
ulations

The analysis of intrinsic fingerprints caused by postcamera manipula-
tions is built upon the component forensic analysis of the previous
subsection. Swaminathan et al. [21] propose methods to identify
whether an image has undergone any further processing after it has
been captured using a digital camera. Here, they mainly focus on
images that constitute in a bulk of camera-captured images.

First it is assumed that the image is manipulated after in-camera
post-processing, corresponding to the point B in Figure 1. Then
the postcamera processing steps are represented as a combination of
linear and nonlinear operations, and are approximated with a linear
shift-invariant filter. Using blind deconvolutions, the coefficients of
these manipulation filters are estimated. Those coefficients serve as
postcamera fingerprints to answer forensic questions, e.g. is the image
authentic, and what is the origin?

An estimate of the camera output is obtained through passing
the given test image through an inverse manipulation filter u. The
coefficients of this filter are estimated by solving an optimization
problem that minimizes the camera model fitting error.

The filter coefficients of the manipulation filter can be directly
estimated in the pixel domain through a recursive procedure, as shown
in Figure 2. The iterations are started by setting u(0) to be a delta
function; corresponding to direct camera outputs. In the kth iteration,
an estimate of the camera output S(k)te is obtained by passing the
test image through the estimate of the inverse blurring filter u. The
recursive procedure is repeated for a finite number of iterations or until
convergence occurs.

Since the performance estimating the coefficients of the inverse
manipulation filter depends on the size of the averaging filter, and
would ideally would require an infinite length kernel for it’s inverse,
Swaminathan et al. [21] propose a solution to find the estimate directly
in the frequency domain, using an iterative blind deconvolution
method, as described by Ayers et al. [3]. A schematic representation
of this method is shown in Figure 3.

The frequency response of the manipulation filter for an unma-
nipulated camera output suggests minor deviations from an ideal flat
spectrum. The frequency domain coefficients are determined, and
similarity between the coefficients of the test input and a reference

Figure 3: Estimating the coefficients of the inverse manipulation filter
iteratively [21].

Canon Powershot A75
Canon Powershot S410
Canon Powershot G6
Canon Powershot S400
Canon Powershot S1 IS
Canon EOS Digital Rebel
Nikon E4300
Fujifilm Finepix S3000
Sony Cybershot DSC P72

Table 1: Camera models used in experiments in Swaminathan et al.
[21]

image is computed. The test input is then classified as unmanipulated
if the similarity to the reference pattern is greater than a suitably
chosen threshold. If the input image on the other hand has been
manipulated, the estimated manipulation filter coefficients would be
different: it would include the effects of both the postcamera ma-
nipulation operations along with postinterpolation processing inside
the camera and therefore the similarity score would be lower than the
chosen threshold.

2.4 Detecting manipulations on camera-captured images
Swaminathan et al. [21] have tested their methods on 900 images
of 512× 512 pixels, which are randomly cropped portions of images
taken with nine different camera models (see Table 1). These images
were then processed to generate 21 tampered versions (see Table 2
per image to obtain 18900 manipulated images. Figure 4 shows the
frequency response of the manipulating filters for camera outputs.

The tests are performed on two hypotheses:

• Γ0: image is a direct camera output

• Γ1: image is not a direct camera output and is possibly manipu-
lated in some way

The performance of the threshold based classifier is examined in
terms of the receiver operating characteristics (ROC). An ROC graph
is a technique for visualizing, organizing and selecting classifiers
based on their performance [8]. For more information on how to read
ROC-graphs, we refer to Fawcett [8], as this is outside the scope of
this paper.

For each original image the frequency response of the manipulation
filter is computed. Then the similarity with the reference filter pattern
is measured. The false alarm probability PF is given by the fraction
of original images which similarity score is lower than a threshold
τ . Similarly, the probability of correct decision (PD) is given by the
fraction of manipulated images with a similarity score that is less than
τ . This process is repeated for differen thresholds τ , until we arrive at
the ROC Figure 5 shows.

For each image, the frequency-domain coefficients are computed
of the estimated manipulation filter and determine its similarity with
the chosen reference pattern. Images with a similarity score that are
greater than a chosen threshold are classified as authentic. To choose
the reference pattern, a set of Nt training images is selected, along with

Digital Image Forensics – Jan Kazemier and Michiel Heijkoop

92

Operation Parameters Number of filters
Spatial averaging Filter orders 3-11 in steps of 2 5
Median filtering Filter orders 3, 5 and 7 3
Rotation Degrees 5, 10, 15 and 20 4
Resampling Scale factors 0.5, 0.7, 0.85, 1.15, 1.3 and 1.5 6
Additive noise PSNR 5dB and 10 dB 2
Histogram equalization 1

Table 2: Manipulating operations included in experiments in Swaminathan et al. [21]

Figure 4: The frequency response of the manipulating filters for camera outputs. (a) 7×7 averaging filter, (b) 11×11 averaging filter, (c) 7×7
median filter, (d) 20◦ rotation, (e) 70% resampling, (f) 130% resampling, (g) noise addition with PSNR 20 dB, and (h) histogram equalization.
(In log scale and shifted) [21].

Figure 5: Preferred ROC for distinguishing between simulated camera
outputs and their filtered versions [21].

its manipulated versions in the training stage. Using a threshold τ , the
fraction of direct camera outputs with a similarity score lower than
the threshold is computed to give the false alarm probability PF =
Pr(Γ1|Γ0), and the fraction of manipulated images with a similarity
score of less than the threshold τ is found to give the probability of
correct decision PD =Pr(Γ1|Γ1). This process is repeated for different
thresholds to arrive at the ROC, and compute the area under the curve.

The performance of the threshold-based detector was measured and

Figure 6: ROC for detection of manipulated images from a Canon
Powershot A75 [21].

averaged over 100 iterations. the corresponding ROC for detection
of manipulated images from a Canon Powershot A75, where 50× 21
images were used for training and the remaining 50×21 images were
used for testing is shown in Figure 6. At a relatively low PF around
10 percent, the probability of correct detection is about 80− 95% for
most types of manipulations tested [21].

Likewise, the ROC for detection of manipulated images from all
images in the database, where 200×21 randomly chosen images were

SC@RUG 2009 proceedings

93

Figure 7: ROC for detection of manipulated images using all images
in the database [21].

used for training and all remaining images were used for testing is
shown in Figure 7. These images were captured under the default
camera settings and may have undergone different kinds of in-camera
postprocessing operations, such as JPEG compression after color
interpolation [21]. In this case, for PF close to 10 percent, a probability
close to 100 percent is observed for such manipulations such as
spatial averaging and additive noise. Around 70 to 80 percent correct
detection is observed for median filtering, histogram equalization and
rotation. These results are better than the results described in [17] and
[7].

Since the proposed techniques do not require the images to be from
the same source camera, Swaminathan et al. [21] demonstrate that
different sources can be used. The performance results, averaged
over 100 iterations in Figure 8 show the performance of the proposed
technique using 100 images from the Canon Powershot A75 for
training and 100 images from Sony Cybershot DSC P72 for testing.
The figure shows that the performance is good for most manipulations
- a detection rate of 80 to 90 percent is obtained for PF around 10%.
This result is comparable to the plots in Figures 6 and 7. The drop
in performance for some manipulations, such as resampling, can be
attributed to the absence of the original camera make/model in training
[21].

3 RECOGNIZING JPEG-COMPRESSORS

In order to identify whether or not an image has been manipulated, it
is useful to know what software or hardware has been used to perform
the JPEG-compression. If it can be shown that an image has been
compressed to JPEG using a tool like Adobe Photoshop, it cannot
be guaranteed that the image is authentic. One way of doing this,
is looking at the quantization table that has been used to compress the
image.

3.1 JPEG compression
To explain this technique we must first give a short overview on how
JPEG compression is defined, based on Wallace[22]. It is illustrated
in Figure 9.

JPEG encoding consists of several steps. For color images, an
uncompressed bitmap image is first converted from RGB color space
to YCbCr. This means each pixel will have a value for its luminance
(brightness) and two chroma values that define the color.

This conversion allows reduction of the image resolution in the
color domain while maintaining the original resolution in the bright-
ness component. This is because the eye is more sensitive to

Figure 8: ROC for detection of manipulated images using different
cameras for training and testing [21].

typically vary slowly from point to point across an
image, the FDCT processing step lays the foundation
for achieving data compression by concentrating most
of the signal in the lower spatial frequencies. For a
typical 8x8 sample block from a typical source image,
most of the spatial frequencies have zero or near-zero
amplitude and need not be encoded.

At the decoder the IDCT reverses this processing step.
It takes the 64 DCT coefficients (which at that point
have been quantized) and reconstructs a 64-point ouput
image signal by summing the basis signals.
Mathematically, the DCT is one-to-one mapping for
64-point vectors between the image and the frequency
domains. If the FDCT and IDCT could be computed
with perfect accuracy and if the DCT coefficients were
not quantized as in the following description, the
original 64-point signal could be exactly recovered. In
principle, the DCT introduces no loss to the source
image samples; it merely transforms them to a domain
in which they can be more efficiently encoded.

Some properties of practical FDCT and IDCT
implementations raise the issue of what precisely
should be required by the JPEG standard. A
fundamental property is that the FDCT and IDCT
equations contain transcendental functions.
Consequently, no physical implementation can
compute them with perfect accuracy. Because of the
DCT’s application importance and its relationship to
the DFT, many different algorithms by which the

FDCT and IDCT may be approximately computed have
been devised [16]. Indeed, research in fast DCT
algorithms is ongoing and no single algorithm is
optimal for all implementations. What is optimal in
software for a general-purpose CPU is unlikely to be
optimal in firmware for a programmable DSP and is
certain to be suboptimal for dedicated VLSI.

Even in light of the finite precision of the DCT inputs
and outputs, independently designed implementations
of the very same FDCT or IDCT algorithm which differ
even minutely in the precision by which they represent
cosine terms or intermediate results, or in the way they
sum and round fractional values, will eventually
produce slightly different outputs from identical inputs.

To preserve freedom for innovation and customization
within implementations, JPEG has chosen to specify
neither a unique FDCT algorithm or a unique IDCT
algorithm in its proposed standard. This makes
compliance somewhat more difficult to confirm,
because two compliant encoders (or decoders)
generally will not produce identical outputs given
identical inputs. The JPEG standard will address this
issue by specifying an accuracy test as part of its
compliance tests for all DCT-based encoders and
decoders; this is to ensure against crudely inaccurate
cosine basis functions which would degrade image
quality.

 8x8 blocks DCT-Based Encoder

FDCT Quantizer Entropy
 Encoder

 Source Table Table Compressed

•

Specifications Image Data SpecificationsImage Data

 Entropy
 Decoder

 Dequantizer IDCT

DCT-Based Decoder

 Table Table
 Specifications Specifications

Compressed
Image Data

 Reconstructed
 Image Data

Figure 1. DCT-Based Encoder Processing Steps

Figure 2. DCT-Based Decoder Processing Steps

4

Figure 9: The steps in JPEG-encoding as illustrated by Wallace[22].

differences in brightness than it is to color. However, this step is
optional and we will ignore it in our analysis.

Then, pixels are grouped in blocks of 8×8 pixels and the image is
transformed to the frequency domain with a discrete cosine transform
(DCT).

In the frequency domain, the image is divided by a matrix – called
the quantization table — that defines a coefficient per frequency.
The resulting values are rounded to the nearest integer. In this step
information is can be lost, as frequencies with a small coefficient will
be rounded to zero.

Finally, the resulting data is entropy-coded for additional compres-
sion, no information is lost in this step.

3.2 Quantization table analysis

As explained in the previous section, the amount of information lost
in JPEG encoding is largely dependant on the quantization table used
in the compression process.

Knowing the quantization table used to compress an image can
give a very strong clue on what software or camera was used.
Farid[6] experimentally determined that 62 out of 204 cameras had
an unique quantization table. On average, each camera shared its
quantization table with 1.43 other cameras, often a camera with the
same manufacturer.

Adobe Photoshop allows the user to select a quality level when
exporting an image as a JPEG. The choice of one of the twelve built-
in quantization tables in Photoshop is based on this selection[14]. If
one of these tables is found in an image, it is most likely saved using
Photoshop and therefore possibly manipulated. For example, this
could mean that the image should not be used as evidence in court.

Digital Image Forensics – Jan Kazemier and Michiel Heijkoop

94

N. Krawetz A Picture’s Worth... 16 of 31

 Copyright 2007 Hacker Factor Solutions, presented at Black Hat Briefings USA 2007.

3.4.1.4 PCA Example: Moonwalk
As an example, consider the moonwalk picture discussed earlier (Section 3.2.2). The artist stated that the image was
created using 3DS MAX and post-processed using Combustion and Photoshop.18 The quantization matrix matches
Photoshop’s “high (8)” quality, equivalent to a JPEG saved at 89%. However, using the PC1 line shows a significant
number of artifacts that resemble a quality around 40% (Figure 14). This suggests that the image was saved multiple
times.

Figure 14. Moonwalk image and PC1.

In addition to the large number of resaves, the spacesuit shows more artifacts than the background and helmet
reflection, supporting the artist’s description that the background and helmet reflection are bitmaps that were added
after the astronaut was rendered. PC1 also identifies the red and blue connectors, red “LIFE” background, and
American flag as having the wrong color scheme for this image (white indicates far from the PC1 line). These are
areas that were likely enhanced by the artist after the initial rendering.

3.4.2 Error Level Analysis
JPEG is a lossy format, but the amount of error introduced by each resave is not linear. A 90% image resaved at
90% is equivalent to a one-time save of 81%. Similarly, saving an image at 75% and then resaving it at 90%
(75% 90%) will generate virtually the same image as 90% 75%, or saved once at 67.5%.19 The amount of error
is limited to the 8x8 cells used by the JPEG algorithm; after roughly 64 resaves, there is virtually no change.
However, when an image is modified, the 8x8 cells containing the modifications are no longer at the same error
level as the rest of the unmodified image.

Error level analysis (ELA) works by intentionally resaving the image at a known error rate, such as 95%, and then
computing the difference between the images. If there is virtually no change, then the cell has reached its local
minima for error at that quality level. However, if there is a large amount of change, then the pixels are not at their
local minima and are effectively “original”. Figure 15 shows an original image, the image resaved at 75%, and

18 http://forums.cgsociety.com/showthread.php?t=323480
19 Because the JPEG algorithm operates on integers instead of floating point values, the 75% 90% image will be
nearly identical to 90% 75%, but may not be a perfect match.

Figure 10: A magazine cover that is composited from different
sources.[15]

3.3 Adaptive tables
Kornblum[14] found that often cameras do not use a single quantiza-
tion table, but can have a mechanism for adaptively scaling the table
based on the image. This means that in order to correctly identify
the origin of a picture, a large number of potential tables per camera
model would have to be known. An identical table might also be
produced by both a camera and certain manipulation software, making
analysis inconclusive. Rather than identifying the exact origin of an
image, Kornblum suggests to only eliminate images that are suspect
(i.e. images that have a quantization table that is possibly generated
by manipulation software).

4 JPEG ERROR LEVEL ANALYSIS

In Luo[16] and in Krawetz[15] techniques are proposed that compare
the number and type of errors generated by various steps in the JPEG
compression process to show if an area (as small as one block, or 8×
8 pixels as explained in Section 3.1) has been compressed multiple
times. This can be a strong indicator of manipulation.

If parts of an image have been compressed a different number of
times, or with different quality settings, it could indicate that these
parts were added to the image from another source.

4.1 Using Principal Components Analysis
If a section of an image has been compressed differently than the
rest of the image, it will exhibit a different rate of JPEG artefacts
(or: errors). However, these artefacts may not be clearly visible.
Krawetz[15] propose to use Principle Components Analysis, to make
these artefacts more clearly visible.

Principle Components Analysis (PCA) is a means of clustering data
dimensions. A grey-scale image can be represented as a 3D field in
which the intensity of the pixel value is the third dimension. The first
principle component will be the plane of data points with the most
variance[12].

Krawetz demonstrates that by visualizing the first principle compo-
nent, artefacts are significantly easier to observe than in the original
image. This allows us to more clearly notice differences in the amount
of artefacts in various regions of the image and provide clues as to
what parts of the image were not originally present.

In Figure 10 a real-life magazine cover is shown that has been
spliced from multiple sources. Krawetz notes that it can be seen by
the artefact rates that the background is from a different source image
than the space suit. The reflection in the helmet is also rendered from
a different source.

4.2 Recompressing
Using principal components analysis is based on the fact that a after
a certain number of times, recompressing an image will no longer

N. Krawetz A Picture’s Worth... 19 of 31

 Copyright 2007 Hacker Factor Solutions, presented at Black Hat Briefings USA 2007.

Figure 18. The Alf Kid with his shirt modified and next to Osama bin Laden. The 95% ELA identifies the

shirt change and shows that the Alf Kid has a lower error level than the rest of the Osama bin Laden picture.

3.4.2.2 Example: WTC Crash
Shortly after September 11, 2001, a picture surfaced of a tourist standing on the roof of the World Trade Center with
an airplane heading for the building (Figure 19). As expected, this image created a firestorm of controversy before
being declared a fraud. The 95% ELA identifies the last changes made to this image: the date stamp was added, the
United Airlines stripe was placed on the nose of the airplane, and minor modifications were made to the person.
Even though the airplane was added to this picture, it has been resaved enough times to obscure that information
from ELA.

(a) A child in an inappropriate shirt

N. Krawetz A Picture’s Worth... 19 of 31

 Copyright 2007 Hacker Factor Solutions, presented at Black Hat Briefings USA 2007.

Figure 18. The Alf Kid with his shirt modified and next to Osama bin Laden. The 95% ELA identifies the

shirt change and shows that the Alf Kid has a lower error level than the rest of the Osama bin Laden picture.

3.4.2.2 Example: WTC Crash
Shortly after September 11, 2001, a picture surfaced of a tourist standing on the roof of the World Trade Center with
an airplane heading for the building (Figure 19). As expected, this image created a firestorm of controversy before
being declared a fraud. The 95% ELA identifies the last changes made to this image: the date stamp was added, the
United Airlines stripe was placed on the nose of the airplane, and minor modifications were made to the person.
Even though the airplane was added to this picture, it has been resaved enough times to obscure that information
from ELA.

(b) Difference image

Figure 11: Krawetz[15] demonstrates that the print on the childs t-shirt
has been manipulated

change the outcome by further degrading the image.
Parts of the image that have been manipulated might have originally

been saved using different compression settings or even a different
amount of times. These parts can take a different number of recom-
pression steps in order to reach this stable state than the rest of the
image.

By recompressing the image multiple times and plotting the dif-
ference between the image and its recompressed copy, degradation
caused by the compression algorithm can be observed. These differ-
ence plots can provide strong clues as to what areas might have been
manipulated. An example is found in Figure 11.

5 STATISTICAL MEASURES

Popescu and Farid[18] propose using statistical measures to detect
traces of digital tampering. When an image is manipulated, often
operations like rotation, brightness adjustments, blurring or adding
noise are applied to parts of an image, to mask manipulation.

5.1 Detecting re-sampling
When adding a foreign object to an image, it will often have to be
resized and/or rotated to match the scale and orientation of the target
image. This is conventionally done using resampling. In resampling,
the target resolution or orientation is simply overlayed on the original.
The value for each pixel in the target images is determined by sampling
the original. One could simply take the value of the nearest pixel in
the original image (nearest-neighbour) or use a combined value from
multiple pixels in the neighborhoud (e.g. bilineair interpolation). This
yields a new image based on the original with the desired resolution
and/or orientation.

This operation introduces periodic correlations between neigbour-
ing pixel values in the target image. As to why, we refer to
Popescu[18]. A simple example of this effect is an image that is
enlarged (up-sampled) to twice its original size using lineair interpola-
tion. In the resulting image, the pixels in odd rows and even columns
will be the average of their two horizontal neighbours. The pixels
in the even rows and odd columns will be the average of the vertical
neighbours[18].

This kind of correlation can be detected using the statistical ex-
pectation/maximization algorithm (EM)[5], an impressive example
of resampled images and a plotted correlation map can be found in
Popescu.

SC@RUG 2009 proceedings

95

image probability map (p) |F (p)|

unadulterated

up-sampling
(10%)

down-sampling
(2.5%)

rotation
(5◦)

affine

Fig. 2: Shown in the top row is an unadulterated image, and shown below are images re-sampled with different
parameters. Shown in the middle column are the estimated probability maps that embody the spatial correlations
in the image. The magnitude of the Fourier transforms of these maps are shown in the right-most column. Note that
only the re-sampled images yield periodic maps.

(a) Upsampled image

image probability map (p) |F (p)|

unadulterated

up-sampling
(10%)

down-sampling
(2.5%)

rotation
(5◦)

affine

Fig. 2: Shown in the top row is an unadulterated image, and shown below are images re-sampled with different
parameters. Shown in the middle column are the estimated probability maps that embody the spatial correlations
in the image. The magnitude of the Fourier transforms of these maps are shown in the right-most column. Note that
only the re-sampled images yield periodic maps.

(b) Correlation map

image probability map (p) |F (p)|

unadulterated

up-sampling
(10%)

down-sampling
(2.5%)

rotation
(5◦)

affine

Fig. 2: Shown in the top row is an unadulterated image, and shown below are images re-sampled with different
parameters. Shown in the middle column are the estimated probability maps that embody the spatial correlations
in the image. The magnitude of the Fourier transforms of these maps are shown in the right-most column. Note that
only the re-sampled images yield periodic maps.

(c) Rotated image

image probability map (p) |F (p)|

unadulterated

up-sampling
(10%)

down-sampling
(2.5%)

rotation
(5◦)

affine

Fig. 2: Shown in the top row is an unadulterated image, and shown below are images re-sampled with different
parameters. Shown in the middle column are the estimated probability maps that embody the spatial correlations
in the image. The magnitude of the Fourier transforms of these maps are shown in the right-most column. Note that
only the re-sampled images yield periodic maps.

(d) Correlation map

Figure 12: Correlation maps of an upsampled and a rotated image,
taken from Popescu[18]

In Figure 12 an upsampled image and a rotated image are shown
in which the perodical patterns caused by these operations are clearly
visible.

6 SUMMARY AND CONCLUSIONS

A lot of different approaches exist to aid in detecting image forgeries.
However, in all cases a human is required to make final judgement, as
it is not an exact science.

Detecting a quantization table that is known to be used by manipu-
lating software can be an easy way of dismissing an image as possibly
tampered with, but absence of such a match is no proof of the image’s
authenticity.

Error-analysis can point a forensic investigator in the direction of
suspect areas in an image but do not seem to perform very well in
practice. Analysis of intrinsic fingerprints left by a camera requires a
large amount of sample data, that might not be available.

A universal solution that will detect manipulation with a high
degree of certainty currently does not exist in the field of digital image
forensics. Currently, all methods available focus mainly on assisting
manual techniques and can only provide clues.

ACKNOWLEDGEMENTS

The authors wish to thank Michael Wilkinson for expert reviewing.

REFERENCES

[1] J. Adams, K. Parulski, and K. Spaulding. Color processing in digital
cameras. Micro, IEEE, 18(6):20–30, 1998.

[2] J. Adams Jr. Interactions between color plane interpolation and other
image processing functions in electronic photography. In Proceedings of
SPIE, volume 2416, page 144, 1995.

[3] G. Ayers and J. Dainty. Iterative blind deconvolution method and its
applications. Optics letters, 13(7):547–549, 1988.

[4] S. Dehnie, T. Sencar, and N. Memon. Digital image forensics for
identifying computer generated and digital camera images. In Image
Processing, 2006 IEEE International Conference on, pages 2313 –2316,
2006.

[5] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38, 1977.

[6] H. Farid. Digital image ballistics from JPEG quantization. Dept. Comput.
Sci., Dartmouth College, Tech. Rep. TR2006-583, 2006.

[7] H. Farid and S. Lyu. Higher-order wavelet statistics and their application
to digital forensics. In Computer Vision and Pattern Recognition
Workshop, 2003. CVPRW’03. Conference on, volume 8, pages 94–94.
IEEE, 2003.

[8] T. Fawcett. An introduction to ROC analysis. Pattern recognition letters,
27(8):861–874, 2006.

[9] J. Fridrich. Digital image forensics. Signal Processing Magazine, IEEE,
26(2):26 –37, 2009.

[10] T. Gloe, M. Kirchner, A. Winkler, and B. Rainer. Can we trust digital
image forensics? In Proceedings of the 15th international conference
on Multimedia, MULTIMEDIA ’07, pages 78–86, New York, NY, USA,
2007. ACM.

[11] T. Gloe and B. Rainer. The ’dresden image database’ for benchmarking
digital image forensics. In Proceedings of the 2010 ACM Symposium on
Applied Computing, SAC ’10, pages 1584–1590, New York, NY, USA,
2010. ACM.

[12] R. Gonzalez and R. Woods. Digital image processing, third edition.
Reading, Mass.: Addison-Wesley, 2008.

[13] F. Hartung and M. Kutter. Multimedia watermarking techniques. Pro-
ceedings of the IEEE, 87(7):1079–1107, 1999.

[14] J. Kornblum. Using JPEG quantization tables to identify imagery
processed by software. digital investigation, 5:S21–S25, 2008.

[15] N. Krawetz. A picture’s worth...: Digital image analysis and forensics.
In Black Hat Briefings USA, 2007.

[16] W. Luo, J. Huang, and G. Qiu. Jpeg error analysis and its applications
to digital image forensics. Information Forensics and Security, IEEE
Transactions on, 5(3):480 –491, 2010.

[17] A. Popescu and H. Farid. Exposing digital forgeries in color filter
array interpolated images. Signal Processing, IEEE Transactions on,
53(10):3948–3959, 2005.

[18] A. Popescu and H. Farid. Statistical tools for digital forensics. In
Information Hiding, pages 395–407. Springer, 2005.

[19] H. Sencar and N. Memon. Overview of state-of-the-art in digital image
forensics. Algorithms, Architectures and Information Systems Security,
pages 325–344, 2008.

[20] A. Swaminathan, M. Wu, and K. Liu. Nonintrusive component forensics
of visual sensors using output images. Information Forensics and
Security, IEEE Transactions on, 2(1):91–106, 2007.

[21] A. Swaminathan, M. Wu, and K. Liu. Digital image forensics via intrinsic
fingerprints. Information Forensics and Security, IEEE Transactions on,
3(1):101 –117, 2008.

[22] G. K. Wallace. The jpeg still picture compression standard. Commun.
ACM, 34:30–44, April 1991.

Digital Image Forensics – Jan Kazemier and Michiel Heijkoop

96

Dynamic Formation and Opponent Modeling in Real Time Strategy
Games

Amirhosein Shantia

Abstract—Real Time Strategy Games are controlling the highest share in PC markets. They present an environment in which players
can control a base and a set of units in real time. The main steps of playing are unit micro management, building order, resource
management, and the game main tactic. Unfortunately, current games mainly use fixed or limited dynamic scripting to control the
non-human player, and therefore, the player can easily learn the counter measures to defeat the AI. Recently, research has been
done on modeling the main behavior of the opponent in order to execute counter tactics and win the game. However, the experiments
were done on non/weak-commercial open source games. In this paper, we review the most popular opponent modeling methods and
will implement these methods in the popular StarCraft game. The goal is to predict the opponent’s action and select a reasonable
counter measure.

Index Terms—Opponent Modeling, Dynamic Formation, RTS, Neural Networks, Reinforcement Learning.

1 INTRODUCTION

Real-time strategy games(RTSG) are a sub-class of strategy video
games which as it name says is real time and not turn based. In an
RTSG, the player has control over a base, a set of units and structures
with the goal to secure areas of the map and/or destroy other non-
friendly players’ bases. In a typical RTSG, the creation of unit and
building constructions are generally limited by a requirement to have
special resources. These resources can be gathered by controlling spe-
cial points on the map and/or possessing certain types of units and
structures devoted to this purpose. More specifically, the main steps of
playing are unit micro management, building order, resource manage-
ment, and the game main tactic. StarCraft, WarCraft, Age of Empires,
and Command & Conquer are examples of such RTS games[3].

Gameplay in RTSG generally consists of the players being ran-
domly positioned somewhere on the map with a few units or a building
that is capable of building other units/buildings. Usually, the player
must construct a set of structures to unlock more advanced units or
structures in the tech tree. In addition, in all RTS games, the player
must build an army to either defend him/herself from a virtual form of
attack or to completely eliminate enemy structures. In order to achieve
this, the player should keep a strong economy by Resource gathering.
Other titles of the genre place higher gameplay significance to how the
units are used in combat. Some titles impose a ceiling on the number
of simultaneous troops, which becomes a key gameplay consideration,
a significant example being StarCraft, while other titles have no such
unit cap.

Another important factor to win the game is to choose a correct
tactic against the opponent. For instance, if one knows what types of
structures the opponent has, then typically one would understand the
mixture of the opponent units and choose to build units that are strong
against those of the opponent. To make predictions about the oppo-
nent’s strategy, an AI player can also establish an opponent model.
Many studies confirm the importance of opponent modeling and pre-
dicting opponents actions, such as, [12][1][9][3][14][17]. In these
studies, it is also stated that opponent models are required to deal
with the complexities of state-of-the-art video games [16]. One of the
biggest issues in opponent modeling in RTSG is that the player does
not have access to all the information and its knowledge is limited to
the visibility range of units and structures. This makes the construction
of opponent models in an RTS game a difficult task.

Opponent Modeling is not limited to RTS games. Extensive re-
search have been done by researchers for other games, such as poker,

• Amirhosein Shantia is with Department of Computer Science, University
of Groningen in The Netherlands, E-mail: a.shantia@student.rug.nl.

backgammon, scrabble, etc. Baker, et al., used Bayesian opponent
modeling. Opponents were defined in four distinctive styles, and tac-
tics were developed which defeat each of the respective styles [2]. Jozi
et al., they proposed a behavior structure for agents which consisted of
low level skills and high level skills , and also a simple method of op-
ponent modeling called harmonic opponent modeling which model the
walking speed of opponent agent [11]. Billings et al., described and
evaluated Loki, a poker program capable of observing its opponents,
constructing opponent models and dynamically adapting its play to
exploit patterns in the opponents play [4]. Schad et al., proposed a
method for modeling opponent in Spring game. However, their focus
were mainly on the units of the opponent. Typically, when the units
are produced, it is already too late to start a counter measure. The
prediction should be done by also taking into account the type and of
number buildings and workers of the opponent [14].

In addition, Real time strategy games are not only an interesting
topic for sole research purposes. The video game industry has roughly
gained eleven billion dollars by selling games in 2008 and 2009. The
share for PC games are around seven hundred million dollars. Real
time strategy games dominate the PC games sell by 35.5%. Therefore,
any breakthrough in this field is a potential investment for financial
success [7].
Contribution. In this paper I explore whether opponent modeling in
the game tactic can be useful for obtaining good performing game AI
for selecting the main tactic of the match in the game StarCraft. First
of all, I introduce the subject of opponent modeling. Next, I describe
my approach and implementation of opponent modeling in StarCraft
which is the only popular and commercial real time strategy game that
is possible to manipulate.

Outline. In the next section, first, I describe the StarCraft game.
In Section III, I present bases of opponent modeling and my proposed
modeling approach and implementation. In Section IV, I conclude this
paper.

2 STARCRAFT TM

StarCraft TM is a popular Real-Time Strategy (RTS) video game de-
veloped by Blizzard Entertainment in 1998. StarCraft is the most suc-
cessful RTS game with more than 9.5 million copies sold as its re-
leased date in 1998 until 2004. StarCraft consists of three races (Ter-
ran, Protoss, and Zerg), each of which have special building structures
and different types of soldiers to engage in battle. The game-play in
these games involves micro and macro management. Micro manage-
ment involves focusing on unit control while macro management fo-
cuses on building order, resource management, and the game main
tactic. In this paper I focus on macro-management of the game by try-
ing to understand the opponents tactic. The game has a terrain with

97

Fig. 1. Battlefield and interface of a StarCraft Match.

different possible heights, choke points, etc. Each unit of the game
has a number of attributes such as health, armor, weapon, move speed,
attack speed, turn speed, etc. Player unit information is always acces-
sible to the player, but enemy unit information can be chosen to be
visible or hidden when it is out of sight. Figure.1 shows the interface
and battlefield of the StarCraft Game. In this paper, in order to reduce
the possible tactics and counter measures between different races, I
mainly focus on opponent modeling for Terran vs. Terran matches.

3 OPPONENT MODELING

In general, an opponent model is a short description of players’ behav-
iors in a game [16].Opponent modeling can be counted as a classifi-
cation problem, where the input data is usually the type of structures,
units, and attacking time of enemies, and the output labels regarding to
the input data will be the type of opponents strategy. A limiting condi-
tion is the fact that in RTS games, these classifications have to be per-
formed in real-time, while many other computations, such as rendering
the game graphics, have to be performed in parallel. However, with the
advent of multi-core technology, the computation speed of computers
increased significantly. Still, computationally-inexpensive techniques
are preferred for opponent modeling in RTS games. Preference-based
modeling is a commonly used computationally light technique [5].
The method identifies the model of an opponent by analyzing the op-
ponent’s choices in important game states, such as building orders, unit
composition and etc. Due to the visibility limitations in RTS games,
however, it is common that choices of the opponent cannot always
be observed and scouting is required to increase the precision of the
model.

The approach I use in this paper is the following. First, a set of
known tactics are selected as classes. Then, based on opponents struc-
ture and unit building order, a number of possible opponent models is
established. Next, the confidence level of each opponent model is cal-
culated, and finally, the opponent model with the highest confidence
level is selected. Since the state space of the game is huge and com-
plex, a better approach is to apply a hierarchical ordering on the possi-
ble opponent models [10]. This hierarchical approach allows us to di-
vide the complex modeling in different simple problems . In addition,
the hierarchical approach makes it feasible to use different classifica-
tion methods in each level of the hierarchy. For establishing opponent
modeling in RTS games, we follow the hierarchical method. As previ-
ously said, the most defining element of an opponent’s strategy is the
main tactic chose by the player. We therefore place the general play
style at the top of the hierarchy. Each play style has its own sub-tactics
that further demonstrates behavioral characteristics. For example, if
it is known that the opponent is aggressive, a logical response would
be to improve one’s defenses. If also the opponent’s choice of units
is known, the defenses can be specialized to be effective against those
specific units.

3.1 Implementation

This section discusses my implementation of hierarchical opponent
modeling in StarCraft for the Terran Race. In my implementation, I
start establishing a hierarchy consisting of three levels. The first-level
of the hierarchy classifies the opponent’s general play style. The
second-level of the hierarchy classifies the opponent’s choice of build-
ing structures, and finally, the third-level of the hierarchy classifies
the opponent’s choice of building units. In StarCraft, we discriminate
between an aggressive, and a defensive play style. For an aggressive
play style we discriminate at the third level between pre-dominantly
using the following four unit-types: (1) Siege Tanks, (2) Marines, (3)
Vultures(Fast Bikes), and (4) Airplanes. Each unit-type has specific
strengths and weaknesses, and is used to execute a particular strategy.
For instance, Vultures are relatively fragile but are very fast and have
long shooting range, and are therefore useful for a strategy against an
opponent which attempts to attack with small and slow units. Tanks
can only maneuver on plain terrain but are relatively sturdy, and are
therefore useful for a strategy against an opponent who constructs
strong defenses. Also, tanks in siege mode can cover a larger area
and do significant amount of damage. For a defensive play style we
discriminate at the bottom level between the following three building
preferences: (1) Super Weapon, (2) Tech, and (3) Bunker. These
three building preferences are commonly observed in actual StarCraft
games. The mentioned hierarchy defines the following strategies:

1. Aggressive→Vultures. The opponent will attack early to disrupt
resource gathering units and damage economy.

2. Aggressive→ Marines. (Large Number of Troops). The oppo-
nent will do an all-in attack in order to defeat the enemy.

3. Aggressive→ Siege Tank. The opponent will damage the front
line by use of the siege mode.

4. Aggressive→ Airplane. The opponent will damage the resource
gathering units to damage economy.

5. Defensive→ Bunker. The opponent will make bunkers near its
base choke point in order to repel any possible attacks.

6. Defensive→ Tech. The opponent will stay inside its base until
it makes high end units.

7. Defensive→ Super Weapon

The information about the labels are based on years of human expert
play style [13],[6].

3.2 First-Level Classifier

In this hierarchy, the top level classifier is used to distinguish between
‘aggressive’ and ‘defensive’ opponents. An aggressive player typi-
cally will spend a large part of game time attacking. A defensive
player, on the other hand, typically, will use most of the game time
for preparing an army (with high end units), and only needs a small
amount of the game time for an actual attack. As a result, a rational
feature to discriminate between these two classes is a way to measure
attack time of the opponent. An attack is defined as the time when the
AI agent loses a number of its own units. An example of a top-level
player model is shown in Figure 2. which is the calculated confidence
rating in the SPRING game by [14]. The Figure illustrates the con-
fidence of the opponent following an aggressive and defensive play
style, as a function of the percentage of game time spent on attacking.
The data were gathered from several manual games of a good human
player.

Dynamic Formation and Opponent Modeling in Real Time Strategy Games – Amirhosein Shanti

98

Fig. 2. Example of a First-level player model.

3.3 Second and Third-Level Classifier

After detecting game style, I need to find out which tactic the opponent
is going to use against the player. The second and third-level classifier
has to discriminate between the sub-tactics that further demonstrates
behavioral characteristics of the opponent. However, during the game,
a player can switch from one tactic to another or use a mixture of
tactics. Therefore, the classifier needs to be able to map the new
data to one of the pre-defined tactics. It also requires to emphasize
recent events of the match more than past events. To achieve this, I
use a reward function for the system in order to determine whether it
correctly anticipated the opponent’s tactic. The reward can be selected
as the match result or the army value of each team after a single
battle during a match. Since the goal is to adapt with the opponent’s
tactic over time, we have to also introduce a discount factor to decay
the results that came from past. Over time, if a deviation from the
selected tactic is required, the tactic which gave higher rewards in the
past experiences will be chosen. The expected reward formula can be
computed as follows[8]:

(1−δ)
∞

∑
1

πi×δ i−1 (1)

Here the discount factor δ and reward at time t πt is applied. Since
it is assumed that a player prefers to receive a reward as soon as pos-
sible, rewards in the future are valued less. This is based on Occam’s
Razor concept in which it is unlikely to find a short correct path by
coincidence. On the other hand, finding a long path that has a much
higher probability to be a coincidence. This valuation is expressed
by multiplying the future reward with the discount factor. When the
expected rewards are calculated, a simple selector mechanism usually
will select the strategy with the highest expected reward [15].

Modification for RTS:
Similar to calculating the expected rewards, for discriminating
between opponent strategies, I also require to measure the confidence
rate of the opponent applying a particular strategy. The confidence
value of the anticipated opponent’s strategy is calculated during the
game. In classical matrix games, a game event would be one move
of both players. However, because the nature of RTS is real-time,
the term of an event must be rephrased. As stated before, the
occurrence of an attack is a suitable event to detect whether the player
is aggressive, and to calculate the confidence level of the player
decision. When playing against a defensive opponent, however,
waiting for an attack of is typically an unsuccessful game strategy
and will usually result in a loss. Against a defensive opponent, it is
crucial that the player ‘scout’ the base of the opponent. Scouting will
provide information about the opponent’s actions. When an event
is detected, the confidence values of each possible strategy will be
updated according to the observed game information. If δ is the

discount factor, ψs,t the belief that the opponent uses strategy s at
event t, ranging between 0 and 1, and πt the total reward added at
each event and i the most recent event, then the confidence rate cs that
the opponent uses strategy s is computed as follows in formula 2 :

cs =
0

∑
t=i

ψs,t ×πi×δ i−1 (2)

The belief parameter ψs,t is calculated by observing all possible en-
emy info. Each unit or structure has a value representing a tendency
to a certain strategy. The unit-tendency values were determined by the
supervised human expert, using his own knowledge of the game. To
give three examples of unit-tendency values: (1) a number of enemy
bunkers has a high tendency towards an opponent using the defensive
bunkering strategy, (2) two Barracks early in game has a high ten-
dency towards an aggressive opponent (3) a siege tank has a tendency
towards both the aggressive and defensive strategy.

4 CONCLUSION

In this paper, I described opponent modeling and its importance in
game AI.I introduced my approach for implementing opponent mod-
eling in the real time strategy game, StarCraft. StarCraft is one of
the most famous real time strategy games developed until now, and
has recently been used in tournaments to compare the use of different
techniques from artificial intelligence.

I used a hierarchical opponent modeling in order to break down the
complex problem of modeling into separate simpler problems. The
final architecture consists of three modeling levels, namely, Aggres-
sion , Structure and unit level modeling. The top-level of the hierarchy
can classify the general play style of the opponent (Aggression). The
bottom-level (structure and unit) of the hierarchy can classify strate-
gies that further define behavioral characteristics of the opponent.

REFERENCES

[1] B. Abramson. Expected-outcome: a general model of static evalua-
tion. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
12(2):182–193, Feb. 1990.

[2] R. Baker and P. Cowling. Bayesian opponent modeling in a simple
poker environment. In Computational Intelligence and Games, 2007.
CIG 2007. IEEE Symposium on, pages 125–131, april 2007.

[3] S. C. Bakkes, P. H. Spronck, and H. J. van den Herik. Opponent
modelling for case-based adaptive game AI. Entertainment Computing,
1(1):27–37, 2009.

[4] D. Billings, J. Schaeffer, and D. Szafron. Opponent modeling in poker.
pages 493–499. AAAI Press, 1998.

[5] J. Donkers and P. Spronck. Preference based player modeling. Charels
River Media, Boston, Massachusetts, 2006.

[6] B. Entertainment. StarCraft Brood War. http://us.blizzard.com/en-
us/games/sc, 2011. [Online].

[7] ESA. Essential facts about the computer and video game industry, 2010.
[8] R. Gibbons. A Primer in Game Theory, Chapter 2. Pearson Higher Edu-

cation, June 1992.
[9] R. Gibbons. A Primer in Game Theory, Chapter 2.3B. Pearson Higher

Education, June 1992.
[10] R. Houlete. Player modeling for adaptive games. Charels River Media,

Hingham, Massachusetts, 2004.
[11] B. Jozi, A. Fakharian, M. Nademi, and M. Khanian. Harmonic opponent

modeling and behavior structure for 3d soccer simulation agent. In Com-
putational Intelligence in Robotics and Automation (CIRA), 2009 IEEE
International Symposium on, pages 394–397, dec. 2009.

[12] R. E. Korf. Generalized game trees. In Proceedings of the 11th interna-
tional joint conference on Artificial intelligence - Volume 1, pages 328–
333, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[13] T. Liquid. StarCraft Wikipedia. http://wiki.teamliquid.net/starcraft/Main
Page, 2011. [Online].

[14] F. Schadd, S. Bakkes, and P. Spronck. Opponent modeling in real-time
strategy games. pages 61–68, 2007.

[15] F. Schaeffer. Hierarchical opponent models for real-time strategy games.
Universiteit Maastricht, 2007.

SC@RUG 2009 proceedings

99

[16] H. J. van den Herik, H. H. L. M. Donkers, and P. H. M. Spronck. Op-
ponent modelling and commercial games. In G. Kendall and S. Lucas,
editors, Proceedings of IEEE 2005 Symposium on Computational Intelli-
gence and Games CIG’05, pages 15–25, 2005.

[17] M. van der Heijden, S. Bakkes, and P. Spronck. Dynamic formations
in real-time strategy games. In Computational Intelligence and Games,
2008. CIG ’08. IEEE Symposium On, pages 47–54, december 2008.

Dynamic Formation and Opponent Modeling in Real Time Strategy Games – Amirhosein Shanti

100

Cloth Simulation: Permanent Deformation using Hysteresis

Dirk Zittersteyn Tijmen Klein

Abstract—Cloth simulation using springs and dampeners has been a subject of research for over a decade. Many simulations take
inspiration from molecular dynamics, modelling cloth as a grid of nodes interconnected by springs. These springs do not support
permanent deformation, so cloths will always return to their original shape. This creates some unrealistic effects when large external
forces are applied, such as a flag during gale force winds or the firing of a bullet at a Kevlar vest. We extend this simulation to create
more realistic and versatile results.
We propose a method that uses per-spring hysteresis to make a better approximation of a natural spring. A system shows hysteresis
when its behaviour depends not only on the current input parameters, but also on the input it received in the past. When a force
that causes the spring to exceed its yield point is applied, the state of the spring is permanently changed. The spring loses some of
its stored energy in the process of deformation, meaning it does not contract to its original length and the force exerted at a certain
length is reduced. We simulate this deformation by recording the stresses the spring has gone through.

Index Terms—Cloth simulation, hysteresis, springs, molecular dynamics, computational science.

1 INTRODUCTION

Cloth simulation is a subject that presents several different methods.
Three main methods can be distinguished: [9]

• geometric,
• particle/energy, and
• physical.

Geometric methods, first used by Weil [11] in 1986, use a model based
on cable tension. Weil states that due to the high computational com-
plexity of this method, live computation is not feasible.

Particle/energy methods are based on molecular dynamics-
approaches for simulating interaction between particles. The cloth is
modelled as a collection of nodes, each interacting with all other nodes
based on simple rules of attraction and repulsion.

The particle/energy methods are still quite computationally com-
plex, as every particle has to interact with all other particles in the
cloth. For a cloth with n nodes this will be O(n2) computations. Using
a neighbourhood list we can reduce the computational complexity to
O(c · n), where c is the size of the neighbourhood list. When using a
neighbourhood list with a small size, inaccuracies will occur, for ex-
ample in sharp curves. In this case nodes may become detached from
the cloth.

A way of preventing this is by using the physical method, where
the neighbourhood list is replaced by a fixed number of adjacent nodes,
which are connected to the node by springs as in Breen et al.[2]. Breen
et al. state that realistic results can be achieved with only 12 springs,
connected as in Figure 1. Due to the realism achieved at low computa-
tional costs (compared to geometric and particle/energy), we use this
method as a basis for our work.

The work of Breen[3] presents a physical-based model to predict
the drape of different types of woven fabrics. Photographs of real fab-
rics are used as a reference for realism. The Kawabata Evaluation Sys-
tem [5] is used to determine the parameters of the fabrics. Kawabata
uses several testing setups to determine the properties of real fabrics,
these can then be used in simualations. Another approach uses a ge-
netic algorithm to extract the parameters from a video showing the
fabric[1]. This way any fabric can be simulated using only a video of
the fabric in motion as an input.

Most implementations of the physical method use Hooke’s model
to compute the force a spring exerts. Hooke’s model is realistic for be-
haviour at small amounts of stretching. Unrealistic behaviour surfaces

• Dirk Zittersteyn @ University of Groningen
E-mail: D.L.Zittersteyn@student.rug.nl.

• Tijmen Klein @ University of Groningen
E-mail: T.R.Klein@student.rug.nl.

Fig. 1. The black node is connected to structural (dark), bending (light)
and shearing (white) points.

when the limits of the system are explored. The cloth will always re-
turn to its original state, no matter how much it was stretched, causing
unrealistic physics. To improve the realism of this method we look
into the behaviour of springs at their limits.

In this work we show our implementation of realistic springs, as
well as the results it yields with regard to cloth simulation. We go into
our method for simulating cloth as well as the adaptation we made to
account for permanent deformation. An example of a cloth that shows
permanent deformation is shown in Figure 2. This cloth was hit by a
sphere in the upper right corner.

For cloth simulation we use the molecular dynamics based frame-
work of Moosegaard[7], which we extend to conform more closely to
the natural behaviour of springs.

2 METHOD

Our cloth simulation is based on a physical method, where the nodes
are connected with springs. The simulation of these springs deter-
mines the new positions of the nodes.

2.1 Physical method

A cloth simulation based on the physical method consists of repeating
the following basic steps:
(2.4.1) calculate forces applied by the springs,
(2.4.2) determine the resulting acceleration of the nodes,
(2.4.3) calculate the velocity of the nodes,
(2.4.4) move the nodes based on these velocities, and
(2.4.5) increase the current time by the time step.
Springs form the connections between the nodes, and we can distin-
guish three different types of springs [10], which are explained below.
How these springs are connected can be observed in Figure 3.

101

Fig. 2. A piece of cloth showing permanent deformation.

(a) Structural (b) Shear (c) Bend

Fig. 3. The different types of springs used.

2.1.1 Structural springs
Structural springs are the springs that define the main structure of
the cloth, and connect every node with its 2 vertical and 2 horizontal
neighbours. Structural springs simulate the actual fibers in the cloth.
The strength of these springs determines the load bearing properties of
the cloth.

2.1.2 Shear springs
Shear springs connect each node with the 4 diagonal neighbouring
nodes. These springs restrain shear deformations. Shear springs simu-
late the force two adjacent fibers exert on each other. A loosely woven
piece of cloth will have very low shearing recovery, while very dense
cloth will exert a lot of force to return to its square resting state.

2.1.3 Bend springs
Bend springs restrain the bending of the material. A piece of satin for
example has very low strength bending springs; a piece of rubber on
the other hand has very high bending recovery.

2.2 Springs
Real-life spring deformation can be modelled using Hooke’s law [4],
which states that the spring force is a product of the difference between
the rest length and the current length (δx) and the spring constant (k),
so:

Fs = δx · k (1)

As long as the force that is applied on the spring stays below its yield
point, this is an accurate approximation. However, when the amount
of deformation exceeds the yield point Hooke’s law does not hold any-
more. In the stress vs. strain graph in Figure 4 the relation between
the stress and the strain on the spring is shown. The line segment from
the origin to the yield point shows a linear relation between the two,
after the yield point however this relation becomes irregular. The yield
point denotes the amount of stress a spring can take before its molec-
ular structure is permanently changed. This deformation reduces the

S
tr

e
s
s

Strain

Release

Yield

New Rest

Fig. 4. Stress vs. strain graph of a permanently deforming spring.

 Rest state

F

F Fss

s Fs

Fig. 5. Forces exerted on two nodes that are connected with a spring.

amount of potential energy in the spring, resulting in a changed rest-
state. The analogy holds for our cloth simulation, as a piece of cloth
will return to its original state after a small force is exerted, but will
permanently deform after a large amount of stretching. To approx-
imate this permanent deformation, an extension to Equation 1 is re-
quired.

2.3 Deformation and Hysteresis
The behaviour of a spring when stretched beyond its yielding point
is quite complex. As can be seen in Figure 4, the amount of defor-
mation a spring undergoes depends on how far the spring exceeds its
yielding point. Using this approach will most likely result in compu-
tationally heavy simulation. Therefore, we choose to model the spring
in a simpler way. We assume a spring will never break, and will not
change structure when stretched. This means a spring will always keep
the same spring constant k. When a spring exceeds its yielding point
we simply extend the spring by the amount by which the yield point
was exceeded. This amount is called h. This results in the simulation
shown in Figure 6 and 7.

We implement this using a method very similar to hysteresis. A
system that exhibits hysteresis (also called ‘path-dependance’) will re-
act differently based on how it has reacted in the past. An example of
hysteresis can be seen in automatic street lights. An automatic street
light will turn on when the light level is below a certain threshold T ,
and off when the light level is above T . Without hysteresis this sys-
tem can show rapid on-off flickering when the light level is close to T .
To prevent this, a street light will only turn on when the light level is
below T −α , and only turn off when the light level is above T +α .

We apply a similar method to our springs, as we take previous
stretching into account. Every spring keeps track of its own length,
and changes this length according to how much the yield point has
been exceeded.

2.4 Simulation
Simulating a continuous process like cloth deformation would require
us to analytically solve several differential equations. Another way of

Cloth Simulation: Permanent Deformation using Hysteresis – Dirk Zittersteyn and Tijmen Klein

102

Yield Yield

Exert Force

Release

Rest Rest

Fig. 6. Stretching a spring within its limits. The spring (eventually) re-
turns to its initial rest state.

New Yield

Rest Rest

New Rest New Rest

New Yield

Yield Yield

Exert Force

Release

h h

Fig. 7. Stretching a spring beyond its limits. Permanent deformation
occurs, changing the rest state and yield point of the spring.

approaching this problem is to discretize time into a large number of
time steps, and use the finite difference method to discretize the cloth.
This way we can use a numerical approximation of the movement of
the cloth, which results in a simpler model.

The steps described in 2.1 are applied each time step.

2.4.1 Calculate forces

First we compute the forces exerted by the springs connected to each
node. This is done by first computing k ·δx, where δx is based on both
original and current length, Lo and Lc respectively, and a hysteresis
constant h:

δx = Lc − (Lo +h) (2)

In this formula Lo +h represents the current rest distance.
We then use Equation 1 to compute the force exerted. When com-

bined with Equation 2 this formula is:

Fs = k · (Lc − (Lo +h)) (3)

In Figure 8 a plot of stress against strain for the model we use can
be seen. While the model is not accurate (compare Figure 4), the im-
portant points (Origin, Yield, Release and New Rest) correlate. This
means the behaviour is similar.

2.4.2 Determine acceleration

Using Newton’s second law [8], combined with the known mass of a
particle and the forces that act on it, we can compute the acceleration
the particle will undergo. Newton’s second law is stated as: F = m ·a.
This can be rewritten to:

a =
F
m

(4)

S
tr

e
s
s

Strain

Yield Release

New Rest

Fig. 8. The approximation of the stress-strain model used in our model.
Also see Figure 4.

2.4.3 Calculate velocity
To calculate the velocity of a particle, we integrate a over t (time),
so

∫
a(t)dt. We discretize this according to the midpoint rule on an

equidistant grid. We use the approximation

∫ y

x
a(t)dt ≈

n

∑
i=1

a(t +(i−1)∆)∆ (5)

Equation 5 approximates the area under a curve as a series of n rect-
angles (this is the midpoint rule). The time step is denoted as ∆.

2.4.4 Move the nodes
It is easy to see that s =

∫
v(t)dt. We use the same approximation of

this integral as Equation 5 to calculate how far the node will move.

2.4.5 Increase current time
The choice of the time step is critical, as a time step that is too small
will result in a slow simulation, while a too large time step will cause
instability in the integration of both a and v. Meyer[6] shows that the
maximum time step is inversely proportional to the square root of the
spring constant of the material, a property dicussed in Section 3.2.

3 IMPLEMENTATION

To implement the hysteresis that is described in Section 2, we need a
standard physics-based cloth simulation to start with. This basic cloth
simulation program is extended to implement per-spring hysteresis.
This section describes the framework that is used as the starting point
and explains the hysteresis-extension that is applied to this framework.

3.1 Basic cloth simulation framework
We use the C++ based Cloth Simulation Coding Tutorial from
Mosegaard[7] as the starting point for our cloth simulation. The tu-
torial is used to explain the basics of a physics based cloth simulation
and has minimal external dependencies. This framework supplies the
data structures for repulsion and attraction, as well as nodes. It also
implements some basic vector mathematics.

Furthermore the framework provides an initialization that properly
connects the nodes with its neighbours using structural, shearing and
bending constraints. An example of how the immediate neighbours
are connected can be seen in Figure 9. However, these constraints do
not act as springs, as they do not follow Hooke’s law and therefore
are not suitable for hysteresis. As a nice side-effect, a spring-based
calculation is faster than a constraint based method. Based on these
reasons we replace the constraint class with a spring class.

The cloth consists of a grid of nodes, and can be visualised by draw-
ing 2 triangles between 4 nodes of the cloth. The framework takes
care of this visualisation and also calculates the normal vectors for ev-
ery triangle, which helps to create more realistic lighting. The function
drawTriangle() draws a triangle based on the the vertices and normals
of 3 nodes, as shown in Figure 10.

The framework has a method that shoots a ball into the simulated
piece of cloth. This can be used to test the deformations of the cloth.
However, the approximation of the collision that is used for this is

SC@RUG 2009 proceedings

103

Fig. 9. Connecting a node with the appropriate neighbours.

x

y

Fig. 10. The triangles that are drawn

rather simplistic, and can give unrealistic and unwanted results. The
ball is simply moved a certain distance every timestep. When a node
ends up inside the ball, the node is moved to the nearest point outside
the ball. This means the ball has an infinite mass, which can cause
extreme deformation in some cases. Another downside of the current
implementation of the ball is the fact that the ball moves a fixed dis-
tance every time step. This means that impact of the ball depends on
the size of the time step.

3.2 Spring class with hysteresis
One time step for the spring and nodes consists of two basic steps:
performing the spring calculations and moving the nodes. The spring
calculations are executed first, since these exert forces on the nodes,
which gives the nodes their speed. These discrete calculations depend
on the global time step value that is defined in the program.

The calculations of our spring class are primarily based on Equation
1 that has been extended with hysteresis as described in subsection 2.3.
All the springs have a spring constant k, a rest distance Lo that is based
on the initial distance between the two nodes, a constant yield factor y,
and a hysteresis value h, that are used for the spring calculations. The
function satisfySpring() (Listing 1) applies Hooke’s law with hys-
teresis and adds the resulting forces to the 2 nodes that are connected
to the spring. The hysteresis value is adjusted if the current displace-
ment (δx) is larger than the current yield point. The yield point can be
derived from y and the current rest length.

To summarize: a spring is defined as:
• k: the spring constant,
• Lo: the initial rest distance,
• y: the yield factor,
• h: the hysteresis value and,
• δx: the current amount of displacement
To evaluate our method we first implemented a simple simulation

of a 1D spring suspended at a certain height, as shown in Figure 11.
The results of this simulation are plotted in Figure 12 and 13. In the
first figure the spring starts oscillating around a single point, with the
top of its oscillation level with the original height. In the second fig-
ure hysteresis is introduced, causing the spring to permanently deform
during the initial drop. As the spring stretches, the yield point is placed

20

10

0(cm)

Fig. 11. The simulated model of a one-dimensional spring.

Fig. 12. Simulation of the spring in Figure 11, without hysteresis. It can
clearly be seen that the total energy in the system remains constant.

Fig. 13. Simulation of the spring in Figure 11, with hysteresis. A couple
of discontinuities can be seen, corresponding with the deformation of
the spring. The energy that seems ’lost’ is converted to heat.

further and further (since the yield point is based on y and the current
rest length), so eventually the fall is stopped and the spring will start
oscillating around a single point.

The parameters of the springs determine the characteristics of the
cloth, changing the parameters can give different kind of materials.
Therefore it is convenient to give these parameters as run time argu-
ments to the program. The following parameters can be giving as ar-
guments:

• damping factor,
• spring contact,
• yield factor (that determines the yield point),
• step size of the time,
• gravitational constant.

Cloth Simulation: Permanent Deformation using Hysteresis – Dirk Zittersteyn and Tijmen Klein

104

Listing 1. Spring calculations
void satisfySpring()
{

// Vector from node 1 to node 2
Vec3 p1_to_p2 = p2->getPos() - p1->getPos();
// Distance between the nodes
float current_distance = p1_to_p2.length();

// Hysteresis
if(current_distance - rest_distance - h > yield){
h = current_distance - rest_distance - h - yield;
yield = (rest_distance + h) * YIELD_FACTOR;

}

// The correction vector to move the 2 nodes.
Vec3 force = p1_to_p2.normalized() * (current_distance -

rest_distance - h) * SPRING_CONSTANT * 0.5 ;

// Apply the forces
p1->addForce(force);
p2->addForce(-force);

}

3.3 Simulation
Our simulation creates a piece of cloth that is defined on a 60× 60
grid of nodes. The nodes of the top corners of the cloth are fixed,
which results in the cloth hanging from these 2 points because of the
gravitational force. It is also possible to create a cloth with one, three
of four fixed corner points.

It is hard to test the permanent deformation of the cloth with the
shooting of the ball. Therefore, another method to deform the cloth is
added: pulling. For a certain amount of time a constant force along
the Z-axis is exerted to a node in the centre of the cloth (the cloth is
initally placed along the XY-plane). This results in a realistic pull that
does not depend on the time step, which means that the pull method
can easily be used to test the permanent deformation of different kind
of materials.

4 RESULTS

The results that are obtained by extending the spring simulation with
hysteresis look realistic. This section shows and discusses some of
the obtained results. All test simulations were done using consumer
hardware and are based on a 60× 60 grid of connected nodes. The
simulation runs in real-time on this setup, and is able to top 250 frames
per second on current consumer hardware.

Figure 14 clearly shows the difference between a simulation with-
out and with permanent deformation. The cloth in Figure 14(a) shows
a deformation on the location where the collision with the sphere oc-
curred. The springs at this location have undergone such strong forces
that they were stretched beyond their yield point, and thus their rest
length is increased by means of permanent deformation. This in-
creased rest length is easily observable in Figure 14(b), and accounts
for the non-uniform look.

Figure 15 shows the result of the pulling force on the cloth. The
cloth shows nice permanent deformation at the location where the
force is applied. The deformation is severe at the node that is actu-
ally pulled, and quickly decreases around this point. The deformed
area is relatively small when compared to the deformations of the im-
pact with a sphere (Figure 14(b)); which is expected since the sphere
interacts with more nodes.

The time step that is used can not be too large, as is explained
in Section 2.4.5. A time step that is too large will quickly result in
very unstable simulations. An example of such an unstable situation
is shown in Figure 16.

(a) Without permanent deformation (b) With permanent deformation

Fig. 14. A piece of cloth after collision with a sphere.

(a) Without permanent deformation (b) With permanent deformation

Fig. 15. A piece of cloth after applying a pulling force at the center.

Fig. 16. Large time step causing instability

SC@RUG 2009 proceedings

105

5 CONCLUSION & DISCUSSION

Hysteresis is a valuable addition to spring based cloth simulations. The
calculations that are required to add the hysteresis do not give much
overhead, which means that the simulations can still run in real-time.
The overall results are convincing and the visualisations of the perma-
nent deformations look realistic. The simulation currently is useful for
deformation of for example kevlar in bulletproof vests, and for illus-
trative purposes.

However, hysteresis does not always increase the realism of a simu-
lation. Most simulations will not exert such large forces on the springs
that they should be permanently deformed, which means that the hys-
teresis calculations do not influence the simulation. On the other hand,
no material will keep on stretching forever without tearing, which is
a parameter that is not taken into account in our method.. The cloth
will never tear, even when extreme forces are applied to it, therefore
the method is unsuitable for simulations where the interest lies in the
breaking points of materials.

This method can also be used for other situations where physical
methods are used, such as solid media deformation. This would re-
quire a 3D grid of nodes, and springs in more directions. The simula-
tion of the springs and nodes can remain the same as in our simulation.
Real-world applications could be car crash simulations, or collisions
of stellar bodies. A simple example of a physical method in 3D is the
simulation of a piece of clay.

The current implementation still has some defects. The spring con-
stant of all springs is the same. We would like to make the structural
and shearing constraints stronger than the bending constraints, to make
it possible to make very flexible, heavy materials that can hold up their
own weight.

Further problems occur in intersection calculation are caused by
the fact that we don’t check for self-intersection. This however is a
problem of the physical method, and is not easily amended.

Another oddity is that the cloth is perfectly flat when the simulation
starts, causing a unstable equilibrium that causes the fabric to stand
upright when fixated at the bottom two corners. This is solvable by in-
troducing a small perturbance, breaking the equilibrium. After disturb-
ing the cloth it will collapse into a more realistic state. More realistic
would be to introduce a small disturbance in the force-computations,
collapsing this state immedeately.

The current implementation is not very suitable for porting to the
graphics card (GPU), as it contains some if/else branches. However,
these branches can be eliminated with the use of min/max functions.
Since GPU’s currently far exceed the capability of CPU’s in Single
Instruction, Multiple Data (SIMD) situations, porting to GPU could
be very interesting.

ACKNOWLEDGEMENTS

The authors wish to thank dr. H. Bekker, Assistant professor at the
University of Groningen.

REFERENCES

[1] K. Bhat, C. Twigg, J. Hodgins, P. Khosla, Z. Popovic, and
S. Seitz. Estimating cloth simulation parameters from video. In
Proceedings of the 2003 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, pages 37–51. Citeseer, 2003.

[2] D. E. Breen, D. H. House, and P. H. Getto. A physically-based
particle model of woven cloth. The Visual Computer, 8:264–277,
1992. 10.1007/BF01897114.

[3] D. E. Breen, D. H. House, and M. J. Wozny. Predicting the drape
of woven cloth using interacting particles. In Proceedings of the
21st annual conference on Computer graphics and interactive
techniques, SIGGRAPH ’94, pages 365–372, New York, NY,
USA, 1994. ACM.

[4] R. Hooke. De potentia restitutiva. London: John Martyn, 1678.

[5] S. Kawabata. The standardization and analysis of hand evalua-
tion. 1980.

[6] M. Meyer, G. Debunne, M. Desbrun, and A. H. Barr. Interactive
animation of cloth-like objects in virtual reality. The Journal of
Visualization and Computer Animation, Volume 12(Issue 1):1–
12, May 2001.

[7] J. Mosegaard. Mosegaards cloth simulation coding tutorial, June
2009.

[8] S. Newton, D. Bernoulli, L. Euler, and C. Maclaurin.
Philosophiae naturalis principia mathematica. Typis Barrillot
& Filii, 1740.

[9] H. N. Ng and R. L. Grimsdale. Computer graphics techniques for
modeling cloth. IEEE Comput. Graph. Appl., 16:28–41, Septem-
ber 1996.

[10] X. Provot. Deformation constraints in a mass–spring model to
describe rigid cloth behavior. In Graphics Interface ’95, pages
147–154, May 1995.

[11] J. Weil. The synthesis of cloth objects. SIGGRAPH Computer
Graphics, 20:49–54, August 1986.

Cloth Simulation: Permanent Deformation using Hysteresis – Dirk Zittersteyn and Tijmen Klein

106

Comparison of JavaScript libraries

Johan van der Geest
Mark Ettema

University of Groningen

Abstract— JavaScript libraries are important instruments for website developers. They simplify the development of JavaScript-based
websites with code that is easier to write and maintain. With the rise of Web 2.0, that often relies on JavaScript, these libraries
became increasingly popular. This research is done from the viewpoint of a web developer that has to choose the right library for a
project. First we made a selection of the four most popular JS libraries, which seemed to be jQuery, MooTools, Prototype and YUI.
Then we did a detailed comparison between these libraries. This was done in terms of browser compatibility, community involvement,
performance, distinctive features and support for future technologies. In most tests, jQuery scored very well, especially on community
involvement. However, web developers should always carefully select a library based on its features and the value it adds to a project.
By reading through this paper, a web developer can easily find out which characteristics are important to him and make the decision.

Index Terms—JavaScript, JavaScript libraries, comparison, jQuery, MooTools, Prototype, YUI, Web 2.0

1 INTRODUCTION

JavaScript is an object-oriented scripting language that is used to pro-
vide client-side functionalities on websites. It allows web develop-
ers to write code that manipulates objects on-the-fly. At the moment
JavaScript has a position in the top 10 of most popular programming
languages [1]. The rise of Web 2.0 (with interactive user interfaces
etc.) makes JavaScript a more crucial factor for web developers and
browser vendors.

An advantage of JavaScript is that it is supported by the browser
without the need of a plug-in. Therefore JavaScript works on almost
all platforms, unlike for example Adobe Flash [2]. Browser ven-
dors are working on better JavaScript engines for fast execution of
JavaScript code [3]. This competition between browsers engines will
improve the performance of JavaScript.

Traditional JavaScript is used for simple functions, such as anima-
tions. With AJAX (Asynchronous JavaScript and XML) technology
[4] it is possible to interact with the server when a web page is already
loaded. Nowadays JavaScript is used for more advanced functions,
therefore programming in a well-structured and cross-browser com-
patible way becomes more important. This is one of the reasons to use
a JavaScript library.

A JS library is a set of functions and utilities that makes program-
ming in JavaScript easier. The typical features are [5]:

• Selectors: A selector is a short method to select a HTML
element. This method can be compared with the regular
document.getElementById function, but it also supports
selecting by class name and element type.

• DOM traversal: With DOM traversal an element can be selected
using the Document Object Model tree [6]. This means that it
is possible to select a parent or child(s) from an element. For
example a paragraph or a group of images.

• DOM manipulation: With DOM manipulation it is possible to
change the content or style of a selected element.

• Utility functions: Most of the JS libraries have utility functions.
With the use of these functions some code can be written shorter
and more structured. This makes the code more maintainable.

• Event handling: Event handling, for example reading out a key

• Johan van der Geest, MSc student at University of Groningen, E-mail:
j.van.der.geest@student.rug.nl.

• Mark Ettema, MSc student at University of Groningen, E-mail:
m.s.ettema@student.rug.nl.

stroke, is not implemented exactly the same in each browser. A
JS library provides methods that are cross-browser compatible.

• AJAX: To interact with a server the data is mostly formatted as
XML or JSON. With a JS library it is easier to make a request
in the right format and use a callback function to process the
received response.

The described features are part of almost all libraries, but what is
the best one to pick as a web developer? At the moment there are only
a few JS library comparisons available, but most of them compare the
different features of just two libraries. The goal of this paper is to
describe the differences between the four most popular JS libraries and
thereby help a web developer to select the best library for his needs.
Therefore we start with a selection of four JS libraries in section 2.
When the selection is made we compare them in section 3. This is a
detailed comparison including a performance test. Finally, in section
4, we give a conclusion that describes which library scores the best for
a specific need of a web developer.

2 SELECTION

Before we can make a comparison between JS libraries, we need to
make a selection of the most popular ones. There are dozens of JS
libraries available, and not all of them are equally popular. Some of
them do not offer all of the six features mentioned in the introduc-
tion (selectors, DOM traversal, DOM manipulation, utility functions,
event handling and AJAX). Other projects have just started and are
not as mature as the larger JS libraries. Our goal is to do an in-depth
comparison of the four most popular JS libraries.

We found out that jQuery, MooTools, Prototype and YUI are the
most popular JS libraries nowadays. We did this with the help of Alexa
[7], a company that generates a list of the most popular websites on
the internet sorted on page views. Several researches on the internet
measured the popularity of JS libraries by finding out what the most
popular websites in the Alexa ranking have implemented.

One of the researchers, Elie Bursztein [8], developed a crawler that
went through the first 100.000 websites of the Alexa ranking. He
found out that 45% of these websites use a JS library. From these
websites, jQuery, MooTools, Prototype and YUI were the most com-
monly used JS libraries.

107

Figure 1 shows the difference in popularity between the JS libraries
implemented by the top 100.000 websites of the Alexa ranking. The
other researches [9][10] show similar results and come with the same
ranking as Elie Bursztein.

1%

5%

9%

9%

13%

63%

Dojo

Scriptaculous

YUI

MooTools

Prototype

jQuery

JavaScript library popularity

Fig. 1. JS libraries used among the Alexa top 100.000 websites.

3 COMPARISON

The previous paragraph justified our selection for jQuery, MooTools,
Prototype and YUI as being the most popular JS libraries nowadays.
We do the comparison of these JS libraries in terms of browser com-
patibility, community involvement, performance, distinctive features
and support for future web technologies such as HTML5 and CSS3.
The latest versions of the libraries are compared, which are at the time
of writing: jQuery 1.5.1, MooTools 1.3.1, Prototype 1.7 and YUI 3.3.

For the first three topics (browser compatibility, community in-
volvement and performance) we do a score-based evaluation. Based
on statistical data we hand out a relative score ranging from zero to
100 for each of the topics. These 100 points are divided amongst the
four libraries. We always give the corresponding equation that we used
for computing the scores.

The last two topics (distinctive features and future web technolo-
gies) do not get scores as they depend more on the needs of a web
developer and are harder to relate to numbers.

3.1 Browser compatibility
For web developers browser compatibility is a very important aspect.
Visitors can use different web browsers and therefore a website should
function the same in multiple browsers. A JS library helps with pro-
gramming in a cross-browser compatible way, but the number of sup-
ported browsers differs per library.

All four libraries have support for the five most popular web
browsers [11], as can be seen in Table 1. The table shows for each
JS library the oldest browser version that is supported. Prototype of-
fers the best support for older web browsers, with the exception for
Opera as compared to MooTools. In contrast, jQuery mostly requires
newer web browsers, which results in a lower score. Both MooTools
and YUI are in between. The data was taken from the official websites
of the JS libraries [12] [13] [14] [15].

Library
(L)

Chrome
(C)

Firefox
(F)

IE
(I)

Opera
(O)

Safari
(S)

Score
(Sbc)

jQuery 8.0 2.0 6.0 10.6 3.0 23
MooTools 4.0 2.0 6.0 9.0 3.0 25
Prototype 1.0 1.5 6.0 9.25 2.0.4 27
YUI 1.0 3.0 6.0 10.0 4.0 25

Table 1. Results of the browser compatibility by the JS libraries.

The scores are computed with equation 1. The library with the
best support for older versions gets the highest score. The scores are
rounded to whole numbers.

Sbc(L) =
1

3
·
[
100−

(C(L)

sum(C)
+

F (L)

sum(F)
+

I(L)

sum(I)

+
O(L)

sum(O)
+

S(L)

sum(S)

)
· 100

5

] (1)

3.2 Community involvement
One of the most important factors for a JS library to be successful
is the size and involvement of its community. Web developers often
consult a search engine such as Google to find examples, solutions for
problems or complete scripts (plug-ins) for a JS library. Some web
developers are also interested in buying a book that discusses a JS
library in detail.

As such, we compared the number of Google search results, avail-
able books on Amazon.com and number of questions on Stack Over-
flow for each of the libraries. Stack Overflow is a large Q&A (Ques-
tion & Answer) site for software developers and thereby a valuable
source to measure the community involvement of a JS library.

As can be seen in Table 2, the jQuery JS library is clearly a winner
here. The changes are much higher to find information about jQuery
than with MooTools, Prototype or YUI. The Prototype library comes
on a second place, but the difference with the jQuery is very high.
The third and fourth place are very close, taken by YUI and MooTools
respectively.

Library
(L)

Google
(G)

Amazon
(A)

Stack
Overflow (S)

Score
(Sci)

jQuery 29,500,000 38 24,398 72
MooTools 3,170,000 7 554 7
Prototype 10,800,000 9 1,132 14
YUI 7,490,000 4 387 8

Table 2. Results of search queries performed at March 17, 2011.

We found it important to be consistent with the search results. On
Google, we used the search term ”[library name] + JavaScript” to filter
out results that are not related to the particular JS library. (For exam-
ple, prototype is a common word that has different meanings [16]). On
Amazon, we searched for books with the name of the library as title.
We added ”JavaScript” as keyword to our search query to filter out
books about other subjects. Finally, on Stack Overflow, we searched
on questions with ”JavaScript” and the name of the library as tag.

The scores are computed with equation 2. They are rounded to
whole numbers.

Sci(L) =
(G(L)

sum(G)
+

A(L)

sum(A)
+

S(L)

sum(S)

)
· 100

3
(2)

3.3 Performance
The last topic that is evaluated using scores is the performance of JS
libraries. The requirement specifications of (web-based) software of-
ten include performance as one of the most important non-functional
requirements. As such, the performance of a JS library is an important
factor for a web developer.

We measure the performance of JS libraries in two ways. The first
one is the file size of a library, which has a direct relationship with the
time it takes to download the library from a web server. The earlier
a library is downloaded, the earlier a website can be rendered by a
web browser. The second one is the run-time performance of a library.
Large websites with many user interface interactions easily require
thousands lines of programming code. There could be a significant
difference in run-time performance between the four JS libraries.

3.3.1 File size

Table 3 gives an overview of the JS libraries and the file sizes of their
latest versions. MooTools is the smallest one and gets the most points.

Library
(L)

Size
(S)

Score
(Sfs)

jQuery 83.3 kB 24
MooTools 7.4 kB 32
Prototype 159.5 kB 15
YUI 36.1 kB 29

Table 3. The file size of the latest JS libraries.

Comparison of JavaScript libraries – Johan van der Geest and Mark Ettema

108

On the second place is YUI. It should be noted that the file sizes
of MooTools and YUI only contain the pure core of the libraries. You
can customize these libraries with only the modules you need for your
project. On the third place we find jQuery and the largest library is
Prototype, so this one gets the lowest score.

To compare the file size we have downloaded the smallest available
version of each library from the official websites. Then we calculated
the scores using equation 3 and rounded it on whole numbers.

Sfs(L) =
1

3
·
[
100− S(L)

sum(S)
· 100

]
(3)

3.3.2 Run-time performance
For a web developer it is important that his or her web application
runs fast. To compare the libraries, we have done two run-time perfor-
mance tests, namely Slickspeed [17] and Taskspeed [18]. Slickspeed
is used to compare the speed of selecting elements, while Taskspeed
compares the speed of different advanced tasks. MooTools uses a copy
of Slickspeed on the official website [19] and YUI describes the tools
in a presentation about performance [20]. In the two sub-sections more
details about these tests and the results are described.

As can be seen in Table 4 the winner of the run-time performance
tests is jQuery, followed by Prototype and YUI on a shared second
place. The slowest library is MooTools and therefore it gets the lowest
score.

Library
(L)

Slickspeed
(S)

Taskspeed
(T)

Score
(Srp)

jQuery 52 ms 121 ms 27
MooTools 149 ms 192 ms 21
Prototype 68 ms 134 ms 26
YUI 61 ms 111 ms 26

Table 4. Average results of the run-time performance tests.

The table shows the average time a library needs to complete a test.
A lower value means a better performance and therefore gets a higher
score. We calculated the scores using equation 4 and rounded it on
whole numbers.

Srp(L) =
1

3
·
[
100−

(S(L)

sum(S)
+

T (L)

sum(T)

)
· 100

2

]
(4)

3.3.2.1 Slickspeed
Slickspeed is a web application that tests the speed of JS li-

braries by selecting a number of DOM elements using select queries.
The select queries are performed on each library and the time needed
to complete each query is measured. The list of executed queries can
be found in the selectors.list file, which is included in the
Slickspeed package.

Each test is performed by us on seven browsers. We selected the
most popular browser versions [21] and also included the latest ver-
sion (if it was not already the most popular one). It is important that
the test is performed with the browsers that the average visitors use.
Figure 2 shows the popularity of the selected browsers. The results are
normalized so the sum of the popularity is 100 percent.

0,97%

1,90%

1,99%

4,87%

19,50%

31,96%

38,82%

Internet Explorer 9.0

Firefox 4.0

Opera 11.0

Safari 5.0

Chrome 10.0

Firefox 3.6

Internet Explorer 8.0

Browser popularity

Fig. 2. Worldwide popularity of browser versions in week 11-2011.

In Figure 3 the detailed results of the test are shown. It not only
indicates the performance differences between the libraries, but also
shows how they perform in different browser versions. For calculat-
ing the average value, we took into account the popularity of the web
browsers (see Figure 2). The results show that Internet Explorer 8.0
has the slowest Javascript engine, while Opera 11.0 has the fastest.
Overall jQuery and Prototype are the fastest JS libraries for selecting
DOM elements, while YUI and MooTools are the slowest.

111

68

149

52

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

YU
I

Pr
ot

ot
yp

e
M

oo
To

ol
s

jQ
ue

ry

Slickspeed performance test

Average with popularity

A: Chrome 10.0

B: Internet Explorer 9.0

C: Internet Explorer 8.0

D: Firefox 4.0

E: Firefox 3.6

F: Opera 11.0

G: Safari 5.0

ms

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

Fig. 3. Slickspeed performance test in milliseconds (lower is better).

To make the test reliable we defined the following criteria points:
• For each browser, the test is performed three times. The average

value is taken from these test.
• An InPrivate browser session is used, so there is no influence by

already cached data.
• All tests are performed on the same hardware and on the same

operating system (Windows 7 32bit with Service Pack 1).
• Most background applications, such as virus protection are dis-

abled.

The test itself uses JavaScript and can be started when the website is
completely loaded, so there is no influence by the Internet connection
speed. To avoid conflicts between the libraries each one runs in its
own iFrame.

We updated Slickspeed with the latest and smallest versions of the
JS libraries, as described in Section 3.3.1. The smallest versions of
MooTools and YUI do not include all the functions needed to com-
plete the tests. Therefore we downloaded the recommended version
of MooTools. For YUI there is no recommended version available, so
we used the YUI Configurator on the official website [15] to create
a library file. We selected the following modules (other dependen-
cies will be added automatically): yui, node → node-base
and selector-css3. We added Y = YUI().use(’*’); at the
end of the created library file. This was needed to load the selected
modules.

SC@RUG 2009 proceedings

109

3.3.2.2 Taskspeed
Taskspeed is based on Slickspeed, but it executes complete

tasks instead of only selecting elements. The construction is the same,
the time needed to complete each task is measured.

In Figure 4 the detailed results of the tests are shown. For each li-
brary there are sixteen tasks executed and the needed time is displayed
in the graph. Pure DOM shows the speed without using a JS library.
This is the fastest method, since there is no overhead from a JS library.
Overall YUI is the fastest library, followed by jQuery and Prototype
on the second and third place respectively. Again, the slowest library
is MooTools.

90

134

192

121

41

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

YU
I

Pr
ot

ot
yp

e
M

oo
To

ol
s

jQ
ue

ry
Pu

re
 D

O
M

Taskspeed performance test

Average
A: make
B: indexof
C: bind
D: attr
E: bindattr
F: table
G: addanchor
H: append
I: addclass-odd
J: style
K: removeclass
L: sethtml
M: insertbefore
N: insertafter
O: destroy
P: finale

ms

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P

Fig. 4. Taskspeed performance test in milliseconds (lower is better).

The test is performed using the same criteria we defined in section
3.3.2.1. The different results of each browser are not shown, because
this makes the graph too complex. Therefore we take into account the
browser popularity by calculating the values. By showing the different
tasks a web developer can compare the tasks that are important for a
specific project.

A detailed description of each task can be found in the
sample-test.js file, which is included in the Taskspeed package.
In Listing 1 the description of ”addclass-odd” is shown. Because the
syntax of each library is different, there is test-case file for each library
where the comments are replaced with the right implementation.

1 "addclass-odd" : f u n c t i o n () {
2 // locate all div elements on the page
3 // add the class "added" to those divs
4 // add the class "odd" to the odd divs in the

selection
5 //
6 // return the lenght of the odd found divs
7 }

Listing 1. Description of the test case ”addclass-odd”.

We have updated the JS libraries for Taskspeed to the same versions
we used for the Slickspeed test. Taskspeed uses more functions than
only selecting elements and therefore we have created a new version
of the YUI library. This was done because not all needed function-
alities were included in the version for Slickspeed. We have selected
dd → dd-delegate and the other dependencies are included au-
tomatically. Because the syntax of YUI version 3 and higher differs in
some cases from the previous versions, we also updated the test case
file [22].

3.4 Distinctive features
Numbers cannot always give a meaning to everything. An example
of such a case is the distinctive features of a JS library. For this topic
we highlight the most important characteristics of each of the four JS
libraries. Some libraries are more suitable to a certain type of project
than another.

3.4.1 jQuery
”Write less, do more” is the slogan that jQuery uses [12]. This JS li-
brary focuses very much on simplifying HTML document traversing,
event handling, animating and support for AJAX. It gives the web de-
veloper a collection of methods and allows a shorter way of writing
JavaScript code in a cross-browser compatible way. Listing 2 shows
a typical block of jQuery code that accomplishes a rather simple task:
display a message box when the user clicks on a hyperlink.

1 $ (document) . r e a d y (f u n c t i o n () {
2 $ (’a’) . c l i c k (f u n c t i o n (e v e n t) {
3 a l e r t (’You just clicked on a hyperlink!’) ;
4 }) ;
5 }) ;

Listing 2. Displaying an alert after a hyperlink click with jQuery.

The jQuery code is short and easy to understand for a web devel-
oper. The $(document).ready() method assures the web de-
veloper that the code is executed after the DOM is fully loaded. The
dollar sign ($) is an alias to jQuery. It is used to search through
the DOM for objects and if desired, perform operations on them. The
$(’a’) snippet returns all hyperlinks and .click() adds an event
listener to these elements. A very good resource for web developers
is Antonio Lupetti’s cheat sheet [23], in which all of jQuery’s features
are summed up. Another good resource is the official documentation
from jQuery, which is very complete and easy to understand.

An extension to jQuery that is worth mentioning is jQuery UI. It
provides widgets, interactions, effects, and theming on top of jQuery.
The extension is maintained by the developers of jQuery. You can
create a custom build with the components you need on the website of
jQuery UI [24].

Comparison of JavaScript libraries – Johan van der Geest and Mark Ettema

110

3.4.2 MooTools
MooTools focuses on making the JavaScript API more stable and co-
herent. Unlike jQuery, it is less focused on ”changing the way you
write JavaScript”. Instead, it focuses on the JavaScript programming
language and seeks to streamline it, but in such a way that it not de-
viates from the basic principles of JavaScript. A significant portion of
the core library is spent on augmenting Function, String, Array, Num-
ber, Element and other prototypes [25].

Listing 3 achieves the same thing as Listing 2, but is written using
the MooTools library. The code is not as compact as jQuery, but comes
much closer to traditional JavaScript code.

1 window . addEvent (’domready’ , f u n c t i o n () {
2 $$ (’a’) . addEvent (’click’ , f u n c t i o n (e v e n t) {
3 a l e r t (’You just clicked on a hyperlink!’) ;
4 }) ;
5 }) ;

Listing 3. Displaying an alert after a hyperlink click with MooTools.

When your intention as a web developer is to write cross-browser
compatible and streamlined JavaScript code, but not necessarily
shorter code such as jQuery, then MooTools is definitely a good choice
for you. Just keep in mind that the learning curve of MooTools might
be a tad steep when compared to jQuery. Also, the official documen-
tation from MooTools is not as good as jQuery’s documentation.

3.4.3 Prototype
Prototype includes a lot of enhancements to JavaScript that makes
writing a web application easier. For instance, it adds methods to the
Function object and the Enumerable class, which provides advanced
mechanisms for working with groups of objects. The DOM manipula-
tion functions are useful, but the plugin system of Prototype is not as
rich as the one from jQuery [26].

When you want to work with multiple JS libraries in one web ap-
plication, then Prototype is not a very wise choice. Since Prototype
changes the default behavior of JavaScript elements, it does not inte-
grate very well, unlike jQuery, MooTools and YUI [27].

Listing 4 shows the Prototype variant of displaying an alert after the
user clicks on a hyperlink. The code is not as compact as MooTools
and jQuery.

1 document . o b s e r v e (’dom:loaded’ , f u n c t i o n () {
2 $$ (’a’) . each (f u n c t i o n (e v e n t) {
3 o b s e r v e (’click’ , f u n c t i o n (e v e n t) {
4 a l e r t (’You just clicked on a hyperlink!’) ;
5 }) ;
6 }) ;
7 }) ;

Listing 4. Displaying an alert after a hyperlink click with Prototype.

Prototype is the default JS library in Ruby on Rails, a popular web
application framework. This helped Prototype to grow in its early
days. With version 3 of Ruby on Rails it is much easier to switch
to another JS library. Some people think this is the cause of a slowing
development process and a decrease in popularity of Prototype [28].

A popular extension to Prototype is script.aculo.us [29]. It provides
a visual effect engine and some UI controls on top of Prototype.

3.4.4 YUI
The last JS library we examine is YUI, which stands for Yahoo! User
Interface. YUI is a JS library that forces us to follow predefined coding
patterns and provides good maintainability. It is designed as a frame-
work to cover all the aspects of UI development for a complete system.
When a web application contains many components with complex de-
pendencies, then YUI is very likely a good choice [30].

Listing 5 shows the YUI variant of the previous code examples.
From the four JS libraries, it is the least compact code. It can be argued
that it is not as easy to understand as the other JS libraries. What would
filter:’raw’ and .use(’node’) exactly do?

1 YUI({ f i l t e r : ’raw’}) . use (’node’ , f u n c t i o n (Y) {
2 var showMessage = f u n c t i o n (e v e n t) {
3 a l e r t (’You just clicked on a hyperlink!’) ;
4 } ;
5 }
6 Y. on (’click’ , showMessage , ’a’) ;

Listing 5. Displaying an alert after a hyperlink click with YUI.

3.5 Future web technologies
For the future web technologies we can conclude that all the four li-
braries are on nearly the same level. They all have support for CSS3
and jQuery even shows on the main page that it is CSS3 compliant.
Discussions and information on the official websites indicate that there
is some support for HTML5. It is not always directly cross-browser
compatible and sometimes there are tricks needed to let it work cor-
rectly. For each library there can be HTML5 plug-ins or code samples
found, for example to control HTML5 videos.

When these new technologies become more standard and will be
used by more people, we can be pretty sure that the support in the up-
coming versions will be better. There is no reason to choose a specific
library because of the future technologies.

4 CONCLUSION

JavaScript libraries have many advantages. It helps web developers to
program in a cross-browser compatible way, makes code shorter and
better maintainable, makes the use of AJAX technology easier and
there is much more to gain. The key question that we answered in this
paper is: which JS library should I pick as a web developer?

We compared the four most popular JS libraries. For browser com-
patibility (Sbc), community involvement (Sci), library file size (Sfs)
and run-time performance (Srp) we did a score based comparison. The
results of these comparisons are shown in Table 5, in which the aver-
age result of each library is also calculated.

Library Sbc Sci Sfs Srp Average
jQuery 23 72 24 27 37
MooTools 25 7 32 21 21
Prototype 27 14 15 26 21
YUI 25 8 29 26 22

Table 5. Scores of the different comparisons and the average result.

When we purely focus on these scores we can conclude that jQuery
is the best JS library to pick. It received the highest score on both
community involvement and run-time performance. There is not much
difference in the final scores of the other three libraries, so it really
comes down to what a web developer find most importantly. It should
be noted that MooTools is the only library that scores the worst in
two comparison criteria, namely community involvement and run-time
performance.

Other positive aspects of jQuery are the large amount of available
plug-ins and the good documentation which makes it easy to learn.
On the other hand, for large front-end web applications, YUI might
be a better choice than jQuery. It is more suitable for large, complex
architectures with many dependencies. MooTools falls in between,
and is aimed at the web developer that wants to write cross-browser
compatible JavaScript code, but not necessarily as short as jQuery.
Prototype is perhaps best suitable for those who write Ruby on Rails
web applications, although with version 3 it is easier to pick another
JS library. Each of these three libraries have a steep learning curve
when compared to jQuery.

Now that we have provided a very complete overview of the dif-
ferences between the four most popular JS libraries, it is up to the
web developer to decide which JS library will suit his or her project
the best. By comparing the results and discussions in this paper, the
choice for picking a JS library should now be much easier to make
than one could ever do before.

SC@RUG 2009 proceedings

111

REFERENCES

[1] DedaSys LLC, “Programming language popularity.”
http://langpop.com/. Date accessed: Feb 2011.

[2] Franklin Reynolds, “Web 2.0 - in your hand,” Pervasive Computing,
IEEE, vol. 8, pp. 86–88, Jan.-March 2009.

[3] Holger M. Kienle, “Its about time to take javascript (more) seriously,”
Software, IEEE, vol. 27, pp. 60–62, May-June 2010.

[4] Zhijie LIN, Jiyi WU, Qifei ZHANG, Hong ZHOU, “Research on web
applications using ajax new technologies,” MMIT ’08., pp. 139–142, Dec
2008.

[5] Joe Lennon, “Compare javascript frameworks.”
http://www.ibm.com/developerworks/web/library/
wa-jsframeworks/. Date accessed: Feb 2011.

[6] Philippe Le Hgaret, Lauren Wood, Jonathan Robie, “What is the docu-
ment object model?.”
http://www.w3.org/TR/DOM-Level-2-Core/
introduction.html. Date accessed: Feb 2011.

[7] Alexa, “Alexa top 500 global sites.”
http://www.alexa.com/topsites. Date accessed: Feb 2011.

[8] Elie Bursztein, “45% of the popular websites use a javascript frame-
work.”
http://elie.im/blog/web/45-of-the-popular-
websites-use-a-javascript-framework/.
Date accessed: Feb 2011.

[9] Royal Pingdom, “Javascript framework usage among top websites.”
http://royal.pingdom.com/2008/06/11/javascript-
framework-usage-among-top-websites/.
Date accessed: March 2011.

[10] Fabian Beiner, “Javascript-framework vergleich.”
http://fabian-beiner.de/alexa-top100-
deutschland-javascript-framework-vergleich/.
Date accessed: March 2011.

[11] StatCounter Global Stats, “Browsers stats from week 11-2011.”
http://gs.statcounter.com/#browser-ww-weekly-
201111-201111-bar. Date accessed: March 2011.

[12] jQuery, “Official website.”
http://jquery.com/. Date accessed: Feb 2011.

[13] MooTools, “Official website.”
http://mootools.net/. Date accessed: Feb 2011.

[14] Prototype, “Official website.”
http://www.prototypejs.org/. Date accessed: Feb 2011.

[15] YUI, “Official website.”
http://developer.yahoo.com/yui/3/.
Date accessed: Feb 2011.

[16] Wikipedia, “Prototype (disambiguation).”
http://en.wikipedia.org/wiki/Prototype\
_(disambiguation). Date accessed: March 2011.

[17] Valerio Proietti, “Slickspeed project.”
https://github.com/kamicane/slickspeed.
Date accessed: March 2011.

[18] Taskspeed, “Project.”
https://github.com/MadRabbit/taskspeed.
Date accessed: March 2011.

[19] MooTools, “Slickspeed.”
http://mootools.net/slickspeed/.
Date accessed: March 2011.

[20] Matt Sweeney, “Yui 3 performance.”
http://yuilibrary.com/˜msweeney/yuiconf-
yui3perf.pdf. Date accessed: March 2011.

[21] StatCounter Global Stats, “Browsers versions from week 11-2011.”
http://gs.statcounter.com/#browser_version-ww-
weekly-201111-201111-bar. Date accessed: March 2011.

[22] YUI3, “Test case file.”
http://yuilibrary.com/˜msweeney/yui-tests/
taskspeed/tests/. Date accessed: March 2011.

[23] A. Lupetti, “Cheat sheet for jquery.”
http://woorkup.com/wp-content/uploads/2011/02/
jQuery-1.5-Visual-Cheat-Sheet.pdf.
Date accessed: March 2011.

[24] jQuery UI, “Official website.”
http://jqueryui.com/. Date accessed: March 2011.

[25] A. Newton, “jquery vs. mootools.”

http://jqueryvsmootools.com/. Date accessed: March 2011.
[26] seasoup, “Prototype and jquery: A code comparison.”

http://ajaxian.com/archives/prototype-and-
jquery-a-code-comparison. Date accessed: April 2011.

[27] Graza, “Prototype vs jquery.”
http://stackoverflow.com/questions/2644556/
prototype-vs-jquery. Date accessed: April 2011.

[28] Quora, “Why is prototype js development so slow, and is there no future
for it?.”
http://www.quora.com/Why-is-Prototype-JS-
development-so-slow-and-is-there-no-future-
for-it. Date accessed: April 2011.

[29] script.aculo.us, “Official website.”
http://script.aculo.us/. Date accessed: April 2011.

[30] R. Akkineni, “Yui3 vs jquery.”
http://dsheiko.com/weblog/yui3-vs-jquery.
Date accessed: April 2011.

Comparison of JavaScript libraries – Johan van der Geest and Mark Ettema

112

Main Memory Database Systems
Opportunities and pitfalls

Wytze Hazenberg Sjoerd Hemminga

Abstract— Main memory database systems store their database in main physical memory, as opposed to traditional systems, which
use disk memory. We research how main memory can be used to improve response times in database systems. While it seems
obvious that performance should improve, just by using fast access physical memory, in practice, this is not always the case. As it
turns out, implementation considerations can have great implications for the overall performance of a main memory system.

Index Terms—main memory database systems, database architecture, index structures, transaction handling, error recovery, two-
tier.

1 INTRODUCTION

Database systems have traditionally been geared toward disk-based
storage, as disk memory provided large amounts of storage at a rel-
atively low price. In the last decades, however, chip memory sizes
have grown considerably, while their price has dropped. As a conse-
quence, using main memory for applications which traditionally used
disk memory has become technically possible and economically feasi-
ble. The main incentive for using main memory instead of disk mem-
ory is the lower access times the former offers. Time-critical applica-
tions, such as telephone switchboards, require database systems with
low response times. This has prompted database developers to con-
sider Main Memory Database Systems (MMDB’s), which store their
data in main physical memory, for these applications.

As disk-based database systems also use main memory for caching,
a very straightforward way of implementing an MMDB is increasing
the cache size of such a system to fit the entire database in cache. This
approach requires very little work to the database system, as it only
requires changing one of its settings. It increases the system speed,
as it minimizes the number of disk accesses required. However, it
does have a number of problems. Every request has to pass the buffer
manager to check which data is in cache and which is not, creating a lot
of overhead. Moreover, the entire system stresses the efficient use of
disk accesses and disk storage, rather than CPU cycles and memory. In
order to use main memory as efficiently as possible, and to get as big a
performance increase as possible, a more radical approach is required.
Algorithms for query processing, concurrency control, and database
recovery, as well as different index structures, must be reconsidered.

In section 2 we describe what index structures should be used in
MMDB’s and in what circumstances they offer best performance.
Then, in section 3, we point out what implementation details, aimed at
improving performance in disk-based systems, are not suitable for an
MMDB and should be reconsidered. Details and merits of a two-tier
system, which combines features of a disk-based and main memory
database system, are discussed in section 4.

2 INDEX STRUCTURES

In order to improve the efficiency of data retrieval in tables databases
use data structures called indexes. They allow the database system
to quickly find data in a table, without having to scan the entire
database [18]. The primary goals for a disk-oriented data index struc-
ture are to minimize the number of disk accesses and to minimize disk
space usage. As a main memory index structure is contained in main
memory, there are no disk accesses to minimize. Therefore, the pri-
mary goals of a main memory index are to reduce computation time
and use as little memory as possible [25].

Furthermore, as relations are memory resident, a main memory in-
dex structure does not have to store actual attribute values. Instead,
it may store pointers to tuples, and use them to extract values when
they are needed. This has three advantages. First, every tuple pointer
provides the index with access to both the attribute value and the tuple
itself, reducing the size of the index as every tuple is only stored once.

Second, this provides an efficient way of dealing with long fields, vari-
able length fields, and compression techniques (which are dealt with
outside the index). Third, when updates necessitate index operations,
moving pointers is usually cheaper than moving attribute values.

We consider arrays, AVL trees, B trees and T trees to evaluate which
structure is most suitable for use in an MMDB.

2.1 Arrays
An array is a basic data structure, in which a sequence of values is
stored. While arrays use minimal space, their size is set once they are
created; a new array must be created and all data copied if its size is
exceeded. Therefore, their only use is in applications where the data
size is known in advance or where growth is not a problem. The main
drawback of using an array as an index structure is that it requires
O(N) data movements (N being the number of database entries) for
each update, which renders it useless for anything but a read-only en-
vironment.

2.2 AVL trees
AVL trees are binary search trees, so every node has two children: a
left child, with value smaller than or equal to itself, and a right child,
with value greater than or equal to itself. AVL trees differ from ordi-
nary binary trees in that they are balanced: for every node in an AVL
tree, the height of its children can differ by at most 1 [14]. Figure 1
shows an example of an AVL tree storing integer values. It uses a
binary tree search, which is very fast since it is intrinsic to the tree
structure – no arithmetic calculations are needed.

Updates may result in an unbalanced tree, which necessitates re-
structuring the affected nodes by using rotation operations. For ex-
ample, if a value of 54 were to be added to the tree, it would become
unbalanced (figure 2). Rotations yield the tree shown in figure 3. As
this restructuring may upset the balance of another node (higher up
the tree), rebalancing may involve moving multiple nodes. The AVL
tree’s main disadvantage is its poor storage utilization. For every data
item it requires one tree node, which also holds two pointers and some
control information (figure 4).

2.3 B trees
B trees are a generalization of a binary search tree, in which more
than two paths leave a given node [6]. A B tree node, by definition,
contains between d and 2d keys (data items). This ensures that a node
can be split into two nodes, once it has reached its maximum number
of keys and another key must be added. Every internal node with k
keys also contains k + 1 pointers to child nodes; internal nodes thus
contain between d +1 and 2d +1 pointers. Leaf nodes only hold data
items. Figure 5 shows a B tree with 2 to 4 keys per node. As one can
see, the subtree to the left of a key value contains all values smaller
than the key, while the subtree to the right contains values greater than
the key. This feature of a B tree is used in searching: a search value S
is compared to a key value K in the node. If the S is smaller than K, the

113

44

17 78

32 50

48 62

88

Fig. 1. An AVL tree

44

17 78

32 50

48 62

88

54

Fig. 2. Unbalanced AVL tree after insertion

44

17 62

32 50

48 54

78

88

Fig. 3. Balanced AVL tree after insertion

Data

Control

Left pointer Right pointer

Fig. 4. An AVL tree node

7 16

1 • 2 •• 5 • 6 • 9 • 12 •• 18 • 21 ••

• • •

Fig. 5. A B tree

left subtree is searched; otherwise, S is compared to the next key value
L. This continues until the value is discovered, or, after S is compared
to the largest value in the node, continues in its right subtree. Search
stops when a leaf is reached and the value is not found.

There are several variants of the B tree. Traditional database sys-
tems generally use the B+ tree, which keeps all actual data in the leaves
of the tree and uses copies of keys in the internal nodes [25]. For main
memory use, however, there is no advantage to keeping all data in the
leaves – it only wastes space. In a variant of the B+ tree, the Blink tree,
each internal node contains an additional pointer field, which links to
the next node at the same level at the tree [23]. A B* tree node contains
between d and 3/2 d keys, so it is at least two-thirds full1.

B trees offer better storage utilization than AVL trees: internal
nodes have better data to pointer ratios [25] (although nodes may be
underfilled, wasting some space) and leaf nodes only hold data, and
they comprise a large part of the tree. Using binary search, search per-
formance is reasonably quick. Because of the variable number of keys
a node can hold, nodes are more flexible in adding values as the tree
does not need to be rebalanced as often as an AVL tree does.

2.4 T trees
Lehman et al. propose T trees, related to AVL trees and B trees, as
a suitable data structure for use in main memory [25]. Like a B tree
node, a T tree node may contain many elements, but it contains only
two pointers, a left and a right child. The T tree node is displayed in
figure 6. There are three types of nodes: internal nodes, leaf nodes and
half-leaf nodes. Like in other trees, internal nodes have two children
(both pointers are connected to a subtree), while leaf nodes do not have
any children. Half leaf nodes have one child; one pointer connects to
a subtree, one does not.

In a T tree, every internal node A stores a number of values in sorted
order. Its first value is therefore its lower bound while its last value is
its upper bound. All keys in node A have values between these bounds.
Keys in the left subtree of the node all have values lower than this
lower bound; the highest value in this subtree is on the right side of
the subtree and is called the greatest lower bound of the internal node
A. The right subtree contains keys with higher value; the lowest value
in this subtree is on the left side of the subtree and is called the least
upper bound. This principle is demonstrated in figure 7.

1In literature, a B+ tree is sometimes referred to as a B* tree.

Main Memory Database Systems: Opportunities and pitfalls – Wytze Hazenberg and Sjoerd Hemminga

114

control

data3data2data1 … datan

Left Child Pointer Right Child Pointer

Parent Pointer

Fig. 6. T tree node

Node A

Minimum element of A Maximum element of A

greatest lower bound of A least upper bound of A

Fig. 7. T tree node with its subtrees

A search in a T tree, for every node A, looks at its boundaries. If
the value it looks for is lower than the lower bound, the left subtree
is searched; if it is higher than the higher bound, the right subtree is
searched. Otherwise, the current node is searched. It stops if the value
is found or a leaf is reached. Updating the tree resembles updating
AVL trees and B trees. First, a bounding node is searched. Every node
has a minimum and maximum count: the number of values stored in a
node should be between those values. The value is added to or deleted
from the bounding node and, only if the number of values in the node
becomes unacceptable, the tree is rebalanced. Rotation operations,
similar to those used in AVL trees, are used.

As a T tree is also a binary tree, it offers quick searching through
binary search. Each node contains many elements, so storage utiliza-
tion is good. Moreover, updates are relatively cheap, as insertion and
deletion usually require moving only one node. Like in AVL trees, re-
balancing may be needed, but because the nodes store more elements,
and because elements can be moved inside nodes, this happens much
less often.

2.5 Performance

Lehman et al. tested the data structures mentioned in sections 2.1
through 2.4 [25]. They subjected them to several tests, in which they
inserted, searched for, and deleted items. Then they used range queries
and sequential scans to search for multiple items, and deleted half the
objects in the structure. In the tests they measured the time cost of
each operation, and the storage cost of each data structure after it was
built with 30,000 elements.

The results of the tests indicate that both the B tree and the T tree
structure have good allround capacities. As the T tree slightly outper-
forms the B tree in almost all circumstances, they propose the T tree
as the index structure of choice in main memory database systems.

However, in recent years, there have been studies suggesting they
do not perform better than B trees and variants thereof [32]. T trees
may even perform worse than a Blink tree, as Lu et al. show [29].
They suggest that, when performing the original test, the issue of con-
currency control was not taken into consideration. Because using a T
tree requires more lock operations and the overhead of locking and un-
locking is high, a Blink tree may offer better performance in practice.

3 DATABASE ARCHITECTURE

In the following subsections we discuss some key components of
database systems. The different characteristics that main memory has
from disk memory have effects on almost every aspect of the database
system [12].

3.1 Concurrency Control
One of the objectives in developing a database is to enable multiple
users to access (search, update) data concurrently [7]. When two or
more users are accessing the database simultaneously, and at least one
is updating data, a mechanism is needed to prevent interference that
can result in inconsistencies. Traditional database systems use transac-
tions to do so: when one user updates, the data involved is locked and
another cannot access the data until the transaction (i.e. the update)
is finished. This method affects performance, as setting and releas-
ing locks costs CPU time. Furthermore, lock contention occurs when
one process tries to access data that is locked by another process, and
transactions are queued.

In order to reduce contention, system design usually focuses on
locking only small granules of data. Since main memory access is
much faster than disk access, however, transactions complete more
quickly in main memory databases, making lock contention less of
an issue. Garcia et al. suggest that in a main memory system,
locking granules can be much larger, maybe as large as the entire
database [11, 28]. The resulting system uses serial transaction execu-
tion, which reduces overhead in setting and releasing locks and coping
with deadlock. Serial execution does have a number of drawbacks,
however. First, lock contention is still a problem when executing long
transactions. Also, in multiprocessor systems, smaller lock granularity
may be needed to improve performance.

The locking mechanism can also be optimized in main memory sys-
tems. In traditional systems, data objects are on disk and do not con-
tain lock information. Instead, all locking information is stored in a
memory resident hash table. If the data objects are in memory them-
selves, some locking information may be attached to them. Garcia et
al., among other things, suggest adding a lock bit to every object. If a
transaction wants to modify the object, it checks the lock bit to see if
the object is locked. If it is not, it sets the lock bit and executes. After-
wards, it releases the lock bit. Other transactions that may be waiting
for the lock to be released would still have to be administrated, but in
most situations, the number of instructions needed for locking would
be greatly reduced.

3.2 Commit Processing
One of the problems of main memory is its volatility. Data that is
stored on disk is resident; it remains on disk unless some explicit ac-
tion (deleting, overwriting) removes it. A power failure, for example,
does not affect data that has been written to a disk, whereas data that
is stored in main memory is lost in that case. Also, data can be stored
in an array of disks. If one disk fails, it can be fixed without affecting
the content on other disks, so only a fraction of the database (or, when
a redundant array technology such as RAID is used, no data at all)
needs to be restored from backup, while the rest of the database is still
accessible. When a memory board fails, it usually means the entire
system fails and the entire database is lost. It is therefore essential to
have a backup copy of the database, and to keep a log of transactions

SC@RUG 2009 proceedings

115

executed. In this log, the activity of every transaction is written before
it commits [16].

As the log needs to be placed in stable storage, this may however
affect the performance of the database system. If every transaction has
to wait for a stable write to a hard disk before it can commit, response
time drops and, if the log becomes a bottleneck, throughput is also
reduced. These problems also exist in disk-based database systems;
however, their impact is greater as in an MMDB, logging is the only
disk operation in every transaction.

There are several ways of dealing with this problem. First, a portion
of the log may be held in a small amount of non-volatile memory. The
system first writes transaction details into this memory, so the trans-
action can commit. Then, data from the stable memory is copied to
disks by a separate process, not interfering with database access op-
erations. This greatly improves response time; however, it still leaves
the system vulnerable to a log bottleneck. To relieve the threat of bot-
tlenecks, group commits can be used: records of several transactions
accumulate in main memory, until all are flushed to the log disk in a
single disk operation.

3.3 Data Representation

Main memory systems can take advantage of pointers to data val-
ues [31, 37] for data representation. The use of pointers is space effi-
cient when large values appear multiple times in a database. The data
is only stored once and is referenced by memory pointers. Pointers
can also simplify the handling of variable length data since variable
length data can be represented using pointers into a heap [26, 35].

3.4 Query Processing

Sequential access is not significantly faster than random access in a
main memory system, query processing techniques that take advan-
tage of faster sequential access lose the advantage [1, 24, 31]. When
relational tuples are implemented as a set of pointers to the data val-
ues, some relational operations can be performed very efficiently [31].
This because the data exists in main memory, and since they are com-
pact data structures it can speed up queries. Query processors for main
memory systems must focus on processing costs instead of minimizing
disk access [37]. A difficulty is that processing costs can be difficult
to measure in a complex data management system. Costly operations,
like creating an index or copying data, must first be identified, and
then strategies must be designed to reduce their occurrence. Operation
costs may vary from system to system, so that an optimization tech-
nique that works well in one system may perform poorly in another.

3.5 Recovery

Backups of main memory systems must be maintained on disk or other
stable storage to insure against loss of the volatile data. Recovery has
several components, the first being the procedure used during normal
database operation to keep the backup up-to-date, and the second be-
ing the procedure used to recover from a failure. Most systems that
use a log for commit processing also perform backups or checkpoints
to limit the amount of log data that must be processed to recover from
a failure [26, 8, 19, 34], this is called check pointing [12]. In a main
memory system, check pointing and failure recovery are the only rea-
sons to access the disk copy of the database. Disk input/output should
be performed using a very large block size. Large blocks are more
efficiently written [12].

After a failure, a main memory system must restore its data from the
log which is stored in a disk backup. If the database is large, simply
transferring the data may take a long time. One possible solution to
this problem is to load blocks of the database on users request until
all of the data has been loaded [26, 17]. It is not clear how much of
an improvement this will provide in a high-performance system which
must handle thousands of transactions in the seconds after the database
has recovered.

Another possible solution to the database restoration problem is to
use disk striping or disk arrays [10, 33]. The database is then spread
across multiple disks, and it is read in parallel. One problem is that,

using multiple disks, a single bus or path from the disks to main mem-
ory becomes the bottleneck, increasing response times. A possible
solution to this problem is to create independent paths from the disks
to main memory.

4 TWO-TIER SYSTEMS

Many researchers have studied several techniques such as index-
ing [21, 20], buffer management [4, 2], materialized view tech-
niques [13, 30], etc. in order to provide low response times. These
traditional disk-oriented techniques could not provide low response
times like main memory systems can. Because of the decreasing price
of main memory, some researchers argued that certain application
databases will soon fit entirely in a main memory database [22, 5].
Storing a database in main memory require different techniques to op-
timize response times. Several memory-oriented techniques have been
studied such as record format, page structures, indexing techniques,
etc [25, 38]. These techniques perform significantly better than tradi-
tional systems when all data is stored in the memory buffer. However,
main memory systems have restrictions on database size. User data
has grown at an even faster rate than memory size can increase. It
seems unlikely that the whole database of large applications will ever
fit entirely into a main memory database. The present day require-
ments of a database system are providing low response times and han-
dling large amounts of data. Main memory and traditional systems
cannot fulfill both these requirements. Of course, an attempt can be
made by using the two systems for one application. This is discussed
in section 4.1.

One approach of handling these requirements is using a multi-level
system [27, 36]. These systems store data in several different levels.
For low response times, some parts of the data are stored in main mem-
ory. When handling large amounts of data, some parts of the data are
stored on a hard disk, tape or even on an off-site network device, like
traditional systems would store the data. Storing an entire database in
main memory can be inefficient, because certain data is required to be
accessed more often than other data would. The solution is to store
frequently accessed data in main memory and less frequent data on
disk. The different system components are discussed in section 4.2.
This approach is called a two-tier system, as proposed by Sang-Hun
Eo et al [9]. Two-tier as in two levels of storage media. Several tests
were processed and the results are shown in section 4.3.

4.1 Architectural design issues
Many already constructed databases are complex and the amount of
stored data can be huge. It is not feasible to reconstruct the entire
database, and use the memory buffer, to provide low response times.
This operation would require much time and effort. Some data in a
database requires low response times, while for other data this is less
important [9]. The normal way was to use two database systems. One
system to handle all the data and one system to provide low response
times, respectively the traditional system and the main memory sys-
tem. In these environments, the traditional database stored all the
data and some parts are duplicated to be handled by the main mem-
ory system. However, this concept has some problems. Problems like
preparation, synchronization, efficiency and the existence of applica-
tions which use one system [9]. Application programmers needed to
identify which system to reference for frequent and non-frequent re-
quired data. They needed to modify their existing applications in order
to benefit from the low response times. These two systems require a
synchronization module to handle data manipulations. Both systems
store duplicate data, which means they do not efficiently use available
resources.

4.2 Two-tier components
As proposed by Sang-Hun Eo et al., the two-tier system can provide
low response times and handle massive amounts of data [9]. The
proposed system consists of three major components: Disk Storage
Manager, Memory Storage Manager and the United Query Processor.
Basically, the whole database exists on disk. Some parts of data are
duplicated, using snapshots, in main memory for low response times

Main Memory Database Systems: Opportunities and pitfalls – Wytze Hazenberg and Sjoerd Hemminga

116

using memory oriented techniques. The united query processor han-
dles the data requests and locates the data in memory or on disk. There
are three types of queries: memory query, disk-query and the hybrid
query. The memory and disk query is handled by the memory storage
manager and the disk storage manager, respectively. The hybrid query
uses a combination of partial memory data and partial disk data. When
the two-tier system detects that data is frequently requested, it stores
snapshots for fast access in the future. The system can also detect
periodic requests, then snapshots are updated periodically. The least
recently used strategy is used to manage the memory buffer efficiently.

4.3 Testing

Sang-Hun Eo et al. performed a system test with two datasets, 10,000
and 1,000,000 rows, and four queries [9]. Only the second query was
using the available index structures. The first and second query se-
lected 1% of the first dataset. A view was used to select the first 10,000
rows of the second dataset. Queries three and four requested data from
that view. Query three requested all of the view’s data and query four
only one specific row.

In all experiments, the disk storage manager was used first. The
response times of the disk storage manager were almost identical in
comparison to a traditional system. Main memory snapshots were cre-
ated after 300 requests for general queries and 6 requests for view
queries. The first query had an average execution time of ~275ms
per request. After the creation of a snapshot the average execution
time was decreased to ~100ms per request. The second query, with
indexing, had an average execution time of ~130ms and after 300 re-
quests an average execution time of ~60ms. Query 3 and 4 took a long
time to execute, scanning the 1,000,000 rows, before the snapshot was
created. After the creation of the snapshot the system only scanned
10,000 rows from the dataset for query 3. Query 4 only needed to find
one row, so execution times were even shorter. The average execu-
tion time of query 3 decreased from ~7300ms to ~5500ms per request,
after creation of a snapshot. Query 4 decreased from ~240ms to less
than ~25ms per request.

5 DISCUSSION

Although the first suggestions of a main memory database system are
from the 1980’s, only in recent years, more commercial implementa-
tions of true MMDB’s became available. We think there are several
reasons for this. First, as we showed in sections 2 and 3, the entire
database system needs to be reconsidered, redesigned and rebuilt in
order to benefit most from fast and volatile main memory. This may
make database developers and their customers hesitant to adopt this
technology. Second, hardware has evolved considerably. Most impor-
tantly, CPU speeds have grown at a much faster rate (60% per year)
than main memory speeds (10% per year) [32]. This means that op-
timizing a database system for cache memory instead of main mem-
ory may, and in some circumstances does, give better results, as Rao
and Ross showed [32]. Third, there are several new developments
for optimizing database systems that show promising results, such
as NoSQL, a database system for efficient handling of data over dis-
tributed nodes [3]. We think further research needs to be done to com-
pare the performance of main memory and cache conscious database
systems, and other approaches, in both distributed and non-distributed
applications.

In recent years, mobile devices like cell phones and music players
became more commonplace and more sophisticated. While becom-
ing more sophisticated, these devices have also started processing and
storing much more data, requiring some data structure and eventually
a database to do so. These devices usually do not have a hard disk, but
instead rely on both main memory (very fast, but small and volatile)
and flash memory (reasonably fast and large, and non-volatile). We
think that database systems for such devices, which are neither truly
main memory, nor disk-based database systems, may borrow a lot
from MMDB research.

6 CONCLUSION

In database systems, low response times are important, if not crucial,
for the overall quality of the system. With its fast and nonlinear access
characteristics, a database in main memory may deliver this quality.
For best results, however, it is not enough to merely use a conven-
tional, disk-based database system and use it in main memory. Several
factors, such as the index structure used, the way transactions are han-
dled and how the system recovers from errors need to be reconsidered.
In practice, because disk access is still necessary for daily operation of
a database system, a true main memory database system is impractical
for common use.

Gray et al. proposed a rule [15], which describes which data gener-
ally should be memory resident. By analyzing the price of accessing
data in memory versus accessing data on disk, they argued that data
that are referenced every 5 minutes or more should be memory res-
ident. Garcia et al. noted [12] that, as the price of a byte of main
memory drops relative to the cost of disk accesses per second, this
boundary increases. They expected that it would continue to increase
in the future.

As it is impractical to implement a true main memory database sys-
tem but increasingly economically feasible to use main memory in
database systems, we have seen the advent of two-tier systems. Such a
system classifies different types of data based on how frequently they
are referenced. New developments focused on optimization for CPU
cache or taking into consideration the characteristics of flash memory,
may also profit from this approach. In these models, data that is often
referenced is optimized for quick access, while other data is optimized
for disk storage. A database system for mobile devices may, for ex-
ample, optimize some data for main memory and other data for flash
memory, while a desktop system considers CPU cache, main memory
and disk memory for different types of data. As a multi-tier system
automatically determines which data require low response times and
which do not, existing database structures can be used. Therefore, a
multi-tier system can provide low response times in existing applica-
tions without requiring major changes in system architecture.

REFERENCES

[1] D. Bitton, M.B. Hanrahan, and C. Turbyfill. Performance of complex
queries in main memory database systems. In proceedings Int. Conf. on
Data Engineering, pages 72–81, February 1987.

[2] Stephane Bressan, Chong Leng Goh, Beng Chin Ooi, and Kian-Lee Tan.
A framework for modeling buffer replacement strategies. In Proceed-
ings of the ninth international conference on information and knowledge
management, November 2000.

[3] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: A distributed storage system for structured
data. ACM Transactions on Computer Systems, 26, June 2008.

[4] Zhifeng Chen, Yan Zhang, Yuanyuan Zhou, Heidi Scott, and Berni
Schiefer. Empirical evalutation of multilevel buffer cache collaboration
for storage systems. In Proceedings of the 2005 ACM SIGMETRICS in-
ternational conference on Measurement and modeling of computer sys-
tems, volume 33, June 2005.

[5] Kong-Rim Choi and Kyung-Chang Kim. T*-tree: a main memory
database index structure for real time applications. In Proceedings of
the Third International Workshop on Real-Time computing systems ap-
plication (RTCSA ’96), 1995.

[6] Douglas Comer. The ubiquitous b-tree. Computing Surveys, 11(2):121–
137, June 1979.

[7] Thomas Connolly and Carolyn Begg. Database Systems: A Practical Ap-
proach to Design, Implementation, and Management. Pearson Education,
fourth edition, 2005.

[8] M.H. Eich. A classification and comparison of main memory database re-
covery techniques. In proceedings Int. Con. on Data Engineering, pages
332–339, February 1987.

[9] Sang-Hun Eo, Yan Li, Ho-Seok Kim, and Hae-Young Bae. Two-Tier
Storage DBMS for High-Performance Query Processing. Journal of In-
formation Processing Systems, 4(1):9–15, March 2008.

[10] D. Patterson et al. RAID: Redundant arrays of inexpensive disks. In
proceedings ACM SIGMOD conf., June 1988.

SC@RUG 2009 proceedings

117

[11] H. Garcia-Molina and K. Salem. High performance transaction process-
ing with memory resident data. In proc. int. Workshop on High Perfor-
mance Transaction Systems, December 1987.

[12] Hector Garcia-Molina and Kenneth Salem. Main memory database sys-
tems: An overview. IEEE Transactions on Knowledge and Data Engi-
neering, 4(6):509–516, December 1992.

[13] Jonathan Goldstein and Per-Ake Larson. Optimizing queries using ma-
terialized views: a practical, scalable solution. In Proceedings of the
2001 ACM SIGMOD international conference on Management of data,
November 2000.

[14] Michael T. Goodrich and Roberto Tamassia. Algorithm Design. John
Wiley & Sons, first edition, 2002.

[15] J. Gray and F. Putzolu. The 5 minute rule for trading memory for disc
accesses and the 10 byte rule for trading memory for cpu time. In Pro-
ceedings 1987 ACM SIGMOD Conference, May 1987.

[16] J. Gray and A. Reuter. Transaction processing: Concepts and techniques.
Morgan Kaufmann, 1992.

[17] L. Gruenwald and M.H. Eich. MMDB reload algorithms. In proceedings
ACM SIGMOD conf. Denver, pages 397–405, May 1991.

[18] Wenming Guo and Zhiqiang Hu. Memory database index optimiza-
tion. In 2010 International Conference on Computational Intelligence
and Software Engineering (CiSE), December 2010.

[19] R.B. Hagmann. A crash recovery scheme for a memory-resident database
system. IEEE Trans. Comput., C-35:839–842, September 1986.

[20] Sven Helmer and Guido Moerkotte. A performance study of four index
structures for set-valued attributes of low cardinality. International jour-
nal on Very Large Data bases, 12(3), October 2003.

[21] Bijit Hore, Hakan Hacigumus, Bala Iyer, and Sharad Mehrotrasss. In-
dexing text data under space constraints. In Proceedings of the thirteenth
ACM international management CIKM ’04, November 2004.

[22] Minwen Ji. Affinity-based management of main memory database clus-
ters. ACM Transactions on internet technology (TOIT), 2(4), November
2002.

[23] Philip L. Lehman and S. Bing Yao. Efficient locking for concurrent opera-
tions on b-trees. ACM Transactions on Database Systems, 6(4):650–670,
December 1981.

[24] T.J. Lehman and M.J. Carey. Query processing in main memory database
systems. In proceedings ACM SIGMOD conf., May 1986.

[25] Tobin J. Lehman and Michael J. Carey. A study of index structures
for main memory database management systems. In Proceedings of the
Twelfth International Conference on Very Large Data Bases, pages 294–
302, August 1986.

[26] Tobin J. Lehman and Michael J. Carey. A recovery algorithm for a high-
performance memory-resident database system. In proceedings ACM
SIGMOD conf., San Francisco, volume 16, pages 104–117, May 1987.

[27] Tobin J. Lehman, J. Shekita, and Luis-Felipe Cabrera. An evoluation of
starburst’s memory resident storage component. IEEE Transactions on
knowledge and data Engineering, 4(6), December 1992.

[28] K. Li and J.F. Naughton. Multiprocessor main memory transaction pro-
cessing. In proceedings Int. Symp. on Databases in Parallel and Dis-
tributed Systems, pages 177–189, February 1987.

[29] Hongjun Lu, Yuet Yeung Ng, and Zengping Tian. T-tree or b-tree: main
memory database index structure revisited. In Proceedings 11th Aus-
tralasian Database Conference, January 2000.

[30] James J. Lu, Guido Moerkotte, Joachim Schue, and V.S. Subrahmanian.
Efficient maintenance of materialized mediated views. In Proceedings
of the 1995 ACM SIGMOD international conference on Management of
data, 1995.

[31] P. Pucheral, J.-M. Thevenin, and P. Valduriez. Efficient main memory
data management using the dbgraph storage model. In Proceedings of
the 16th conference on Very Large Data Bases, pages 683–695, 1990.

[32] Jun Rao and Kenneth A. Ross. Cache conscious indexing for decision-
support in main memory. In VLDB’99, Proceedings of 25th International
Conference on Very Large Data Bases, September 1999.

[33] K. Salem and H. Garcia-Molina. Disk striping. In proceedings Int. Conf.
on Data Engineering, pages 336–342, February 1986.

[34] K. Salem and H. Garcia-Molina. Checkpointing memory-resident
databases. In In proceedings Int. Conf. on Data Engineering, pages 452–
462, February 1989.

[35] K. Salem and H. Garcia-Molina. System m: A transaction process-
ing testbed for memory risident data. IEEE Trans. Knowl. Data Eng.,
2(1):161–172, March 1990.

[36] Michael Stonebraker. Managing persistent objects in a multi-level store.

SIGMOD Conference, pages 2–11, 1991.
[37] K.-Y Whang and R. Krishnamurthy. Query optimization in a memory res-

ident domain relational calculus system. ACM Trans. Database Systems,
15(1):67–95, March 1990.

[38] Ying Xia, Sung-Hee Kim, Sook-Kyoung Cho, Kee-Wook Rim, and Hae-
Young Bae. Dynamic versioning concurrency control for index-based
data access in main memory systems. In Proceedings of the tenth inter-
national conference on Information and knowledge management, Octo-
ber 2001.

Main Memory Database Systems: Opportunities and pitfalls – Wytze Hazenberg and Sjoerd Hemminga

118

Comparison between NoSQL Distributed Storage Systems

Elmer Jansema, Jan Thijs

Abstract—The field of databases is dominated by relational databases which use a Structured Query Language (SQL). However
these databases fail to provide native scalability and replication capabilities. Therefore so called NoSQL distributed storage systems
(DSS) were introduced. In this paper we explore three of such systems; Dynamo [6] created by Amazon, Bigtable [4] created by
Google and Cassandra [14] created by Facebook. We compare these systems with respect to their system architecture, data model
and provide insight into their practical uses. The most important findings of our research are the aspects of well-designed NoSQL
DSS; use multiple nodes for easy replication and fault tolerance, a sufficiently powerful data model, and be open source.

Index Terms—NoSQL, Dynamo, Bigtable, Cassandra, Distributed storage systems, Replication.

1 INTRODUCTION

The field of databases is dominated by relational databases which
use a Structured Query Language (SQL) for storing and retrieving
data. These databases are an appropriate solution for many applica-
tions which require data storage, however they lack the ability to scale
natively. If a user wants to scale, he has to resort to other systems
which add caching and/or partitioning features. Another problem SQL
databases have is efficiently handling large data sets, in particular the
aggregation of data from multiple large tables can become a slow pro-
cess.

To solve these problems research has been done to design systems
which can deal with these issues. A commonality between these sys-
tems is the lack of SQL, the ability to be highly available, and their
aim to easily deal with partitioning of data. Because of these com-
monalities these systems are called NoSQL distributed storage sys-
tems (DSS).

Amazon and Google have both introduced their own proprietary
NoSQL DSS called Dynamo [6] and Bigtable [4]. These systems are
not for public use but are used internally by the respective companies
to power some of their internal and external services. Facebook intro-
duced the Cassandra project [14], which was made open source and is
available for public use.

In this paper we present a comparison between the three previously
mentioned systems. We focus on the system architecture and the data
model each system uses. Furthermore we present situations in which
the systems succeed and in which situations they fail.

In section 2 the system architecture of each system, and how they
can achieve high availability and be distributed, is discussed. Section
3 discusses the respective data models of each system. The practical
use is discussed in section 4 and in section 5 and 6 a discussion and
conclusion are provided.

2 SYSTEM ARCHITECTURE

NoSQL distributed storage systems (DSS) were designed to achieve
high availability for systems which have a high user load most of the
time. Structured Query Language (SQL) databases do not offer easy
means to cope with this issue, therefore Amazon, Google and Face-
book have developed their own storage systems. These systems are
called Dynamo (Amazon), Bigtable (Google) and Cassandra (Face-
book). Facebook, for example, wanted to offer their users the ability to
search their inbox. Because Facebook has a large globally spread user-
base, their servers are distributed across the globe to offer their users

• ing. E. Jansema is MSc. Computing Science student (Software
Engineering and Distributed Systems) at the University of Groningen,
e-mail: e.jansema@student.rug.nl

• ing. J. Thijs is MSc. Computing Science student (Computing Science in
Business & Policy) at the University of Groningen, e-mail:
jthijs@gmail.com

fast access to their content. This requires a storage system which can
be partition tolerant and should offer high availability. In this section
we describe how Dynamo, Bigtable and Cassandra solved the issues
introduced by these high demands.

One of the first design decisions which has to be made is how to
structure the servers, which host the NoSQL DSS, within a network.
Both Dynamo and Cassandra use nodes which are structured in a ring
network [6, 14]. A node is a logical unit in the architecture which is
responsible for its set of data, a physical machine can have multiple
nodes. In a ring network each member is connected to exactly two
other nodes, forming a ring (see Figure 1). A group of nodes that
work together to serve data is called a cluster.

When data gets distributed across multiple servers the chances of
losing data increases due to increased risk of server failure, thus a
NoSQL DSS should be fault tolerant. One of the key factors for deal-
ing with fault tolerance is replication. If data is replicated on several
different nodes, failure of one node does not imply lost data. Replica-
tion in Dynamo and Cassandra works as follows; when a data item is
inserted into either of these systems, the data item is assigned a key.
Each key k is assigned to a node which is in charge of replicating the
data items that fall within the key range (see section 3) it is respon-
sible for, such a node is called a coordinator node. Besides storing
the data item locally, the coordinator node also replicates these keys
at the N −1 clockwise successor nodes in the ring network. This im-
plies that each node has replicated data that falls in the range between
itself and its Nth predecessor. Since nodes can be on the same physical
machine, Dynamo and Cassandra also provide means to make sure the
nodes are spread across multiple machines, thus mitigating machine
failure. When the node responsible for k fails, the systems fall back
to a preference list to communicate with the next responsible node.
A preference list is a list which stores the nodes that are responsible
for a certain key. Each node in the network has the ability to create a
preference list.

Dynamo adds flexibility to fault tolerance by offering two parame-
ters to tweak the replication system. These parameters are R and W ;
R stands for the minimum number of nodes that must participate in a
successful read operation and W stands for the minimum number of
nodes that must participate in a successful write operation. When R is
set to a low value, the performance of read operations increases how-
ever this has a negative effect on consistency. When R is set to a high
value this has the inverse effect. Setting W to a high value guarantees
replication, setting it to a low value creates an always writable system.

Cassandra extends its ability to handle faults with replication poli-
cies. There are three different policies; Rack Unaware, Rack Aware
and Datacenter Aware. Depending on the selected policy, nodes are
chosen to replicate data to. In the case of the Rack Unaware strat-
egy, the coordinator node chooses the N − 1 successive nodes on the
ring and ignores if they are on physically separated machines. When
a Rack or Datacenter Aware policy is chosen the Cassandra system
elects a leader among its nodes using a system called ZooKeeper [11].

119

When a node joins the cluster, it contacts the leader who tells the node
for which key range it is the replica. The leader makes sure that no
node is responsible for more than N − 1 key ranges in the ring. The
metadata, containing the key ranges a node is responsible for, is cached
locally at each node and inside ZooKeeper. This way a node can crash
and recover, and it would still know what key ranges it was respon-
sible for. In the case of a Datacenter Aware strategy the leader also
makes sure that every row in the data model (see section 3) is repli-
cated across multiple datacenters thus mitigating datacenter outage.

Besides replicating data, Cassandra and Dynamo also provide
means of detecting failed nodes. Failure detection is a mechanism
by which a node can locally determine if any other node in the system
is available and is also used to avoid attempts to communicate with
unavailable nodes.

Cassandra uses a modified version of the Φ accrual failure detector
[14]. The accrual failure detector emits a value, Φ, which represents a
suspicion level for a monitored node. Φ is used as a threshold to decide
when a node is suspected of being unavailable. When Φ is 1, then the
likelihood of a mistake (suspecting a node being unavailable while it is
available) is about 10. The likelihood decreases as Φ increases; 1 with
Φ = 2, 0.1 with Φ = 3, and so on. Φ is based on the distribution of
arrival times of gossip messages [7] between other nodes in the cluster.
Gossip messages are messages which get sent periodically by nodes to
neighbouring nodes. Every node in the system stores the arrival times
and uses a sliding window on this dataset to calculate Φ. The value of
Φ is dynamically adjusted to reject network and load conditions at the
monitored nodes.

Dynamo uses a local notion of failure detection [6]; node A may
consider node B failed if B does not respond to A’s messages (even if
B is responsive to node C’s messages). Through general communica-
tion, A discovers that B is unresponsive when B fails to respond to a
message. To be able to continue processing requests, A redirects the
requests meant for B to alternative nodes. A will periodically check if
B becomes responsive again. This is a form of a decentralised failure
detection protocol which, like the Φ accrual failure detector of Cassan-
dra, uses gossip messages to enable each node in the system to learn
about the arrival (or departure) of other nodes [10].

Bigtable uses a completely different approach compared to Cassan-
dra and Dynamo with respect to network structuring as well as how it
handles faults. It has three major components [4]; a library that is used
by every client of Bigtable, one master server, and many tablet servers.
A tablet is a range of rows used as a unit of distribution and load
balancing. Tablet servers contain different tablets and these servers
can be added or removed dynamically from a cluster to accommodate
changes in workloads. The tablet server handles read and write re-
quests to its own tablets and also splits tablets that have grown too big.
The master server is responsible for assigning tablets to tablet servers,
detecting the addition and expiration of tablet servers and balancing
the load of tablet servers. In addition, it handles schema changes such
as table and column family creations (see section 3). Data does not
move through the master server; clients communicate directly with
tablet servers for reads and writes. Because Bigtable clients do not
rely on the master server for tablet location information, most clients
never communicate with the master server.

Although the goals of Bigtable are not providing a decentralised
control and fault tolerant system, it does provide some means to pre-
vent faults. Bigtable uses a highly-available and persistent distributed
lock service called Chubby [2]. “A Chubby service consists of five ac-
tive replicas, one of which is elected to be the master and actively serve
requests. The service is live when a majority of the replicas are run-
ning and can communicate with each other. Chubby uses the Paxos
algorithm [3, 15] to keep its replicas consistent in case of a failure
and provides a namespace that consists of directories and small files.
Each directory or file can be used as a lock, and reads and writes to a
file are atomic. The Chubby client library provides consistent caching
of Chubby files and each Chubby client maintains a session with a
Chubby service. A session expires if the client is unable to renew the
session lease within the lease expiration time. When a session expires,
it loses any locks and open handles. Chubby clients can also register

callbacks on Chubby files and directories for notifications on changes
or session timeouts. If Chubby becomes unavailable for an extended
period of time, Bigtable becomes unavailable.” 1

In this section we described the system architecture of Dynamo,
Bigtable and Cassandra. The next paragraph will give a brief sum-
mary.

• Network structure: Dynamo and Cassandra use a ring network,
in such a network there is no distinct leader. This can be seen in
the way Dynamo and Cassandra work, for each data item inserted
there is a coordinator node which is responsible for replication of
that data item.

Bigtable uses a client/master structure, which means there is one
master server controlling multiple client servers. Because of the
number of responsibilities the master server has, a failure of the
master server would cause the system to become insufficient over
time.

• Replication: Through the use of coordinator nodes, Dynamo and
Cassandra both replicate data across multiple nodes. Also a pref-
erence list is used to store all nodes responsible for a certain data
item, this allows the system to handle node failures. Dynamo
offers two parameters, R and W , to control the replication sys-
tem. Cassandra uses replication policies which allows the user
to control the replication system.

Bigtable does not provide a native replication system, if replica-
tion is needed clients are forced to implement their own.

• Failure detection: Dynamo uses a gossip protocol to learn about
nodes that are unresponsive and entering or leaving the network.
Cassandra uses a modified version of the Φ accrual failure detec-
tor, which calculates the suspicion level for each monitored node
based on gossip messages. This allows the system to estimate if
a node is available. Bigtable detects failures through the master
server.

Given these system architectures we can say Bigtable clearly has
a single point of failure; its master server. The master server has too
many key responsibilities and failing to provide its services will sig-
nificantly influence the performance of the system. This however was
a conscientious design decision. Dynamo and Cassandra, on the other
hand, offer a decentralised system without a single point of failure.
When one node fails, there is usually another node available to pro-
vide the data. Since Dynamo and Cassandra are very similar in their
system architecture, we can not say one is better than the other.

Figure 1. A visualisation of a ring network [6].

1From Bigtable: A Distributed Storage System for Structured Data [4]

Comparison between NoSQL Distributed Storage Systems – Elmer Jansema and Jan Thijs

120

3 DATA MODELS

In this section we will discuss the problems in current Structured
Query Language (SQL) databases and the solutions Dynamo, Bigtable
and Cassandra offer to solve these problems. We will highlight how
data is stored and can be retrieved, and which data structures are used
to store the data.

To understand the problem with SQL databases, we first have to
look into how they work. A SQL database stores its data in multiple
tables. When data needs to be retrieved from the database, a user ex-
ecutes a query. Because tables are usually related to each other, often
the cartesian product [23] needs to be calculated. Calculating the carte-
sian product is useful where data from two different tables is related
and needs to be merged. However calculating the cartesian product
can become slow when large datasets are used, since every row from
table A needs to be merged with every row from table B. The mini-
mum result is an exponential growth of the number of data items and
this exponent will grow with every table that is added to the query.
To solve this problem, NoSQL distributed storage systems (DSS) use
simplified data models.

Dynamo uses a data model using only keys and values, which is
why it is called a highly available key-value store [6]. For storing and
retrieving data it offers simple read and write operations. Each value
is stored as a binary object with a unique key and has no relations with
other values. The lack of relationships makes it possible for the values
to be retrieved efficiently. For storing the values and keys, Dynamo has
a pluggable persistence component which offers the choice to pick the
database best suited for an application’s access patterns. The databases
that are in use are Berkeley Database (BDB) Transactional Data Store
[18], BDB Java Edition [18], MySQL [17], and an in-memory buffer
with a persistent backing store. Because of the variable storage engine
Dynamo does not have just one binary object size limitation, since the
size limitation is depended on the storage engine being used.

Bigtable is a sparse, distributed, persistent multi-dimensional sorted
map [4] indexed by a row key, column name, and a timestamp. Each
row key has a column family which contains a set of columns, as il-
lustrated in Figure 2. The cells allow multiple versions of the data
to be stored which are indexed by timestamps. Data from a cell can
be retrieved by travelling down the hierarchy. The column names use
the syntax family:optional qualifier. Alternatively timestamps can be
used to retrieve older data from the cells. The row keys and column
names can be arbitrary strings. The row keys are maintained in lexico-
graphic order by Bigtable. Assigning timestamps to the data can either
be done automatically by Bigtable or explicitly by client applications.
To avoid collisions with explicit assignments, client applications must
generate unique timestamps themselves.

ColumnRow key 1 Column Column

Column family

ColumnRow key 2 Column Column

Column family

Figure 2. A visualisation of the data model used in Bigtable.

Cassandra is a distributed multi-dimensional map indexed by a row
key and column name [14]; making it similar to Bigtable. Unlike
Bigtable, Cassandra offers two kinds of columns families; so called
Simple and Super column families. Simple column families are regu-
lar column families, but Super column families allow column families
within column families as illustrated in Figure 3. Cells can be accessed
by specifying the row key, column family name, and column name. A
Super column family adds an extra level to the hierarchy and requires
an application to specify the row key, column family name, super col-
umn name, and the column name. The row key is a string with no size

restrictions. The column names can be ordered either by time or by
name.

Row key 1

Super column family

Column

Super column

Column Column Column

Super column

Column Column

Row key 2

Super column family

Column

Super column

Column Column Column

Super column

Column Column

Figure 3. A visualisation of super column families as used in Cassandra.

In this section we described the data models of Dynamo, Bigtable
and Cassandra. The next paragraph will give a brief summary.

As discussed Dynamo is not a storage system by itself, but uses
other storage systems to store its data. However it hides these sys-
tems from clients by providing a simple interaction layer. Bigtable
and Cassandra however do offer their own storage system. A com-
monality between these two systems is the use of column families in
their data model. Cassandra improves the data model of Bigtable by
adding super column families which consist of super columns. This
addition allows for more complex data structures to be stored in Cas-
sandra. An advantage of the pluggable persistence component which
Dynamo offers is the ability to use databases which have proven them-
selves. It should be noted, however, that these systems are used in a
very simple fashion since making full use of SQL databases, as stated
in the beginning of this section, is inefficient. The simple data model
Dynamo uses is powerful but has limited applicability.

Because Bigtable and Cassandra both use column families these
systems are more flexible when it comes to storing data structures.
With the addition of super column families by Cassandra, it offers
the most features to be usable in different situations. However there
are limitations in the way data is retrieved from the storage system,
these limitations should be taken into account when designing a stor-
age model.

4 PRACTICAL USE

A good way to get insight in the described systems is looking into the
way they are used in practice. Bigtable and Dynamo are proprietary
systems and their exact usage is not known publicly, however the pa-
pers describing these systems do mention some ways in which they are
or could be used. Cassandra is open source and a number of companies
have opted to use it instead of standard Structured Query Language
(SQL) databases, these companies and the way they use Cassandra is
described.

4.1 Dynamo
Dynamo is used by Amazon, a big online retail operation. For many
services, such as those that provide best seller lists, shopping carts,
customer preferences, session management, sales ranks, and product
catalogs, Dynamo is used as a back end system. There is little infor-
mation available on the exact usage of Dynamo but in the paper [6] a
few general usage modes are described:

• Business logic specific reconciliation: In this usage mode data
objects are replicated across multiple nodes. When versions of
these objects differ, the client application is required to do its
own reconciliation, i.e., choosing the right version. An example
of a service within Amazon which uses this usage mode is the
shopping cart service.

• Timestamp based reconciliation: When this usage mode is se-
lected Dynamo performs timestamp based reconciliation where
the last write wins, i.e., when two data objects conflict, the data
object with the largest timestamp value is chosen. This usage
mode is used in the service that maintains sessions of customers.

SC@RUG 2009 proceedings

121

• High performance read engine: Some services have a high re-
quest rate and a low update rate. These services can change the
quorum characteristics of Dynamo which allows them to use Dy-
namo as a high performance read engine. The high performance
on reads can be achieved by setting R (minimal number of nodes
that must participate in a successful read operation) to 1 and W
(minimal number of nodes that must participate in a successful
write operation) to N (total number of nodes). Services that pro-
vide product catalogues usually use this usage mode.

4.2 Bigtable

Google uses Bigtable in a number of different services, they describe
exemplary use of Bigtable in some of their systems in their paper [4].

“Google Analytics is a service that helps webmasters analyze traf-
fic patterns at their web sites. It uses Bigtable in a two table config-
uration; a raw click table and a summary table. The raw click table
maintains a row for each end-user session. The row name is a tuple
containing the name of the website and the time at which the session
was created. This schema ensures that sessions which visit the same
web site are contiguous and makes sure they are sorted chronologi-
cally. The summary table contains various predefined summaries for
each website and is generated from the raw click table by periodically
scheduled MapReduce jobs [5]. Each MapReduce job extracts recent
session data from the raw click table.

Google also offers various services that display geographic image
data, such as Google Earth and Google Maps. These services use one
table for image data and a different set of tables to serve client data.
Each row in the image table corresponds to a single geographic seg-
ment and the rows are named to ensure that adjacent geographic seg-
ments are stored near each other. The table contains a column family
to keep track of the sources of data for each segment. This column
family has a large number of columns; essentially one for each raw
data image. Since each segment is only built from a few images, this
column family is very sparse.

Personalized Search stores the data of each user in Bigtable. Each
user has a unique userid and is assigned a row named by that userid.
All user actions are stored in a table and a separate column family
is reserved for each type of action (for example, there is a column
family that stores all web queries). Each data element uses as its
Bigtable timestamp the time at which the corresponding user action
occurred. Personalized Search generates user profiles using MapRe-
duce over Bigtable. These user profiles are used to personalize live
search results. The Personalized Search data is replicated across sev-
eral Bigtable clusters to increase availability and to reduce latency due
to distance from clients. It uses a replication subsystem that is built
into the servers.” 2

4.3 Cassandra

Cassandra was originally designed by Facebook to power their inbox
search. Inbox Search was launched in June of 2008 for around 100
million users which grew to over 250 million users in 2009 [14]. The
use of Cassandra for this purpose was abandoned in late 2010 when
a new system for messaging was introduced based on Apache HBase
[16].

Cassandra was made open source in 2008 by Facebook, develop-
ment of this version has since been taken over by the Apache Software
Foundation. It is still actively developed and has been adopted by sev-
eral companies who use it to power different services. The following
list gives a short description of these companies and how they use Cas-
sandra.

• Digg [22]: A site for story sharing (usually through links) uses
Cassandra as their main storage system [9, 20]. When a user
diggs a story this is made visible to all his friends. Digg does
this by selecting the followers of the user and adding the item to
the list of items of each follower.

2From Bigtable: A Distributed Storage System for Structured Data [4]

• Reddit [1]: A site similar to Digg, they also use Cassandra as
their main storage system [21, 12].

• Twitter [8]: A site which is popular for allowing people to post
tweets; text-based posts of up to 140 characters. Twitter uses
Cassandra for storing places of interest (geolocation) and the re-
sults of data mining done over their entire user base (research).
Cassandra is not used as the storage system for tweets [13].

• Cloudkick: Provides monitoring tools for companies which have
a large number of servers. They use Cassandra to store the usage
data used in their tools [19].

These sites all have high amounts of visitors each day and large
amounts of growing data to store. Visitors are encouraged to interact
with the data and in the case of Digg and Reddit, users can tell if they
like or dislike a certain item. This requires a storage system that allows
a large number of fast reads and writes.

5 DISCUSSION

In this paper we discussed three NoSQL distributed storage systems
(DSS); Dynamo, Bigtable and Cassandra.

Dynamo, designed by Amazon, is a proprietary highly available key
value-store. It uses nodes which are structured in a ring network for
storing (replicated) data. It uses a very simple data model which is
analogues to a hash map, a single key maps to a single value. The data
itself is stored in an existing database through the use of its pluggable
persistence component. It offers three parameters which allows the
system to be tuned.

Bigtable is a proprietary distributed storage system designed by
Google. It uses a client/master network structure in which data is
stored by so called tablet servers, a master server makes sure single
tablet servers are correctly load balanced. Bigtable provides a data
model which consist of column families which contain columns and
are stored in a row. Column families are predefined but it is possible
to have multiple column families within a tablet, e.g. multiple rows
use different column families. By using timestamps it is also possible
to have multiple versions of the same data item.

Cassandra was designed by Facebook and has been made open
source and is available for public use. Similar to Dynamo it makes
use of nodes which are structured in a ring network. Its data model,
however, is similar to Bigtable as it also provides column families but
extends this notion with Super column families which stores multiple
column families. It is also possible to add columns to column families
without predefining them.

In section 2 we discussed the system architectures of the three
NoSQL DSS. We said Bigtable has the weakest system architecture
design with respect to its network structure and replication capabili-
ties due to its use of the client/master structure. This makes Bigtable
vulnerable to failure of its master server which makes the system in-
sufficient over time. Because Dynamo and Cassandra use a preference
list and can replicate data at multiple nodes, they do not suffer from
single or, in some cases, multiple node failure. Therefore it is our
opinion this is the stronger network structure.

The data models of the three NoSQL DSS were discussed in sec-
tion 3. Dynamo has a simplistic data model and does not offer data to
be structured, clients can add and parse structures if needed. Bigtable
and Cassandra add more complexity by adding column families which
allows the data to be structured. Cassandra extends the complexity by
offering data to be modelled with Super column families, adding more
structuring capabilities to the data model. It is clear Cassandra pro-
vides the most complex data model which allows data to be structured
more easily. However there are limitations in the way data can be re-
trieved, these limitations should be taken into account when designing
a system that uses Cassandra.

One aspect which is not addressed in the papers about Dynamo,
Bigtable and Cassandra is security. In the Dynamo paper it is assumed
that the environment in which Dynamo operates is non-hostile, imply-
ing it does not need security measures. Although the Bigtable paper
does not mention security, we can assume a similar argument can be

Comparison between NoSQL Distributed Storage Systems – Elmer Jansema and Jan Thijs

122

applied because the environments are similar. The Cassandra paper
also does not mention security, however Cassandra can be run in hos-
tile environments. If security is required, the user needs to resort to
3rd party solutions. We feel this is a shortcoming of Cassandra.

6 CONCLUSION

From our research we conclude that important aspects of well-
designed NoSQL distributed storage systems (DSS) are;

• Use multiple nodes which are equal to each other for;

• Easy replication
• No single point of failure

• Have a sufficiently powerful data model without compromising
speed

• Be open source (having an active community is desirable).

As mentioned in section 5 security was not considered. Security
considerations of NoSQL DSS can be a topic for further research.

In our research we only focused on one open source NoSQL DSS.
In future research a comparison between multiple open source NoSQL
DSS might be interesting.

As mentioned in sections 3 and 5 care should be taken when de-
signing a data model for Cassandra since there are limitations to the
way data can be retrieved. There is little information known on how
to design these data models, so we suggest it as a topic for a future
research project.

ACKNOWLEDGEMENTS

The authors wish to thank Dr. Alexander Lazovik for his suggestions
and review of this paper. They also wish to thank Amirhosein Shantia
for his review.

REFERENCES

[1] Advance Publications Inc. reddit. Website. http://www.reddit.com/.
[2] M. Burrows. The chubby lock service for loosely-coupled distributed

systems. In 7th USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’06, Nov. 2006.

[3] T. Chandra, R. Griesemer, and J. Redstone. Paxos made live - an engi-
neering perspective. 26th ACM Symposium on Principles of Distributed
Computing, June 2007.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. In 7th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI ’06, Nov. 2006.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In 6th Symposium on Operating Systems Design and Im-
plementation, OSDI ’04, Dec. 2004.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proceedings of the 21th
ACM Symposium on Operating System Principles, Oct. 2007.

[7] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Stur-
gis, D. Swinehart, and D. Terry. Epidemic algorithms for replicated
database maintenance. In Proceedings of the sixth annual ACM Sym-
posium on Principles of distributed computing, PODC ’87, 1987.

[8] J. Dorsey, E. Williams, and B. Stone. Twitter. Website. https://www.
twitter.com/.

[9] I. Eure. Looking to the future with cassandra. Website. http://about.digg.
com/blog/looking-future-cassandra.

[10] I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On scalable and efficient
distributed failure detectors. In Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Computing, PODC ’01, 2001.

[11] P. Hunt, M. Konar, B. Reed, and F. P. Junqueira. Zookeeper: Wait-free co-
ordination for internet-scale systems. In Proceedings of the 2010 USENIX
conference, USENIXATC ’10, 2010.

[12] D. King. She who entangles men. Website. http://blog.reddit.com/2010/
03/she-who-entangles-men.html.

[13] R. King. Cassandra at twitter today. Website. http://engineering.twitter.
com/2010/07/cassandra-at-twitter-today.html.

[14] A. Lakshman and P. Malik. Cassandra - a decentralized structured storage
system. In 3rd ACM SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware, Oct. 2009.

[15] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems 16, May 2007.

[16] K. Muthukkaruppan. The underlying technology of messages. Website.
https://www.facebook.com/note.php?note id=454991608919.

[17] MySQL AB and Oracle. Mysql. Website. http://www.mysql.com/.
[18] Oracle. Oracle berkeley db. Website. http://www.oracle.com/us/products/

database/berkeley-db/index.html.
[19] A. Polvi, D. D. Spaltro, and L. Welliver. Cloudkick. Website. https:

//www.cloudkick.com/.
[20] J. Quinn. Saying yes to nosql going steady with cassandra. Website.

http://about.digg.com/node/564.
[21] Reddit admins. Reddits may 2010 state of the servers report. Website.

http://blog.reddit.com/2010/05/reddits-may-2010-state-of-servers.html.
[22] K. Rose. Digg. Website. http://digg.com/.
[23] Wikipedia. Cartesian product. Website. http://en.wikipedia.org/wiki/

Cartesian product.

SC@RUG 2009 proceedings

123

faculteit wiskunde en
natuurwetenschappen

informatica

SC@RUG 2011 proceedings

8th SC@RUG
2010-2011
Rein Smedinga, Michael Biehl
en Femke Kramer (editors)

8
th

 S
C

@
R

U
G

 2
0

1
0

-2
0

1
1

www.rug.nl/informatica

faculteit wiskunde en
natuurwetenschappen

informatica

proceedings 2011.indd 1 27-06-11 11:55

