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Abstract

The rapid development of location-based technologies including animal tracking sensors, GPS

devices embedded in taxis and buses, and smart phones carried by people has quickly led to the

capability of collecting spatio-temporal information about almost any kind of moving object, re-

sulting in huge volumes of spatio-temporal data in the form of trajectories. Business intelligence

now has more interest in analysing large amounts of trajectory data rather than the data on hard

disk, since querying on such trajectory data can reveal useful information. Due to high access

latency and low I/O operations of hard disks, the disk-based storage systems (with traditional data

structures) have been challenged by modern applications (e.g. location-based services), which

require real time responses when querying large scale trajectory datasets. Therefore, novel data

structures and query algorithms need to be designed to meet this requirement. In this thesis, a

series of concrete and challenging problems about storing, managing and analysing large scale tra-

jectory data are studied. A complete in-memory column-oriented storage system called SharkDB

is implemented to address these problems and support real time computing for trajectory queries.

Below is a brief description of contributions.

First of all, a preliminary study has been conducted to identify the trajectory synchronisation

problem on large scale trajectory dataset. Based on this observation, a novel data structure, which

is called a frame based data structure, is proposed to synchronise trajectories based on their tem-

poral information. Meanwhile, to improve performance of trajectory queries, the frame based data

structure is optimised by implementing this data structure into main memory with compression

and CPU cache-optimisation techniques.

After implementing a frame based data structure, challenges with regard to trajectory query

processing are investigated. To address these challenges, the trajectory queries are divided into

three categories, i.e. basic operations, advanced operations and analytic operations. For each

category, a naive algorithm is proposed first. To improve the query performance, for the category

of basic operations, a parallel computing technique is used to speed up the running time of the

query. For the category of advanced operations, a hierarchical I/P frame structure based approach

is proposed. For the category of analytic operations, a MBR+KMP algorithm is presented.

To evaluate SharkDB, a comprehensive experimental study including operation level evaluation

and system level evaluation is conducted. In the operation level evaluation, query processing using
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the proposed algorithms are compared to a traditional trajectory data structure. The extensive

experiments demonstrate that the newly designed algorithms can guarantee real-time trajectory

query processing on large scale trajectory dataset. A set of workload models that reflect real world

workloads is proposed in the system level evaluation. The experiments on such workload models

also verify the superiority of SharkDB over traditional data structures.

Finally, as in-memory database management systems are receiving more attention today, some

commercial in-memory database management systems have been released. Hence, in the col-

laboration with SAP, SharkDB is migrated into SAP HANA. To achieve this, the data structures

of SharkDB are re-designed to suit the architecture of SAP HANA. A set of experiments are

conducted to show that SharkDB can beat other popular traditional data structures in regard to

trajectory query processing.



Declaration by Author

This thesis is composed of my original work, and contains no material previously published or

written by another person except where due reference has been made in the text. I have clearly

stated the contribution by others to jointly-authored works that I have included in my thesis.

I have clearly stated the contribution of others to my thesis as a whole, including statistical assis-

tance, survey design, data analysis, significant technical procedures, professional editorial advice,

and any other original research work used or reported in my thesis. The content of my thesis is

the result of work I have carried out since the commencement of my research higher degree can-

didature and does not include a substantial part of work that has been submitted to qualify for the

award of any other degree or diploma in any university or other tertiary institution. I have clearly

stated which parts of my thesis, if any, have been submitted to qualify for another award.

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and,

subject to the policy and procedures of The University of Queensland, the thesis be made available

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has

been approved by the Dean of the Graduate School.

I acknowledge that copyright of all material contained in my thesis resides with the copyright

holder(s) of that material. Where appropriate I have obtained copyright permission from the copy-

right holder to reproduce material in this thesis.



Publications during candidature

Journal papers:

• Han Su, Kai Zheng, Jiamin Huang, Haozhou Wang and Xiaofang Zhou. Calibrating Trajec-

tory Data for Spatio-temporal Similarity Analysis. The VLDB Journal, 2015, pp. 93-116.

Conference papers:

• Haozhou Wang, Han Su, Kai Zheng, Shazia Sadiq, Xiaofang Zhou. An Effectiveness Study

on Trajectory Similarity Measures. In ADC 2013, Adelaide, pp. 13-22. (Best Paper Award)

• Haozhou Wang, Kai Zheng, Han Su, Jiping Wang, Shazia Sadiq. Efficient Aggregate Far-

thest Neighbor Query Processing on Road Networks, In ADC 2014, Brisbane, pp. 13-25.

• Haozhou Wang, Kai Zheng, Hoyoung Jeung, Shane Bracher, Asadul K. Islam, Wasim Sadiq,

Shazia Sadiq, Xiaofang Zhou. Storing and Processing Massive Trajectory Data on SAP

HANA. In ADC 2015, Melbourne, pp. 66-77.

• Haozhou Wang, Kai Zheng, Jiajie Xu, Bolong Zheng, Xiaofang Zhou, Shazia Sadiq. SharkDB:

An In-Memory Column-Oriented Trajectory Storage. In CIKM 2014, Shang Hai, pp. 1409-

1418.

• Han Su, Kai Zheng, Haozhou Wang, Jiamin Huang, Xiaofang Zhou. Calibrating trajectory

data for similarity-based analysis. In SIGMOD 2013, New York, pp. 833-844.

• Jiping Wang, Kai Zheng, Hoyoung Jeung, Haozhou Wang, Bolong Zheng, Xiaofang Zhou.

Cost-Efficient Spatial Network Partitioning for Distance-Based Query Processing. In MDM

2014, Brisbane, pp. 13-22.

• Haozhou Wang, Kai Zheng, Xiaofang Zhou, Shazia Sadiq. SharkDB: An In-Memory Stor-

age System for Massive Trajectory Data. In SIGMOD 2015, Melbourne, pp. 1099-1104.

(DEMO)

• Han Su, Kai Zheng, Jiamin Huang, Tianyu Liu, Haozhou Wang, Xiaofang Zhou. A crowd-

based route recommendation system-CrowdPlanner. In ICDE 2014, Chicago, pp. 1178-

1181. (DEMO)



vi

Publications included in this thesis

Haozhou Wang, Kai Zheng, Hoyoung Jeung, Shane Bracher, Asadul K. Islam, Wasim Sadiq,

Shazia Sadiq, Xiaofang Zhou. Storing and Processing Massive Trajectory Data on SAP HANA. In

ADC 2015, Melbourne, pp. 66-77. - incorporated as Chapter 6.

Contributor Statement of contribution

Haozhou Wang (Candidate) Designed experiments (75%)

Wrote the paper (60%)

Designed algorithms (60%)

Defined the problems with motivations(60%)

Proofreading of the paper (30%)

Joined the discussion (30%)

Kai Zheng Wrote the paper (40%)

Designed algorithms (30%)

Designed experiments (25%)

Defined the problems with motivations(20%)

Proofreading of the paper (30%)

Joined the discussion (20%)

Hoyoung Jeung Joined the discussion(10%)

Shane Bracher Joined the discussion(10%)

Asadul K. Islam Joined the discussion(10%)

Wasim Sadiq Joined the discussion(5%)

Shazia Sadiq Proofreading of the paper (10%)

Joined the discussion (5%)

Xiaofang Zhou Proofreading of the paper (30%)

Designed algorithms (10%)

Defined the problems with motivations(20%)

Joined the discussion (10%)



vii

Haozhou Wang, Kai Zheng, Jiajie Xu, Bolong Zheng, Xiaofang Zhou, Shazia Sadiq. SharkDB:

An In-Memory Column-Oriented Trajectory Storage. In CIKM 2014, Shanghai, pp. 1409-1418. -

incorporated as Chapter 3, 4 & 5.

Contributor Statement of contribution

Haozhou Wang (Candidate) Designed experiments (80%)

Wrote the paper (60%)

Designed algorithms (60%)

Proofreading of the paper (30%)

Joined the discussion (30%)

Kai Zheng Wrote the paper (40%)

Designed algorithms (30%)

Designed experiments (20%)

Proofreading of the paper (30%)

Joined the discussion (20%)

Jiajie Xu Joined the discussion (10%)

Bolong Zheng Joined the discussion (10%)

Xiaofang Zhou Proofreading of the paper (20%)

Designed algorithms (10%)

Joined the discussion (20%)

Shazia Sadiq Proofreading of the paper (20%)

Joined the discussion (10%)

Haozhou Wang, Han Su, Kai Zheng, Shazia Sadiq, Xiaofang Zhou. An Effectiveness Study on

Trajectory Similarity Measures. In ADC 2013, Adelaide, pp. 13-22. - incorporated as Chapter 3.



Contributor Statement of contribution

Haozhou Wang (Candidate) Designed experiments (80%)

Wrote the paper (60%)

Designed algorithms (60%)

Proofreading of the paper (30%)

Han Su Designed experiments (20%)

Kai Zheng Wrote the paper (40%)

Designed algorithms (30%)

Proofreading of the paper (30%)

Shazia Sadiq Proofreading of the paper (10%)

Xiaofang Zhou Proofreading of the paper (30%)

Designed algorithms (10%)

Contributions by others to the thesis

In all of the research problems in this thesis, Professor Xiaofang Zhou, as my principal ad-

visor, and Dr Kai Zheng, assisted in providing technical guidance for formulating the problems,

refinement of ideas as well as reviewing and polishing the drafts.

Statement of parts of the thesis submitted to qualify for the award of another degree

None.



Acknowledgments:

This thesis represents a major portion the research the has been done over the past three and

a half years since I joined DKE group. During this period, there are many people supporting and

helping me in my research and living, and without their contribution, I can hardly complete my

PhD study. It is a pleasure to convey my gratitude to them all in my humble acknowledgment.

First and foremost, I would like to show my sincerest gratitude to my principal advisor, Profes-

sor Xiaofang Zhou, who has provided me with professional support and guidance in every stages

throughout my research. Without his consistent and impressive kindness, all the paper that have

been published or submitted, as well as this thesis, would not have been completed or written. His

vigorous academic observation enlightens me not only in this thesis but also in my future study.

I wish to express my deep gratitude to my advisor, Dr. Kai Zheng, who not only brought

me into the exciting area of spatial-temporal databases, but also has been remarkably helpful in

various stages of my research. His role in my life will be very profound. I gratefully acknowledge

my advisor, Prof. Shazia Sadiq, for her valuable advice in each group discussion and furthermore,

sparing his precious time to read my drafts and give constructive comments about them.

It is my pleasure to specially acknowledge Prof. Heng Tao Shen, A/Prof. Xue Li, Dr. Zi

Huang, Dr. Sen Wang, Dr. Hongzhi Yin, Dr. Mohamed Sharaf, Dr. Wasim Sadiq, Dr. Hoyoung

Jeung, Dr. Shane Bracher and Dr. Asadul Islam for their great effort and help on my research

problems.

I really appreciate that I have the opportunity to study in DKE, which is a friendly and har-

monious group. I will show my gratitude to Mr. Bolong Zheng, Dr. Han Su, Mr. Lei Li, Mr.

Xingzhong Du, Ms. Weiqing Wang, Ms. Ruojing Zhang, Ms. Yanxia Xu, Mr. Tieke He, Ms.

Jiping Wang, Dr. Jialong Han, Ms. Wen Hua, Dr. Xiaofeng zhu, Dr. Jiajun Liu, Dr. Xin Zhao, Dr.

Jingkuan Song, Dr. Yang yang, Mr. Peng Wang, Mr. Jiewei Chao, Ms. Xuefei Li, Ms. Ling Chen,

Ms. Hongyun Cai, Ms. Bingyu Yi, Mr. Chao Li, Mr. Wei Wang and Mr. Litao Yu. Their sincerity

and kind heart impressed me to give warm care to every other person.

Last but not least, my deepest gratitude goes to my family, to my dad and mum, who brought

me up and encouraged my interest in science research, and who have taught me so much, without

which this could not have happened. There is so much more to say, that is hard to express in words.



x

Keywords

spatio-temporal database, trajectory database, in-memory database, trajectory compression,

query processing, algorithm, performance

Australian and New Zealand Standard Research Classifications (ANZSRC)

ANZSRC code: 080604, Database Management, 100%

Fields of Research (FoR) Classification

FoR code: 0806, Information Systems, 100%



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Spatio-temporal Database . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Moving Objects and Trajectories . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.3 In-memory Data Management . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.4 Column-oriented Data Structures . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Problem Statements and Methodologies . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 SharkDB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Query Processing in SharkDB . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.5 SharkDB Implementation using SAP HANA . . . . . . . . . . . . . . . . 15

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Literature Review 19

2.1 Fundamentals of Spatial Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Trajectory Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Trajectory Indexing Structure . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2 Trajectory Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Trajectory Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.1 Nearest Neighbour Query over Trajectory Data . . . . . . . . . . . . . . . 32

xi



xii CONTENTS

2.3.2 Trajectory Similarity Search . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 In-Memory Database System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.1 In-Memory Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4.2 Parallel Computing on In-memory Database . . . . . . . . . . . . . . . . . 40

2.4.3 Other Research Interests of In-memory Database . . . . . . . . . . . . . . 41

2.5 Column-oriented Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 SharkDB Design 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 A Preliminary Study on Heterogeneous Trajectory Data . . . . . . . . . . . . . . . 47

3.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Effectiveness Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 An I/P Frame based Trajectory Data Structure . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Frame-based Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 I/P Frame-based Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.3 Cache-aware Frame-based Storage . . . . . . . . . . . . . . . . . . . . . . 66

3.4 Database Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Query Processing in SharkDB 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Single Thread based Approach . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Multi-Thread based Approach . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Advanced Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Simple Frame based Approach . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Hierarchical Frame based Approach . . . . . . . . . . . . . . . . . . . . . 77

4.3.3 Parallel Query Processing on Frame Structure . . . . . . . . . . . . . . . . 81

4.4 Analytic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4.2 Sliding Window based Approach . . . . . . . . . . . . . . . . . . . . . . . 84



CONTENTS xiii

4.4.3 MBR based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Performance Evaluation 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Operation Level Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.3 Accuracy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.4 Compression Ratio Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.5 Synthetic Trajectory Data Evaluation . . . . . . . . . . . . . . . . . . . . 105

5.3 System Level Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Workload Model Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.2 Parameters Selection and Datasets . . . . . . . . . . . . . . . . . . . . . . 108

5.3.3 Typical Workload Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.3.4 Operational Workload Evaluation . . . . . . . . . . . . . . . . . . . . . . 112

5.3.5 Analytic Workload Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6 SharkDB Implementation using SAP HANA 119

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2 SAP HANA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.1 Key-Value Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.2 Sample Point Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.3 Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.1 Experiment Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.2 Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.3 Advanced Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.4 Compression Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



xiv CONTENTS

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Final Remarks 135

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2.1 An I/P frame Structure Extension for Hybrid Trajectory Datasets . . . . . . 137

7.2.2 A Distributed SharkDB Implementation on Apache Spark . . . . . . . . . 137

7.2.3 Interface and APIs Design for SharkDB on SAP HANA . . . . . . . . . . 138



List of Figures

1.1 Example of Spatio-temporal Objects . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Example of Range Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Example of Spatio-temporal Join Query . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Example of Nearest Neighbour Query . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Trajectory Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Row-oriented Structure versus Column-oriented Structure . . . . . . . . . . . . . 9

1.7 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Paradigm of Spatial Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Example of Spatial Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Grid Index Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Example of Quadtree Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Example of Quadtree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Example of R-tree Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Example of an R-tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.8 Trajectory Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Increase Sampling Rate Transformation Function . . . . . . . . . . . . . . . . . . 51

3.2 Decrease Sampling Rate Transformation Function . . . . . . . . . . . . . . . . . 52

3.3 Random Shift Transformation Function . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Synchronized Shift Transformation Function . . . . . . . . . . . . . . . . . . . . 53

3.5 Add Noise Transformation Function . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Result of Euclidean Distance with different transformation rate . . . . . . . . . . 54

xv



xvi LIST OF FIGURES

3.7 Result of Euclidean distance with different transformation distances . . . . . . . . 55

3.8 Result of DTW with different transformation rate . . . . . . . . . . . . . . . . . 55

3.9 Result of DTW with different transformation distances . . . . . . . . . . . . . . . 56

3.10 Result of PDTW with different transformation rate . . . . . . . . . . . . . . . . . 56

3.11 Result of PDTW with different transformation distances . . . . . . . . . . . . . . 57

3.12 Result of EDR with a changing transformation rate and ε less than distance of

transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.13 Result of EDR with different transformation rate and ε larger than distance of

transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.14 Result of ERP with a changing transformation rate . . . . . . . . . . . . . . . . . 59

3.15 Result of ERP with a changing transformation distances . . . . . . . . . . . . . . 59

3.16 Result of LCSS with a changing transformation rate and ε less than distance of

transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.17 Result of LCSS a changing transformation rate and ε larger than distance of trans-

formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.18 Trajectory snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.19 Example of SED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.20 Example of Cache-aware I/P-frame Structure . . . . . . . . . . . . . . . . . . . . 67

3.21 Creating Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1 Hierarchical I/P-frame Data Structure . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Similar Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Example of a Similar Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Example of Connected Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1 Results of Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Performance of Window Query in Frame Storage Evaluation . . . . . . . . . . . . 94

5.3 Performance of kNN Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.4 Effect of Frame Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Effect of Number of Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Results of Basic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



LIST OF FIGURES xvii

5.7 Performance of Window Query in Query Processing Evaluation . . . . . . . . . . 97

5.8 Performance of kNN Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.10 Effect of Query Time Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.11 Effect of α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.12 Effect of Query Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.13 Effect of changing the valur of n . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.14 Effect of TS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.15 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.16 Synthetic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.17 Typical Workload — Effect of Trajectory Length for SELECT . . . . . . . . . . . 109

5.18 Typical Workload — Effect of Trajectory Length for DELETE . . . . . . . . . . . 110

5.19 Typical Workload — Effect of Time Interval for Window Query . . . . . . . . . . 110

5.20 Typical Workload — Effect of Time Interval for kNN Query . . . . . . . . . . . . 111

5.21 Typical Workload — Effect of Time Interval for Similarity Search . . . . . . . . . 111

5.22 Typical Workload — Effect of α for Similarity Search . . . . . . . . . . . . . . . . 112

5.23 Operational Workload — Effect of Trajectory Length for SELECT . . . . . . . . . 112

5.24 Operational Workload — Effect of Trajectory Length for DELETE . . . . . . . . . 113

5.25 Operational Workload — Effect of Time Interval for Window Query . . . . . . . . 113

5.26 Operational Workload — Effect of Time Interval for kNN Query . . . . . . . . . . 114

5.27 Operational Workload — Effect of Time Interval for Similarity Search . . . . . . . 114

5.28 Operational Workload — Effect of α for Similarity Search . . . . . . . . . . . . . 114

5.29 Analytic Workload — Effect of Trajectory Length for SELECT . . . . . . . . . . . 115

5.30 Analytic Workload — Effect of Trajectory Length for DELETE . . . . . . . . . . 115

5.31 Analytic Workload — Effect of Time Interval for Window Query . . . . . . . . . . 116

5.32 Analytic Workload — Effect of Time Interval for kNN Query . . . . . . . . . . . . 116

5.33 Analytic Workload — Effect of Time Interval for Similarity Search . . . . . . . . . 117

5.34 Analytic Workload — Effect of α for Similarity Search . . . . . . . . . . . . . . . 117

6.1 Basic Operations(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128



xviii LIST OF FIGURES

6.2 Basic Operations (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Effect of Window Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Effect of kNN Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



List of Tables

1.1 Sample Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Types of Trajectory Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Comparative Results of Trajectory Similarity Measures . . . . . . . . . . . . . . . 61

3.3 Example of Frame based Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Example of I/P-frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5 Example of Cache-aware Frame-based Structure . . . . . . . . . . . . . . . . . . . 67

5.1 Trajectory Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Implemented Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Parameters Setting on Similarity Tests . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 The results of Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 The Results of Compression Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.7 Synthetic Evaluation Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 Workload Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9 Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.10 Trajectory Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Example of Table based Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Parameters Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

xix



xx LIST OF TABLES



Chapter 1

Introduction

An increasing amount of motion history data, trajectory data, is being collected from different

sources such as GPS-enabled mobile devices, surveillance cameras and social networks. Trajec-

tory data offers an unprecedented amount of information that can be used to help us understand the

behaviour of moving objects. Effective and efficient technologies to manage large scale trajectory

data are in high demand as the foundation to serve a variety of application domains such as geo-

graphical information systems, location-based services, vehicle navigation and so on. Despite the

demand for efficient trajectory data processing, none of the existing relational database manage-

ment systems (RDBMSs) have built-in support for trajectory data and operations/queries on this

data. This is mainly due to the heterogeneity of trajectories including lengths and sampling rates,

which makes it difficult to fit into the relational schema with a fixed number of columns. Moreover,

most traditional RDBMSs adopt disk-based storage with significant I/O overhead when processing

large amounts of data, which may not allow query processing to meet the real-time requirements in

many trajectory related applications such as map services, trip planning and early event detection.

Thanks to the increasing availability of larger RAM at lower costs, it has become possible and

affordable to store and process the entire (or at least a significant portion of the) dataset within

main memory, which can be orders of magnitudes faster than the traditional disk-based database

systems.

Motivated by this demand, this thesis explores potential opportunities to boost the performance

of trajectory data processing by designing a novel trajectory storage system within main memory,

1
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which has been named SharkDB. In contrast to most existing trajectory indexing methods that

keep consecutive samples of the same trajectory in the same disk page, the SharkDB database

is partitioned into frames in which the positions of all moving objects at the same time instant

are stored together and aligned in main memory. This column-oriented based storage has been

found to be surprisingly well suited for in-memory computing since most frames can be stored

in highly compressed form, which is pivotal for increasing the memory throughput and reducing

CPU-cache misses. The independence between frames also makes them natural working units

when parallelising data processing in a multi-core environment.

1.1 Background

1.1.1 Spatio-temporal Database

A collection of data is usually stored in a database in the information technology field. A database

management system (DBMS) is the kind of software that is used to store and analyse collection of

data. Spatial database systems are designed to support storing and analysing spatial data such as

geometric based data. A spatial database management system has been defined by R.H. Guting [36]

to have three key elements. The first one is that a spatial database system should be a DBMS, which

means that the spatial database needs to support basic queries on the data such as SELECT, JOIN

and UPDATE. The second one is that spatial data types need to be supported in both the data model

and the query language. Normally, there are three fundamental abstract data types, point, line and

region, that are used to model single spatial objects. A point is usually used to store a single

location in space such as a bus station, a house or a landmark. A line object represents a spatial

object, which is moving though the space such as a road or a river. And a two dimensional area

or surface in space is represented by a region, which is the last fundamental spatial data type in a

spatial database. For example, a region object can be used to represent a lake, forest or city. The

last key element of a spatial database management system is such that spatial data types need to be

supported by the spatial database system with efficient query processing (which includes both the

indexing structure and the algorithms).

The status of spatial objects can change over time. For example, a moving object changes its
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location frequently or a river may change its route very occasionally due to a flood. Therefore,

a spatio-temporal database system, an extension of the spatial database system, is designed for

spatio-temporal data, which means it can capture both the spatial and temporal aspects of data at the

same time. Not only can spatio-temporal data be stored and represented in a spatio-temporal data

system but it can also be analysed (by using data model, indexes and queries). Therefore, spatio-

temporal data systems are now playing major roles in many real world applications such as trip-

recommendation [132, 105, 135], urban computing [128, 129], and traffic monitoring [138, 134,

136]. Based on this, there is much research interest focused on spatial/spatio-temporal queries,

which include:

FIGURE 1.1: Example of Spatio-temporal Objects

• Range(Window) Query [74] which finds the objects that are contained in a given region

during a given time period. For example, as Fig. 1.1 shows, rectangles with a blue solid line

indicate the status of spatial objects in this area at time t1 and rectangles with a red dashed

line demonstrate the status of such objects at time t2. Given a spatio-temporal range query

with spatial window R, which is shown in Fig. 1.2(a); and a time period T , where T = t2, a

range query will then retrieve all spatial objects within R at time t2, as shown in Fig. 1.2(b).

• Spatio-temporal Join Query [15, 65, 75] which given a predicate, spatio-temporal join

query is used to find the pair of objects that satisfy this predicate in a given time period.

Given a dataset (denoted as dataset 2, as shown in Fig. 1.3(a)), a spatio-temporal join query
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(a) Query Example (b) Query Results

FIGURE 1.2: Example of Range Query

can be used to find the overlap between spatial objects of these two datasets at time t1. The

results are shown in Fig. 1.3(b) where spatial objects with a bold red dashed line belong to

dataset 2 and the rest of spatial objects belong to original dataset (denoted as dataset 1).

(a) Query Example (b) Query Results

FIGURE 1.3: Example of Spatio-temporal Join Query

• Nearest Neighbour (NN) Query [41, 7, 94] The NN query is used to find an object, which

is closest to a given query in a given time period. Given a query pointQ as Fig. 1.4(a) shows,

a NN query returns the closest spatial object from this query point, as shown in Fig. 1.4(b)

with time period T = t1. In addition, a popular version of the NN query is the top-k NN

query (kNN), which is used to find k closest objects.
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(a) Query Example (b) Query Results

FIGURE 1.4: Example of Nearest Neighbour Query

1.1.2 Moving Objects and Trajectories

Moving objects data (MOD) and trajectory data are both spatio-temporal data and can be stored

in the spatio-temporal database. As discussed previously, a data object stored in a spatio-temporal

database contains not only the spatial information, but also the related temporal information.

Therefore, a spatio-temporal database can be used to store the dynamic status of a spatial ob-

ject. For example, changing area of a lake can be stored as a spatio-temporal object. The dynamic

status of spatial objects are very important, since people would like to know the status of a spatial

object at different times. Meanwhile, such data allows us to be able to go back to any particular

time to retrieve the status of spatial objects at that time.

Both moving objects data and trajectory data are used to represent the dynamic status of a

moving object. Although these data types are often used as synonymously, MOD is about the

current and near future positions, and trajectory data is about the complete history of moving

objects as differentiated in [30]. This does introduce a few differences between these two types

of data. MOD data also typically records additional information such as velocity (i.e. the current

moving direction and speed), and it is important to handle the streaming nature of new position data

on which some data correction algorithms such as map-matching should be applied. For trajectory

data, on the other hand, the focus is on efficient processing of a large volume of moving object

history data.

This thesis considers trajectory data only. The definition of a trajectory is as follows: A position

l = (x, y) is a spatial point in a geographical space with longitude x and latitude y. A trajectory

point is a spatial-temporal point p = (x, y, t) that represents location l = (x, y) at time t. Let each
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moving object be identified by its unique id number, and Ti be the trajectory of object i. Ti is a

sequence of trajectory points p1, p2, . . ., pni
ordered by time (i.e. ∀j = [1..ni), pj.t < pj+1.t). An

example of a trajectory is shown in Fig. 1.5. The blue points represent the sample points.

FIGURE 1.5: Trajectory Example

The trajectory data is not only used for storing and representing purpose, but also for analysing

purposes. In general, there are three basic trajectory based query types: window query, k nearest

neighbour (kNN) query and trajectory similarity search. More specifically, the window query

is used to find all the trajectories that through a given region within a given period of time, for

example, a window query can be used to find the trajectories that pass through a given region

between 8:00 am and 8:15 am. A kNN query, is used to find the top-k trajectories that are close to

a given point and active during a given period of time. For example, a NN query can be used to find

the closest trajectory to a given spatial point that was active between 8:00 am and 8:15 am. The

trajectory similarity search is used to find a set of trajectories that are similar to a given trajectory.

The similarity between each pair of trajectories is calculated by a pre-defined similarity measure.

For example, similarity search query can be used to find similar trajectories moving from the city

to the airport via the airport highway between 8:00 am and 10:00 am. Therefore, the trajectory

data can be used in many important applications in various areas.
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1.1.3 In-memory Data Management

Owing to the development of cheap RAM-based storage technology, modern computing hard-

ware can afford much larger main memory. Consequently, traditional database systems can be

re-designed to store and manage all the data in main memory permanently. Such types of in-

memory database systems are attracting increasing attention from both academia and industry due

to their outstanding performance in processing large amounts of data. Currently, the bottleneck

of the traditional disk-oriented database system is the I/O cost, since the I/O performance of hard

disks is very limited. To alleviate this bottleneck, in-memory database systems move all data into

main memory instead of storing the data on the hard disk, which means all data are accessed and

maintained in the main memory directly, since the main memory can provide high speed, random

access. The hard disk in the in-memory database systems will be used as data backup and to main-

tain the log files. Therefore in-memory database systems will need different optimisation methods

to structure and organise the data as well as to make sure that the data is reliable.

To improve the computational performance of the CPU, engineers have put multi-level caches

inside the CPU. This structure is called a memory hierarchy, which is a key concept of in-memory

database system. The memory hierarchy includes TLB, L1 cache, L2 cache, L3 cache and main

memory. The top level memory structure is faster than the bottom level memory structure, but is

much smaller in size than the bottom level memory structure. In modern computer architectures,

the data can only be accessed from the TLB directly. When a CPU tries to access a data record,

it will start by first searching in the TLB, and if the record is not found, the CPU will search each

level of the memory hierarchy until such record is found. Then the CPU transmits this data, level

by level, to the TLB for accessing, a process which is called cache missing. Moreover, the CPU

cache line is the smallest unit of transferring data from main memory to the CPU so, for example,

if the size of a CPU cache line is 64 bytes, the CPU will load 64 bytes of continuous data from

memory even if the size of required data is less than 64 bytes. As we can see, a cache missing can

reduce the performance a lot in the in-memory database. Therefore, utilising the memory hierarchy

(i.e. CPU cache) is necessarily for in-memory database systems. A general idea is to reduce the

cache missing during query processing. It is required the related data be stored in the memory

continuously to fill the cache line as much as possible, which means that the data structure needs
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to be optimised to allow possible related data stored together in the memory space.

Recently, there have been some in-memory database management systems proposed, such as

SAP HANA, Hyper, VoltDB, MongoDB, Memcached and so on. The newest in-memory based

and column-oriented database management system, SAP HANA [85, 86] was developed and im-

plemented by SAP. The goal of SAP HANA is to handle heavy loads of data and the real-time

complex query processing. SAP HANA supports many programming languages such as SQL

Script, R and C (via ASL package). Even though SAP HANA supports both row-oriented and

column-oriented data structures, the column-oriented store is recommended to use to store the

data, since the column-oriented store can provide better performance for analytic queries and the

data can be highly compressed.

1.1.4 Column-oriented Data Structures

TABLE 1.1: Sample Table

ID Name Country

1 Paul Australia

2 Bob Australia

3 John Canada

4 Lean USA

In a traditional relational database management system (RDBMS), the data is stored in a row-

oriented structure. Given a table such as in Table 1.1, in a row-oriented structure, all attributes of a

tuple (or row) are stored continuously and sequentially, which means the data is stored row by row

as shown in Fig. 1.6. The row-oriented data structure is designed for transaction-based applications

such as banking systems, online shopping systems and log management systems. Because in

the modern storage hardware, sequential access is faster than random access and the transaction

operations need to select/insert/update entire rows. For example, to select Paul’s information, the

database system only needs to scan three cells to retrieve the results. It is easy to see how the

row-oriented data structure can respond to such operations quickly, since it can access each entire

row instantly.
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FIGURE 1.6: Row-oriented Structure versus Column-oriented Structure

On the other hand, analytic queries only need to aggregate a few columns to get the results.

For example, to count the number of people living in Australia in Table 1.1, the database system

needs to retrieve only the information from the column“Country” to get the answer. However, in

the row-oriented data structure, this operation needs to scan and access this table three times to

get the result, which is time-consuming. Hence, a column-oriented data structure is proposed to

increase the performance of analytic queries, as discussed in [104]. They indicate that analytic

queries can achieve better performance on column-oriented data structure. Meanwhile, they also

mention that the row-oriented data architecture could not store data for such a system efficiently,

since the random accesses will consume a lot of bandwidth between the CPU and the hard disk. In

a column-oriented data structure, the data objects of one column are stored together as shown in

Fig. 1.6. Following the previous example, it is easy to see that this query can be done very quickly

on a column-oriented data structure as it only needs to access the table once to get the answer.

In addition, the compression techniques can be invoked in the column-oriented data structure to

reduce the size of the data at the same time. This is because the objects in a column are similar; and

they are stored sequentially in the storage space. Meanwhile, the data compression techniques will

also improve the query performance, since the system can load more data into memory for query

processing. Currently, there are two common light-weight compression methods that are used

with column-oriented data structures. The first one is dictionary encoding, in which a dictionary

is built to index frequent elements on a selected column. Then the elements of this column can be

converted to the index number of dictionary, which means that less space is required to store the

information for this column. Another common compression method is the run-length encoding,
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which is an improvement on dictionary encoding. The run-length encoding records the dictionary

code with its last index in the column to save even more space than the dictionary encoding method

alone.

1.2 Problem Statements and Methodologies

1.2.1 Problem Overview

Trajectory data offers the opportunity to learn movement behaviour of moving objects such as

human beings, vehicles and animals. However, it is hard to store and manage trajectory data in

traditional database systems, since its variable lengths and asynchronous sampling rates do not

fit disk-based and tuple-oriented structures, which are the fundamental structures of traditional

database systems. In this thesis, a novel trajectory storage system that is motivated by the success

of column-oriented data structures and the recent development of in-memory based databases is

implemented. In this storage design, the performance of query processing for trajectory data can

be boosted via exploring the potential opportunities. To achieve this, three challenges need to be

addressed. The first is how to convert the original trajectories into a column-oriented structure.

The second is how to compress trajectory data to reduce the space consumed. The last challenge

is how to process trajectory queries efficiently on the column-oriented structure with compressed

trajectory data.

Methodology: In this thesis, an in-memory storage system to store and manage trajectory

data, which is called SharkDB, is proposed. To solve such challenges, SharkDB contains two main

components, the in-memory storage component and the trajectory query processing component.

As shown in Fig. 1.7, the duty of the in-memory data storage component is to encode and compress

the raw trajectories, and then to store them in the column-oriented data structure. The trajectory

query processing component is responsible for processing trajectory data and answering trajectory-

related queries in real time. Based on this design, the SharkDB implementation is split into three

parts: data structure design, query processing algorithms implementation, and system verification

(via comprehensive experiments). Moreover, it is also important to apply SharkDB to a commercial

DBMS to support real applications. Therefore, this task is also included in the SharkDB parts are
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listed in the below:

FIGURE 1.7: System Overview

1.2.2 SharkDB Design

Currently, many commercial relational database management systems (RMDBSs) have started to

offer additional components or extensions to support spatial data types and operations. However,

only a few simple spatial data types such as points, lines and polygons are considered and supported

in these RDBMSs. On the other hand, more complex data types are needed to store trajectories

because they contain continuous time information and the length of each trajectory varies (i.e. the

number of sample points of each trajectory is different). Traditionally, to solve this problem, it is

easy to consider the trajectory of a moving object as one database object. While this approach has a

clear semantic meaning for each trajectory record, it has several obvious drawbacks. Firstly, most

RDBMSs cannot handle records of variable lengths well. Secondly, many trajectory processing

operations deal with, explicitly or implicitly, some segments of a trajectory only. For example,

to find a point of interest (POI) closest to a trajectory, ideally only one part of the trajectory (that
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contributes to the identification of the resultant POI) needs to be used should that part be identified

(using some indexing and filtering strategies). Treating a trajectory as whole cannot support this

type of operation efficiently, as it needs to access the whole trajectory and then discard all but the

relevant segment(s).

Methodology: To address this problem, a study on heterogeneous trajectory data was first

completed, since trajectory data in real world database applications are heterogeneous by nature

as the GPS signal is not always reliable or accurate. A heterogeneous trajectory dataset means

the sampling rate of each trajectory is not consistent. For example, in such trajectory dataset, as-

suming the sampling rate of a trajectory is 30 seconds (i.e., reports its location every 30 seconds)

and the sampling rate of another trajectory could be 60 seconds. If the time duration of these two

trajectories is one hour, then the first trajectory contains 60 sample points and the second trajectory

contains 120 sample points. This, however, can be problematic when these heterogeneous trajec-

tories are processed directly, since most of trajectory query processing algorithms [5, 118, 69, 51]

are designed for synchronised trajectory data, which means the sampling rate of each trajectory in

the whole trajectory dataset must be consistent (e.g. the sampling rate of each trajectory is 30 sec-

onds). To provide the evidences of these issues, a preliminary study on heterogeneous trajectory

data was completed before the implementation. In this study, six common similarity measures are

evaluated on asynchronous trajectory datasets to test how heterogeneous trajectory data can affect

the effectiveness of similarity measures. The results show that the heterogeneous trajectory data

can reduce the effectiveness of similarity measures. Having witnessed the limitations of existing

spatial database systems and the issues of heterogeneous trajectory data, it requires a novel trajec-

tory data storage system to support varied length and multi-dimensional trajectory data as well as

to calibrate the heterogeneous trajectory data to synchronise the data.

Along with this evidence, SharkDB, an in-memory column-oriented storage system for stor-

ing massive amounts of trajectory data is introduced. As discussed before, in relational database

systems, the column-oriented data structure is known to have better performance in analytic tasks

that in comparison with row-oriented data structure, since analytic tasks only need a few columns

from databases for obtaining the results. Similarly, trajectory queries could also be processed

by scanning some segments of trajectories. Therefore, the advantages of column-oriented data
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structure in relational database systems provide an idea that the trajectory data can also be con-

verted to a column-oriented data structure to avoid scanning the whole trajectory during query

processing. In the SharkDB design, a novel read-optimised storage structure, which combines

the advantages of in-memory computing and column-oriented data structure for analytical tasks,

is proposed. Aligned with common in-memory database designs, where data compression is a

key factor, SharkDB also supports the effective compressing of trajectory data and allows an-

alytical query processing on the compressed data directly without the need to decompress the

whole dataset. The data structure, called a cache-aware I/P frame data structure, is a carefully

designed data structure with two-phase data processing, which combines both a column-oriented

data structure and compression techniques to store and manage huge amounts of trajectory data.

More specifically, the trajectory allocation phase will calibrate the trajectory data and convert the

calibrated trajectory data into a column-oriented data structure. In next phase, the calibrated tra-

jectories will be encoded and compressed as the elements of a cache-aware I/P frame structure in

order to support efficient query processing. The details of the SharkDB design are discussed in

Chapter 3.

1.2.3 Query Processing in SharkDB

The main reason for storing trajectory data in the frame based data structure is to answer trajec-

tory based queries (e.g. window, kNN and similarity search), which can be used for many real

applications. Similar to other analytic queries, most trajectory analytic queries only need to touch

a few of trajectory segments to get the required answers. Therefore, treating a trajectory as whole

does not support this type of operation efficiently, as it needs to access the whole trajectory and

then discard all but the relevant segments. Thus, some efficient approaches to support trajectory

analytic queries are required. There are two challenges in this problem, the first is how to perform

efficient query processing on frame-based data structures in main memory. The second one is how

to support query processing on compressed data without sacrificing much performance.

Methodology: Initially, the queries/operations that are supported by SharkDB are divided

into three categories: basic operation, advanced operation and analytic operation. The basic op-

eration category contains standard database operations such as INSERT, DELETE, SELECT and
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APPEND. The advanced operation category includes window and kNN, which are fundamental

trajectory based queries. The trajectory similarity search belongs to the analytic operation cate-

gory. Meanwhile, to support these queries efficiently, several approaches are proposed for each

category.

In particular, parallel based algorithms are proposed to support basic operations. For processing

analytic operations, a simple frame based approach and a hierarchical frame based approach are

presented. Moreover, as multi-core CPUs have become standard configuration for both servers

and PCs, parallel versions for these proposed approaches are also implemented. For processing

trajectory similarity searches, a sliding window based approach and a MBR+KMP based approach

are introduced. The details of these approaches are presented in Chapter 4.

1.2.4 Performance Evaluation

Having established the new design and query processing approaches, it is important to have a

set of experiments to evaluate the performance of SharkDB. First of all, as discussed previous,

several approaches have been proposed for query processing, hence, it is necessary to compare the

differences in performance of these approaches and demonstrate the performance gain. Secondly,

since the storage system may have different workloads under different circumstances, the overall

performance of SharkDB under different usages must be tested. Therefore a benchmark with

different usages of workload models is required for evaluating SharkDB. However, there is no

common benchmark is designed for a trajectory data storage system.

Methodology: Motivated by this, comprehensive experiments are conducted to illustrate the

performance of SharkDB. The experiments contain two levels, operation level and system level.

At the operation level, extensive experiments are executed on several large real world and synthetic

trajectory datasets. At the system level, a carefully designed benchmark evaluation is proposed,

which includes three categories to represent different system usages in the trajectory data storage

systems. In addition, each category contains mixed operations with different weights. The first

category is a typical workload, where the basic operations have the maximum weight. This cate-

gory simulates the system working under a transaction workload model. The second category is an

operational workload, which simulates the system serving trajectory based applications. Hence,
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advanced operations occupy maximum weight in this category. The last category is an analytic

workload, which means this workload focuses mainly on analytic operations. All workload eval-

uations are based on real world datasets and the evaluation results of SharkDB and traditional

trajectory data structures are also discussed. All experiments are included in Chapter 5.

1.2.5 SharkDB Implementation using SAP HANA

A further step is taken to tailor the I/P frame-based data structure into the relational database

model and provide built-in support for trajectory query processing in SAP HANA, an in-memory

platform developed by SAP for processing high volumes of operational and transactional data in

real-time. SAP HANA can offer many benefits for SharkDB as it is a powerful in-memory database

system and supports a column-oriented data structure. For example, a front-end system (i.e. a user

interface) can be provided to users for using SharkDB directly, and APIs based on SAP HANA can

be implemented to connect with real applications. Therefore, in this task, two major challenges

need to be addressed when migrating this data structure into SAP HANA. The first challenge is

how to fit the frame based data structure into a relational database model. The second one is how

to process the query efficiently using the queries language (SQL like) supported by SAP HANA.

Methodology: To address the above challenges, a carefully designed data structure is pre-

sented, which is inherited from the previous I/P frame data structure. This redesigned I/P frame

data structure retains the benefits of the I/P frame data structure in SharkDB, and is perfectly

compatible with traditional table formats, which can work well in the SAP HANA. Moreover, ex-

tensive experiments also are conducted to evaluate this new approach. The implementation details

are described in Chapter 6.

1.3 Contributions

To sum up the contributions of this thesis, first of all, this thesis proposes a preliminary study to

observe that the trajectory data is naturally heterogeneous and such heterogeneous trajectory data

can affect the performance of trajectory data analysis tasks. In this preliminary study, a set of rea-

sonable transformation functions for the original trajectory data is devised, the variance of which is
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controlled by parameters. We then evaluate the similarity between original and transformed trajec-

tories, and study how the similarity is reflected in six different distance measures. This thesis also

identifies some problems encountered by the relational database system in handling large scale tra-

jectory data as well as the fact that the heterogeneous trajectory data is hard to store in an uniform

data structure. To solve these issues, a new frame based column-oriented data structure is pro-

posed to calibrate the trajectories by time and support compact trajectory data storage. Then this

frame data structure is extended into an I/P frame data structure. The I/P frame data structure uses

P-frame to compress the trajectory data and reduce the memory consumption significantly.Finally,

the I/P frame data structure is upgraded to a cache-aware frame data structure, which is optimised

for CPU cache and can support the storage of large scale trajectory data in the main memory.

Secondly, several algorithms with parallel computing techniques are proposed to process tra-

jectory queries efficiently. For basic trajectory queries (i.e. SELECT, DELETE, INSERT and

UPDATE), the parallel processing is invoked to increase the query speed. Then an efficient hierar-

chy frame structure with parallel processing is discussed to answer advanced trajectory queries (i.e.

window and kNN ). For analytic trajectory query (i.e. trajectory similarity search), a MBR-KMP

algorithm is implemented to increase the performance of similarity searches.

Thirdly, a set of experiments that include operation level evaluations and system level evalua-

tions are conducted. The extensive operation level experiments with a range of trajectory data (up

to 3 billion spatio-temporal points) show significant performance gain can be achieved. In the sys-

tem level evaluations, a common benchmark is designed to evaluate the performance of SharkDB.

To make a comprehensive evaluation, three categories of workload models are implemented. Ex-

periments based on this benchmark with several real world large trajectory datasets are executed.

The results demonstrate that SharkDB can achieve high performance compared with traditional

database structures offering the promise of real time computing.

Finally, the previous I/P frame data structure is modified to fit into a relational database model,

which is then used to store trajectory data in SAP HANA. This thesis also provides efficient built-in

data types and operators for trajectory data using the query languages supported by SAP HANA.

Extensive experiments are then conducted with large-scale real trajectory datasets. The results

demonstrate that the new data storage model can achieve superior performance in ranges of spatial

queries compared with traditional trajectory data storage structures.
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1.4 Thesis Outline

The rest of the thesis is organised as follows: Chapter 2 is the literature review. Chapter 3 presents

the design of SharkDB. The introduction and discussion of the high performance query process-

ing of SharkDB is covered in Chapter 4. The evaluation of SharkDB is detailed in Chapter 5.

The implementation details of SharkDB into SAP HANA are provided in Chapter 6. Finally, the

conclusions of this thesis and future work directions are presented in Chapter 7.
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Chapter 2

Literature Review

In this chapter, an overview of most of the important problems that are related to this thesis is pro-

vided First of all, since the trajectory data contains spatial information, and the techniques of the

spatial databases are the basis of trajectory data management, therefore, the fundamentals of spa-

tial databases are reviewed in Section 2.1. Furthermore, this thesis focuses on managing massive

amounts of trajectory data, hence, the related work of managing trajectory data and querying tra-

jectory data are covered in Section 2.2 and 2.3. In addition, this thesis also invokes the techniques

of in-memory database management and column-oriented data structure, so the related work of

in-memory database management and column-oriented data structures is presented in Section 2.4

and Section 2.5, respectively.

2.1 Fundamentals of Spatial Databases

Spatial data is usually a multi-dimensional (dimensions > 2) data type, hence it requires a special

database system to manage such data, called spatial database. R.H. Guting [36] gives a formal

definition of a spatial database as having three key elements, 1) a spatial database system must

belong to the family of database systems, 2) spatial data types need to be supported in both the data

model and the query language, and 3) spatial data types need to be supported by a spatial database

system with efficient query processing (including both the indexing structure and algorithms).

Based on this definition, Fig. 2.1 shows a paradigm of spatial databases.

First of all, for spatial data modelling, the most common definition of spatial data types is

19
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FIGURE 2.1: Paradigm of Spatial Database

proposed by [35]. In their work, three fundamental spatial abstractions named POINT, LINE and

POLYGON, are defined. A POINT represents the position of a spatial object. A LINE is a finite

sequence of points, which is used to record a curve in the spatial space. An area is modelled as a

POLYGON, which is a chain of points. However, a POLYGON can only support simple objects

(i.e. a region without a hole inside the region). On the other hand, [33] suggest that using only

one spatial type to represent all spatial objects can reduce the complexity of query processing.

Therefore, they propose a new spatial data structure, called SHARP, which is a pixel based data

type. Subsequently, [37] propose a ROSR algebra, which extends POLYGON to REGION to

support complex area based spatial objects. Nowadays, POINT, LINE and REGION have become

the most common definitions of spatial data types.

For spatial index structures, the grid index is one of earliest well-known index structures, as

proposed by [71]. The basic idea of a grid index is to partition the whole spatial space into small

grid cells, and each cell uses a bucket to store all spatial objects in the cell. For example, given a

set of spatial objects, such as Fig. 2.2 shows, the grid distribution and index structure are shown in

Fig. 2.3. The buckets are stored and organised as an array, which can be accessed directly during

query processing. However, grid index is not good at indexing spatial objects if the distribution of

these spatial objects is highly skewed.

Quadtree [97] is a common indexing structure for spatial databases. Quadtree has been used

in many applications and research works [96, 99, 119]. It has an unbalanced tree structure, and

each leaf node in Quadtree represents a region or a point. A Quadtree internal node always has

four points, which indicate four directions, NW , SW , SE and NE, and each point connects to
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FIGURE 2.2: Example of Spatial Objects

FIGURE 2.3: Grid Index Structure

a child node. Therefore, when inserting a new point to into a Quadtree structure, if the node is

full (i.e. already has four objects), this node will decompose into four new child nodes. Therefore,

Quadtree can support the indexing of highly skewed spatial datasets very well. For example, given

a set of objects such as shown in Fig. 2.2, if a Quadtree index structure is used to build an index,
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the resultant region distribution and index structure are show in Fig. 2.4 and Fig. 2.5. As we can

see, each node of Quadtree contains four points, where each point can link to a new entry or object

or be empty. During the construction of the index structure, if the node E2 contains more than one

object in the same direction, then the node E5 decomposes into four new child nodes to store the

objects O5, O6, and O7. Therefore, a Quadtree is built from top to bottom. Based on our example,

it is easy to see that a Quadtree is not a balanced tree structure. The drawback of a Quadtree is that

Quadtree is not a balanced tree, therefore, the query may need to search all entries in the Quadtree

in a worst case scenario.

FIGURE 2.4: Example of Quadtree Region

Another popular index structure is the R-tree [38]. R-tree is the most common spatial index

structure and has been widely supported in many commercial database management systems. In

contrast to a Quadtree, an R-tree is a height balanced tree, which is an efficient tree structure. To

achieve this, R-tree uses a minimum bounding rectangle to group and represent spatial objects.

For example, as Fig. 2.6 and Fig. 2.7 show, the R-tree is built from bottom to top. As we can

see, the object O1 and O2 is represented as the MBR entry E5, and E1 is the bounding box of the

lower level MBR entries E3, E4 and E5. Therefore, the R-tree can be built as a balanced tree and

all objects (i.e. leaf nodes) are stored at the same level. Many variants of the R-tree have been

proposed to reduce the overlap between each MBR; and the R*-tree [4] has the best performance

to minimise the overlapping of MBRs.

The first fundamental query type of a spatial database is the range query, which is to find all the

objects that are within a given region. Generally, a spatial index structure can support the efficient
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FIGURE 2.5: Example of Quadtree Structure

FIGURE 2.6: Example of R-tree Region

processing of a range query with spatial indexes. For example, for a grid index [71], given a query

window, a grid index search will retrieve all grid cells that are either contained by or overlap the

query window. Then grid index searches all objects in the retrieved grid cells to get the results. For

instance, as Fig. 2.3 shows, given a range query R, the grid index will return grid cells C1 and C2
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as a candidate set, and then it will search all the spatial objects (i.e. O1 and O2) that are contained

in these cells and return the refined results. Quadtree indexes are also used for range queries to find

all objects within a given spatial window. To retrieve these objects, Quadtree starts the searching

task from the root, and if a node does not overlap the given spatial window, Quadtree will not

continue to access that node and its children. Otherwise, the node will be visited and the objects

within node will be investigated. Continuing the example from Fig. 2.5, given a circle range query

R, Quadtree will start to traverse from the root, and then examine the next level nodes to determine

whether they have an overlap with R. So E4 and E5 are checked and hence, O1 and O2 are found

as the results. Range query processing on an R-tree starts at the root of the R-tree. Then each node

(i.e. MBR) will be examined against query region, and if a MBR overlaps the query region, the

R-tree will continue to visit its children until it reaches the leaf node. Otherwise, this node will be

pruned out. Continuing our example from Fig. 2.7, the R-tree first searches at the root, and finds

that E2 does not overlap with R. Then E2 with its contained MBRs and objects can be pruned

safely and dismissed from the search. Then the R-tree continues to search E1’s leaf node, and E7

and E6 are pruned. Finally, objects O1 and O2 are found as results.

An alternative to the range query, the NN (kNN) query is another fundamental query type of

a spatial database. Given a spatial point, the NN query is designed to find the closest point in the

database. For processing kNN queries, Roussopoulos et al. [94] proposed an early algorithm based

on an R-tree. Two important metrics, MINDIST and MINMAXDIST are defined in this work.

MINDIST and MINMAXDIST are used as the lower bound and upper bound for the branch-and-

bound based algorithm. Two search strategies, depth-first [94] and best-first [41] search can also

be supported by R-tree.

One variate of the NN query is the reverse nearest neighbour (RNN) query. Given a query

point, the RNN query is designed to find all the spatial objects in the database, which consider this

query point as their nearest neighbour. The problem of the RNN query was first studied by [56],

and they proposed an R-tree based algorithm to process RNN queries. After this, a series of works

[123, 62, 109, 117, 126] to solve the RNN query are proposed in both euclidean space and road

networks. Aggregate nearest neighbour query (ANN) is another important type of NN variations.

The difference between an ANN query and an NN query is that an ANN query is designed to

find the minimum aggregated distance from a point in the dataset to a set of query points, and the
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FIGURE 2.7: Example of an R-tree Structure

aggregated distance is calculated by a user-specified aggregate function (e.g. max, sum). There

are many works that focus on ANN queries in both euclidean space [76, 77, 122, 72, 61] and road

networks [125, 31, 78].

The last fundamental query is the spatial-join query. Given two spatial datasets D1, D2 and

a predicate, a spatial-join query is designed to find the pair of objects Oi, O
′
j that satisfy this

predicate, where Oi ∈ D1 and O′j ∈ D2. Brinkhoff et al. [15] studied spatial-join queries on both

R-tree and R*-tree structures. They investigated the performance of different settings for R-trees

and proposed two new algorithms to reduce I/O performance and CPU time. Subsequently, Huang

et al. [42, 43] used distribution functions as the cost model to optimise the I/O performance of R-

tree traversals. Another cost model for a spatial join, which is based on an analytical formula [113],

was proposed by Theodoridis et al. [114].

Finally, as the paradigm shows, a spatial database management system (spatial DBMS) firstly

needs to support the spatial data models (i.e. POINT, POLYGON and REGION). Then a spatial



26 LITERATURE REVIEW

DBMS must provide some kind of spatial indexing method to help to manage such spatial data.

And, importantly, a spatial database system must be able to efficiently process a set of spatial

queries. The earlier versions of spatial DBMSs were implemented as independent DBMSs. There

are two types of such spatial DBMSs, the first type builds a spatial DBMS as a top layer on a tradi-

tional DBMS, such as [8, 18]. These spatial DBMSs use traditional data types to store the spatial

objects, which will limit the performance of the spatial DBMS, and the spatial index structure is

difficult to implement on these spatial DBMSs. Other early designs of spatial DBMSs [116, 1]

built the spatial DBMS first as a subsystem and then integrated it with a traditional database via

a middleware component. Hence, such spatial DBMSs can support both spatial data and spatial

index structures very well. However, it is very hard to extend these spatial DBMSs to support new

query types and spatial index structures, since they are already built into the system. Currently,

most commercial DBMSs such as MYSQL, SQLSERVER and SAP HANA use the spatial exten-

sion plug-ins to provide spatial DBMS functionally, which can provide a flexibility for a spatial

DBMS. Therefore, a new spatial component (e.g. index structure or query algorithm) can be easily

added to the DBMS.

2.2 Trajectory Data Management

As shown in Fig. 2.8, topics related to on trajectory data management are reviewed in this sec-

tion. Trajectory data is a multi-dimensional data, which contains two aspects information, spatial

information and temporal information and the basis of trajectory data management is the index

structures, which provide an efficient way to store and query trajectory data. Hence, Section 2.2.1

first reviews the trajectory data indexing structure. As trajectory data is a kind of spatio-temporal

data, spatio-temporal indexing structures, which can support indexing of trajectory data, are also

reviewed. But, the size of this trajectory data poses a physical storage challenge. Therefore, com-

pressing trajectory data is becoming an area of significant research interest and related works are

reviewed in Section 2.2.2. The most common and fundamental types of trajectory queries include

range query, kNN query and trajectory similarity search. Meanwhile, the trajectory range query

can be processed efficiently and directly by trajectory indexing techniques. In addition, the rest of

the trajectory queries including kNN query and similarity search are reviewed separately in Section
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2.3. These queries can be used in many real applications and in research areas such as trajectory

clustering and trajectory mining.

FIGURE 2.8: Trajectory Data Management

2.2.1 Trajectory Indexing Structure

To search and query trajectory efficiently and effectively, substantial data structures are deployed

to store and index trajectory data. The most popular data structure is the R-tree [38]. However, the

original R-tree structures are not good at supporting trajectory data, since trajectory data requires

a particular spatio-temporal data structure, where the R-tree structure is proposed for spatial data

and not specifically for spatio-temporal data. Therefore, to make the R-tree based structure support

spatial-temporal queries, many optimisations are proposed. Early versions of R-tree based index

structures for spatio-temporal data are Historical R-trees (HR-trees) [70] and 3D R-trees [55]. HR-

tress are based on timestamps and a single R-tree will be created for a timestamp to index all

objects that belong to that timestamp. Meanwhile, to save space, the same objects that appear in
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different times are only stored once, and all R-trees share the same entry point. In contrast to HR-

trees, 3D R-trees maintain only one R-tree structure and the temporal information is stored as a

new dimension. In general, there are two ways in which to index trajectory data, one way is based

on sample points of each trajectory; and another way is based on the whole trajectory. If an R-tree

index structure is based on a sample point, then the closest sample points will be moved together to

fit onto the same disk page. Although, this type of index can handle searches on a large trajectory

set with accepted performance, the cost of building the index and re-constructing the trajectory

would not be acceptable. For an index based on the whole trajectory, the performance will be very

limited by large overlaps in the bounding rectangles for long trajectories. Therefore, to make the

R-tree based structures capable of supporting the indexing the trajectory data and processing the

trajectory queries efficiently and effectively, many optimisations are proposed.

TB-tree [82] uses a hybrid tree structure to store and index both spatial and temporal infor-

mation, but it is still not good for processing the long trajectories, since indexing long trajectories

can produce large bounding rectangles. And this issue is not addressed yet. TPR-tree [101] and

TPR*-tree [111] invoke the prediction model to predict the future positions for the moving ob-

jects. These index structures mainly focus on continuously moving objects rather than historical

trajectories. On the other hand, partitioning trajectories into segments becomes a new direction

to improve the query performance. Rasetic et al. [91] derived an analytical cost model to control

the splitting process for a trajectory into segments based on given query. Their system is opti-

mised for trajectory range queries only and not for trajectory kNN queries or trajectory similarity

searching. SETI [17] stores trajectory segments in a 3D R-tree for their spatial information. Mean-

while, SETI indexes the temporal information by using one dimensional time lines to increase the

searching performance. PIST [13] partition the sample points rather than partition the trajectories.

Similarly, TrajStore [28] proposed a new adaptive storage system that indexes the trajectory data

based on Quadtree index and clustering methods.

These algorithms or systems are designed based on a hard disk based system, which means that

I/O cost between hard disk to memory is the main concern. However, in a main memory based

system, I/O cost is no longer an issue since all of the data are now stored in the memory. That

means that these algorithms and systems are not optimal for the in-memory systems.
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2.2.2 Trajectory Compression

In this section, existing techniques for trajectory compression techniques are described. An overview

of line simplification based trajectory compression methods is first introduced. Then, the knowl-

edge based trajectory compression methods are presented.

Line Simplification Based Trajectory Compression

The first line simplification algorithm, called the DP algorithm, was proposed by Douglas and

Peucker [29]. This work is based on a splitting and merging strategy. In addition, the algorithm

uses a top-down method to check if the deviation from a straight line is acceptable, where the

merging algorithm combines the pair of trajectory segments with the least deviation. The time

complexity of the original DP algorithm is O(N2) ,and [40], and [84] improve the DP algorithm

with a better O(NlogN) time complexity. The main disadvantage of these algorithms is that they

may lead to undesirable approximation results.

For trajectory compression, there are many other factors that must be considered during com-

pression processing such as temporal information and the velocity of moving objects. Meratnia

et al. [67] proposed an SPT algorithm which is implemented by a greedy approach called an

opening-windows approach. Their method considers the trajectories’ temporal information as the

simplification factor. In their work, they indicate that the previous line based error criteria are

not suitable for trajectory data, since such criteria only consider spatial information. Hence, they

propose a new error criteria whereby errors are also measured via the distance between pairs of

temporally synchronised positions, which is called the synchronous Euclidean distance (SED).

Two single pass approximation methods based on sampling, which take advantage of the spatial

locality and temporal timeliness inherent in trajectory data were proposed by Potamias et al. [87].

To achieve this, they not only consider the additional temporal information, but also consider

other parameters such as velocities and coordinates. The first algorithm, called a threshold-guided

algorithm, uses a safe area of next point to solve the min-# problem in a greedy manner. The

second algorithm, called a STTrace sampling algorithm, is implemented by using a bottom-up

strategy, where the SED is minimised in each step.

Muckell et al. [68] proposed an algorithm called the Spatial quality simplification heuristic
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(SQUISH), which is based on the priority-queue data structure. This method is an online trajec-

tory compression algorithm, which uses local optimisation to select the best subset of trajectory

sample points and permanently removes redundant or insignificant trajectory sample points from

the original trajectory. This method can increase compression speed with a higher accuracy.

Buragohain et al. [16] presented a linear simplification algorithm called PieceWise Linear His-

togram (PWLH), which is extended from ACPA. In this algorithm, a trajectory is first divided into

a sequence of variable-length data segments. All the sample points in each segment are mapped

by a line, which minimise the maximum distance from these points to the line.

In the work proposed by Chen et al. [22], more factors are considered in order to achieve a

higher trajectory simplification performance, including both the shape skeleton and the semantic

meanings of a trajectory. Their algorithm, called a trajectory simplification algorithm (TS), assigns

different point headcounts in terms of the product of the average heading change and the distance

between each segment. After that the min-ε problem is solved in each segment by using local a

weighting process. The main disadvantage of this method is that it is not robust when the sampling

rate is not uniform.

Chen et al. [21] introduced a fast O(N) multi-resolution polygonal approximation algorithm.

They extend the integral square error (ISE) [80] and the local ISE [25] with SED as the inte-

gral square synchronous distance error criterion, where ISE is the sum of square of perpendicular

distances between all dropped trajectory sample points. In their algorithm, a bottom-up multi-

resolution method and a polygonal approximation method are used to construct the initialised

approximated curve under a priority-queue structure. Once the polygonal curve is initialised, two

finely tuned algorithms, LSSD and ISSD, are used in order to achieve the desired level of quality.

The time complexity of this algorithm is O(1) with pre-computing of O(n) time.

The algorithm for the Path Nearest Neighbour based on Compressed Trajectories query (PNN-

CT query) was proposed by Shuo et al. [100]. This algorithm has two main phases: trajectory

compression and PNN query searching. For the compression phase, their algorithm is based on a

linear prediction model to compress the trajectories with lossy compression. For the PNN query

searching phase, they introduce a three-step solution to decompress the trajectory data and perform
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the PNN query search. In the first step they use the sample points and the corresponding meta-

data to specify a tight searching range by adopting the network expansion method and branch-

and-bound strategy. In the second step, a reconstruction algorithm is used, which is based on

probabilistic models to account for the uncertainty when decompressing the trajectory segments in

the candidate set. Finally, they adopt an effective combination strategy to find the PNN with the

highest probability and with the highest performance and accuracy.

Knowledge Based Trajectory Compression

Most trajectories are generated by vehicles, which means that for land-based vehicles, road net-

work constraints can be used to compress the trajectory data.

Brakatsoulas et al. [14] proposed two methods to map a trajectory onto a road network by

matching geometrics. For the first method, they use an incremental match of the position trajectory

sample points by pursuing a local match of geometries, which means matching a portion of the

trajectory onto a path in the road network by using a measure composed of distance and angles

between the curves. This method can trade off the accuracy and speed of computation. The second

method uses the global match mapping for the entire trajectory to a candidate curve in the road

network. To achieve this, two similarity measures Frechet distance and weak Frechet distance are

used in association with two different map-matching algorithms to guarantee finding a matching

curve with optimal distance to the trajectory.

A new approach to trajectory compression under road network constraints is to use the shortest

path for compression. Therefore, a trajectory can be coded as a sequence of the shortest path

codes. Kellaris et al. [50] proposed an approach to solve the map matched trajectory compression

problem (MMTC). They first deploy a Map-Matching algorithm to map the trajectory onto the

path in the road network. Then they propose an offline algorithm to compress the trajectory by

using shortest path. This approach can achieve the optimal solution, however, the offline algorithm

has a high computational cost, since it must calculate every possible shortest path. Hence, they

proposed another approximate algorithm which supports online computation and is based on a

greedy approach. They use the Minimum Description Length (MDL) as the distance measures to

keep the result optimal.
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Tao et al. [112] proposed an algorithm to solve the k-skip shortest path problem. They built a k-

skip graph to store the simplified road network, which occupies less space than storing underlying

road network. The main purpose of this work is to significantly increase the speed of shortest path

searching. To achieve this goal, they use the both global reach and local reach algorithm to bound

the searching area. There are two possible cases that use this approach: 1) if the start and end point

are not in the k-skip graph, then they just insert these two points into the k-skip graph and rebuild

the super edge from these two points to its direct neighbours; and 2) if start and end points are in

the k-skip graph, then they just find the shortest path directly via the k-skip graph.

The current researches on the trajectory compression do not consider the trajectory synchroni-

sation problem, which the compressed trajectory data sets are heterogeneous, even if after decom-

pressed. Therefore, playing with the heterogeneous trajectory data is very hard, since such data set

can reduce the effectiveness of query processing tasks (e.g. trajectory similarity search).

2.3 Trajectory Query Processing

2.3.1 Nearest Neighbour Query over Trajectory Data

The nearest neighbour (NN) query is the traditional and fundamental research area in spatial

database, and large numbers of papers have been published in this area in recent years. An

overview of the NN query over trajectory data is provided in this section. There are two key

approaches for NN query over trajectory data: using a point to find its nearest trajectory called

nearest neighbour queries over trajectories; and using a trajectory to find its nearest points called

reverse nearest neighbour queries over trajectories.

Nearest Neighbour queries over trajectories

The growing popularity of GPS enabled mobile devices, such as tablet computers and mobile

phones, generate millions of trajectories, which opens up a new area of spatial-temporal database

applications. The nearest neighbour query over trajectory is used to find a closest trajectory from

a given query point in the trajectory dataset. As the most important query, there has been a lot of

work done on the solving nearest neighbour query for trajectories.
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The first such work on NN query for trajectories by Kollios et al. [54] limited to a 1D space.

Thus each trajectory segment is considered to be a linear function with time information. To repre-

sent the data, they use a dual transformation based method to map a point into a transformed plane

and vice-versa. Moreover, they extend this solution into a “1.5-dimensional case”, which allows

the trajectories to be represented in the plane with a restriction on the number of line segments

fused to depict movement. Meanwhile, this work uses a HB-tree [63] as the indexing method

rather than an R-tree [38] to obtain better performance. Even if this method can be extended to

“1.5-dimensional”, it is still very hard to extend this method to a 2-dimensional space, where the

trajectories of the points belong to a three-dimensional space.

Using Voronoi diagrams as the index structure, Zheng and Lee [131] proposed a Voronoi di-

agrams based method to solve the kNN query. But the method is limited to solving a single NN

(i.e. k = 1), and it is not easily extended to support kNN (i.e. k > 1), and maintaining the Voronoi

diagrams is very expensive. Song et al. [102] proposed another method with an R-tree index to pro-

cess queries with kNN. In this method, an algorithm called a dual buffer search is used instead of

the naive branch-and-bound algorithm, and the number of pages accessed in the R-tree is reduced

heavily. Benetis et al. [5] proposed an efficient algorithm for solving NN queries and reverse NN

queries for trajectories. This method is use a TPR-tree as the indexing structure.

Tao and Papadais [108] provide a solution for the continuous nearest neighbour (CNN) query,

which means the trajectories data keeps coming as streaming data and the query point is changing

continually. They use an R-tree based method to process both the CNN query and the kCNN

query. Subsequently, Tao and Papadais [110] proposed another type of NN query called a Time-

parameterised (TP) query, which uses a TPR-tree to index the trajectories. In their study, they

extend their method to support CNN queries, but this causes multiple TRP-tree searching to get

the correct result. This leads to extra CPU and I/O cost which may increase to very high when the

number of NNs (k) is large.

Raptopoulou et al. [90] improved on the previous method in [6], and proposed a new method

to more efficiently process NN queries on trajectories. This method can guarantee that only one

query is issued per time interval, which can significant reduce the I/O and CPU cost. To achieve

this, they make an assumption that the future locations of the current object can be calculated by

their current movement status such as velocity, and they assume that the velocity is constant during
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the time interval. However, this assumption is too strong to support many applications. In reality,

velocities reported by GPS devices, are continually being updated in relation to both speed and

direction.

The validity region is used by Zhang et al. [130] to answer the NN query, where the results can

be re-evaluated when the trajectory’s sample points are in the same validity region. This approach

can reduce the computation load significantly, but is limited by the fact that it focuses only on

stationary objects.

Xiong et al. [121] proposed an algorithm, called a Shared Execution Algorithm, to continu-

ously solve a collection of concurrent kCNN queries. The scalability of SEA-CNN is achieved by

employing a shared execution paradigm on concurrently running queries. Shared execution entails

that all the concurrent kCNNs along with their associated searching regions are grouped into a

common query table. Thus, the problem of evaluating numerous kCNN queries reduces to per-

forming a spatial join operation between the query table and the set of moving objects (the object

table). Therefore, SEA-CNN does not make any assumptions related to the status of movement of

objects such as velocities or the shape of trajectories, and also reduce both the less both CPU and

I/O cost.

Two efficient and scalable algorithms were proposed by Yu et al. [127], based on grid indexing,

to monitor kNN queries on the moving objects. The first method is dependent on indexing the

objects themselves (Object-Indexing), and the second one is based on the indexing the queries

(Query-Indexing). In both methods, the index takes the form of a grid structure, which represents

a canonical partition of the 2D space.

The previous works assume that each query has a query point only. However, a kNN query

may contain more than one query point for each query in many applications. Hence some newer

technologies, which support multiple query points in one query, are presented the below.

Chen et al. [24] studied a new query, called k Best-Connected trajectories (k-BCT), to find

a trajectory with good connections to given query points. To answer this query, they proposed

an incremental kNN based algorithm (IKNN), which searches the nearest trajectory points that

relate each query point incrementally, and calculates the aggregate distance from the query points

to such trajectory points. In this method, they use both best first and depth first algorithms with

R-tree indexing to retrieve the nearest trajectory points, and use the r-NN algorithm to minimise
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both the upper bound and lower bound. Therefore this algorithm can keep the I/O and CPU cost at

a low level and likewise, minimise the memory cost.

The current state-of-the-art trajectory NN query was proposed by Zheng et al. [135], and is

called an activity trajectory similarity query (ATSO). It returns k trajectories that cover the query

activities and yield the shortest minimum match distance from given a sequence of query points. In

their queries, each trajectory sample point contains several activities such as sports, shopping etc.

They developed a hybrid grid index structure, called GAT, to organise the trajectory segments and

activities hierarchically. By using GAT, the pruning speed can be increased significantly, which

means both I/O and CPU remain low. Finally, the authors extend their method to support order-

sensitive ATSO queries.

Reverse Nearest Neighbour queries over trajectories

Benetis et al. [5] proposed algorithms for RNN queries on the current and anticipated future po-

sitions of points moving continuously in the plane with the assumption that the movement pattern

of objects can be predicted using a linear function of time. They use the TPR-tree as the index

structure for moving objects and the algorithms proposed are based on the best-first and depth-first

paradigm. Later, they revised and extended their work to support the RkNN queries which are the

k > 1 RNN queries.

The TPR-tree is good for indexing moving objects but is hard to maintain since changing and

updating the existing moving objects is very expensive and consequently, its derived methods are

inefficient. Xia and Zhang [118] proposed the continuous RNN query (CRNN) without making

any assumption about the moving objects. They use a grid index for the moving objects and query

points. In addition, they maintain two kinds of monitoring regions with different shapes, called

pie-shaped and circled-shaped reigns for query processing. However, there are two disadvantages

of this approach. Firstly, they are limited to only monochromatic RNN queries; and secondly they

always assume a constant worst case scenario at every time interval.

Kang et al. [48] improved on this work to overcome these drawbacks. They proposed an algo-

rithm called IGREN, which is applicable to both monochromatic and bi-chromatic RNN queries.

The main idea of this algorithm is to initially identify a single region R around the query object

and a set of objects S such that only R and S need to be monitored to trigger subsequent changes
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to the answer. The incremental aspect comes from the fact that each execution instance of IGERN

updates the shape of R and the objects in S. Then, subsequent executions of the algorithm will

need to monitor only R and S rather than the whole space.

The previous work on spatial queries was designed for querying original trajectories (uncom-

pressed trajectories) only and optimised for disk based systems. Therefore, such algorithms cannot

be implemented directly into our system.

2.3.2 Trajectory Similarity Search

Given a query trajectory, a trajectory similarity search of a dataset is used to find the trajectory

which is located at the minimum distance to this query trajectory. The distance between two

trajectories is calculated by a trajectory distance function. Different trajectory distance functions

can affect the efficiency and effectiveness of trajectory similarity search in different ways. Hence,

in this section, the most popular trajectory distance functions (i.e. distance measure) that across

four categories are reviewed.

Euclidean Distance Measure

Euclidean distance, also known as L2-norm, is a distance measure used for a variety of applica-

tions. Given two trajectories T1, T2, the Euclidean distance d(T1, T2) can be calculated as, d(T1, T2)

=
∑n

i=1 d(p1,i,p2,i)

n
, where d(p1,i, p2,i) is the distance between the two sample points. Euclidean dis-

tance is easy to implement and index with many access methods, and it is parameter-free. In

addition, the complexity of the Euclidean distance measure is linear, which means it can handle a

large trajectory dataset. Euclidean distance is proposed as a distance measure and is one of most

commonly used similarity functions since the 1960s [88, 81, 32, 51]. Later, Euclidean distance was

also extended to measure the distance between trajectories [26, 92, 47, 98, 107], since trajectories

and time series have similar representations.

Dynamic Time Warping based Measures

Dynamic Time Warping (DTW) is a well-known algorithm for finding similar trajectory patterns

between two trajectories. The definition of DTW uses a recursive method to search all possible
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point combinations between two trajectories for the one with minimal distance, and DTW can be

converted to dynamic programming very easily. DTW allows one to find a similar pattern between

two given trajectories, which can be of different lengths, and with or without time information.

Moreover, the original DTW similarity measure is also parameter-free. For example, if two trajec-

tories are separately generated by a slowly moving object and a fast moving object, DTW can still

report their similarity pattern. DTW was first introduced to compute the distance of time series

[69]. In the 1980s, [58, 103, 83, 73] introduced DTW to measure trajectory distance. For a huge

data set, DTW is time-consuming and I/O-intensive. To speed up the DTW algorithm and reduce

I/O cost, several pruning methods have been introduced such as the FastMap method and the lower

bound method [95, 124].

Piecewise Dynamic Time Warping (PDTW) [51] is another dynamic time warping based sim-

ilarity trajectory function, which is an improvement of DTW. PDTW speeds up DTW by a large

constant c, where c is data dependent. PDTW uses two steps to calculate a similarity trajectory pat-

tern. The first step, called Piecewise Aggregate Approximation (PAA), cuts a given trajectory into c

pieces, where [pc∗(i−1)+1, pc∗(i−1)+2, · · · , pc∗ i] is i-th piece. For piece i, PAA computes p̄i as a rep-

resentative point and transform trajectory T into piecewise approximation T̄ = [p̄1, p̄2, · · · , p̄N ].

Then, in the second step, PDTW processes the DTW distance to find similar trajectory patterns

between transformed trajectories T̄1 and T̄2.

Edit Distance based Measures

Edit distance with Real Penalty (ERP) [19] is an edit distance (ED) based trajectory similarity

measure. ERP uses L1-norm as the distance measure. Introducing L1-norm makes ERP a metric

measure, which is a significant advantage over DTW and LCSS, as metric measures allow for

efficient pruning. In addition, ERP distance is defined on normalised trajectory data for amplitude

scaling and global spatial shifting. ERP normalize a trajectory T by shifting it by its mean (µ) and

scaling it by its standard deviation(σ): Norm(T ) = [p1−µ
σ
, p2−µ

σ
, . . . , pn−µ

σ
].

Edit Distance on Real sequence (EDR) [20] is another edit distance (ED) based trajectory sim-

ilarity measure. EDR also uses a threshold ε to detect matching sample point, similar to LCSS.

Like ERP, EDR also uses normalised trajectory data, in order to be invariant to scaling and shift-

ing. In contrast to ERP, for EDR, for each sample point pi in T , the position values of x, y are
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normalised by using the corresponding mean (µx), (µy) and standard deviation (σx), (σy), respec-

tively: Norm(T ) = [(p1,x−µx
σx

, p1,y−µy
σy

), · · · , (pn,x−µx
σx

, pn,y−µy
σy

)]. The matching defined by EDR

is match(pi, pj) for a pair of trajectory sample points, where pi ∈ T and pj ∈ T ′, T 6= T ′.

match(pi, pj) is true if and only if |pi,x − pj,x| ≤ ε and |pi,y − pj,y| ≤ ε, where ε is the matching

threshold. If match(pi, pj) is true, the subcost (i.e. edit distance) between pi and pj is 0, otherwise

the subcost = 1.

Longest Common Subsequence based Measures

Some similarity measures work well based on the assumption that the trajectory data is clean.

However, the trajectory data generated by GPS devices is not clean enough due to device accuracy

limitations, bad GPS signals, and other factors. Therefore, a similarity measure which is more

robust for processing low quality trajectory data attracts great research interest. Longest common

subsequence (LCSS) a popular measurement used for string similarity, [44, 93] can also be ap-

plied as a trajectory similarity measure. For detecting matching sample points like matching string

characters, a threshold ε is used, and if the distance between two points is less than ε, they are

considered to be a match. The basic idea of LCSS is that it allows some unmatched sample points

to match some sequences in trajectories. LCSS is good for processing with low quality trajectory

data (i.e. noisy trajectory data), from which similarity trajectories can be determined with a rea-

sonably high accuracy. However, it may lead to some inaccuracy, since it does not consider various

unmatched sequences in trajectories.

2.4 In-Memory Database System

The in-memory technologies that are related to this thesis are reviewed in this section. In-memory

database systems store their data in the main memory rather than on a hard disk device, which can

provide high speed, randomly access. Therefore, in-memory database systems need to use different

optimisations to structure and organise data, as well as to make them reliable. There are two

main tasks for the in-memory database system, online transaction processing (OLTP) and online

analytical processing (OLAP). Since SharkDB is a OLAP system, this section will mainly focus

on work that related to OLAP systems, including in-memory indexing, and parallel computing for
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in-memory database systems.

2.4.1 In-Memory Index

The common tree based index structures like B-trees [27] and R-trees [38] are designed for block

oriented storage (e.g. hard disk device), which optimise the sequence reading, lose much their

appeal when applied to an in-memory database. Hence, a wide variety of index structures have

been proposed and evaluated for in-memory databases. T-tree index structures [59], designed

explicitly for in-memory databases, have been widely accepted as a major index structure. T-tree

which is an improvement on both AVL tree [2] and B-tree, is a balanced binary tree with nodes

containing more than one item. The main difference between T-tree and traditional tree-like index

structures is that T-tree stores the data point directly in the node and does not care about the depth

of the tree, since traversing trees is much faster in memory than on a hard disk device.

The traditional indexes cover all data equally, even if some data are needed often, and some

will never be accessed. Therefore, an adaptive indexing technology is used to index the data

in the dynamic workload, which means that such an indexing structure will focus only on the

columns and the specific key ranges that are actually queried and avoid the need to incur the cost

of full index construction. Idreos et al. [45] proposed a hybrid adaptive indexing method, which

combines adaptive merging and database cracking techniques, to index the data in both in-memory

and column-oriented databases. Their indexing method is specifically designed for in-memory

technology, which uses the CPU cache line optimisation data partition algorithm. Meanwhile,

their method can offer a light-weight adaptation to refine the index efficiently by releasing the

power of in-memory technology, since an index structure and dataset that is stored in the main

memory can be re-constructed very quickly.

During the query processing, the data is loaded into the CPU cache and then sent to the CPU’s

registers to process, since the data in the main memory can be accessed by the CPU directly.

Bernstein et al. [9] studied the performance of several commercial database management systems

in main memory and found that a significant portion of the execution time is spent on second

level data cache misses and first level instruction cache misses. So, improving cache behaviour is

going to be an imperative task in in-memory data processing. Rao and Ross [89] proposed Cache
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Sensitive B+-trees, called CSB+-Trees. They optimised the B+-tree to store all the child nodes of

any given node contiguously, and to keep only the address of the first child in each node to fit the

CPU cache line. The rest of the children can be found by adding an offset to that address. Since

only one child pointer is stored explicitly, the utilisation of a cache line is high. There are two types

of CSB+-Trees: segmented CSB+-Trees and Full CSB Trees. Segmented CSB+-Trees divide the

child nodes into segments, hence nodes within the same segment are stored contiguously and only

pointers to the beginning of each segment are stored explicitly in each node. And full CSB+-Trees

preallocates space for the full node group and thus reduces the split cost.

2.4.2 Parallel Computing on In-memory Database

In general, join operations are the most important DBMS operations. A Join is a way to combine

tuples of two or more tables. Thanks to higher bandwidth of memory than hard disk, processing

join operations in parallel is available on multi-core CPUs in in-memory DBMSs. The recent

research into parallel joins in in-memory DBMSs mainly focuses on equal-join, which allows the

selection of tuples from both relations which satisfy a given equality.

Blanas et al. [11] proposed a new join algorithm, called a no partitioning join, which is a direct

parallel version of the canonical hash join. This algorithm does not depend on any hardware-

specific parameters, therefore, the partitioning phase requires multiple passes over the data and

can be omitted by relying on modern processor features. During processing, both input relations

are divided into equal-sized portions and each part is assigned to a worker thread. A shared hash

table is populated by worker threads and can be accessed by all worker threads. Because the hash

table is shard among all participating threads, concurrent insertions into the hash table must be

synchronised. Therefore, the whole hash table is divided into multiple buckets, each bucket is

protected by a latch that a thread must obtain before if can insert a tuple, but there is no latch

needed for threads reading the hash table. However, this mechanism may reduce the performance

when multiple threads wish to write a tuple into same bucket, since only one thread can write at

one time and rest of the threads have to wait.

The previous algorithms do not consider the hardware very carefully, but another category join

algorithm, called a partitioned join, partitions the hash table into cache-sized chunks to reduce
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cache misses and improve performance. After partitioning in the hash table, the number of chucks

is very large since the size of cache is small and this could be cause a different type of cache

problem, which may cause TLB missing. To reduce both cache missing and TLB missing, a

hierarchical partition based join algorithm, called radix partitioning was proposed by [66], which

partitions the input data in multiple passes. In practice, each pass looks at a different set of bits

from the hash function. Kim et al. [52] proposed a parallel version of the radix join algorithm,

which subdivides both input relations into sub-relations that are assigned to individual threads.

There are two phases in this algorithm on the thread-level parallelism, parallelised partition and

parallelised join. In the parallelised partition phase, all threads need to simultaneously perform

partitioning, during the first level of partitioning. Then each thread can operate on a single partition

without any explicit communication with other threads. In the parallelised join phase, a three

step parallelisation scheme is used to reduce overheads and can efficiently utilise the memory

bandwidth and computation cores.

2.4.3 Other Research Interests of In-memory Database

Data recovery is also a concern for the in-memory database systems, because the memory is nor-

mally volatile. Therefore, backups of memory must be maintained on hard disk devices or other

stable storage devices. When a failure occurs, the in-memory database system must restore the data

from its backup and then bring it up-to-date using the log. However, if the database is large, simply

transferring the data from the disk may take a long time. Therefore, two solutions were proposed

to reduce the recovery time after a failure has occurred. The first solution, proposed by Gruenwald

and Eich [34], is to load blocks of the database “on demand” until all of the data has been loaded.

However, it is only suitable for light-load systems, since heavy-load systems will receive millions

of transactions in a second after the database has been recovered, and it is impossible to load such a

large amount of data in a second from hard disk device. Another solution introduced by Patterson

et al. [79], is to use multiple hard disk devices (e.g. the disk arrays) to backup the database and

read the devices in parallel to reduce the loading time. But it will be very expensive to build such

disk arrays to achieve effective performance.
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Several in-memory DBMSs have been proposed or implemented. Baulier et al. [3] imple-

mented an commercial in-memory database system, which is called DataBlitz Storage Manager.

This system supports application access to the data in the memory directly via its configurable,

multi-level API. To minimise the storage overhead, they use concurrent index management based

on both hashing and tree structures. Meanwhile, they only store the direct point of data in the index

instead of store the page information. Plattner [85] tested an OLTP (Online Transactional Process-

ing) system and an OLAP (Online Analytical Processing) system by using an in-memory database

system. The results show that the in-memory database outperformed the traditional database sys-

tem even though the in-memory database did not use any indexing method. Meanwhile, the in-

memory system can fully release the power of multi-core CPUs and parallel computing. Bining

et al. [10] proposed a dictionary-based order-preserving string compression algorithm in the in-

memory column system. In their work, they presented a new approach to indexing a dictionary

of string values to leverage an order-preserving encoding scheme efficiently. For searching on the

compressed data, they proposed a concrete leaf structure for the string values, which can be used

by the indexes of a dictionary to efficiently encode and decode string values.

So far, most of the work in the in-memory database system field focuses on moving the tra-

ditional DBMS to an in-memory database system (i.e. for one dimensional data only). Yet, there

is no any work focusing on the trajectory in-memory database system ,neither trajectory indexing

for in-memory database approach nor trajectories query processing on the in-memory database

system.

2.5 Column-oriented Data Structures

In contrast to a row-oriented data structure, a column-oriented data structure is used to store the

data column by column. Therefore, a column-oriented data structure is suitable for analytic based

queries or DBMSs as such query types always request aggregation operations on same column.

Based on this, a column-oriented data structure can fetch the data from same column quickly

and increase the performance of aggregation operations during analytic query processing. In this

section, a set of column-oriented data structures are reviewed.

Boncz et al. [12] developed the modern in-memory database system, called MonetDB, along
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with the MIL query language to fully support the column-oriented store. Each column contains

[oid, value] combinations and is stored in a Binary Association Table (BAT). A BAT is a 2-column

table where the left column is called the head and the right column the tail, making up what is

called a vertically fragmented data model. In this model, the execution primitives know only about

the columns they operate on without having to know about the overall table layout. Therefore, the

bandwidth requirements between CPU and memory are reduced based on this model. To further

reduce bandwidth requirements, they use a lightweight compression to compress the data in each

column.

Most current major DBMSs implement record-oriented storage systems, so the records (data)

are stored continuously in the hard disk, which is called row-oriented architecture. In row-oriented

architecture, a single disk write will suffice to push all of the fields of a single record out to

disk. Therefore, it can achieve high writing performance as a write-optimised system. How-

ever, the row-oriented architecture is suitable for OLTP-style applications, however, Stonebraker

et al. [104] indicate that system oriented towards ad-hoc querying of large amounts of data should

be read-optimised, for example, customer relationship management systems and electronic library

card catalogues. For such systems, the row-oriented store architecture could not be efficient as

the query has to scan whole table and thus will consume a lot of bandwidth between CPU and

hard disk. Hence, they proposed a new database system, called a C-Store, which improves on

the column-oriented store architecture. To save the bandwidth, the C-Store physically stores a

collection of columns, each sorted on some attribute, and then compresses these columns via ag-

gressive compression techniques. There are two levels of this system, and the top level is called

the Writeable Store component, which is architecture to support high performance inserts and up-

dates. There is also a much larger component called the Read-optimised Store (RS), which is

capable of supporting very large amounts of information. However, their system considers the

column-oriented store in the disk based system only and focuses on optimized the bandwidth be-

tween CPU and hard disk and does not consider the in-memory approach or the optimisation of

memory.

The column-oriented data structure is good for read-only tasks, since it does not need to scan

the whole database to get the results. However, column-oriented architecture will lead to reduced
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performance for updating and deleting operations because such operations have to scan each col-

umn to find the data and perform the update or delete. Meanwhile, most column-oriented storage

architectures use compression techniques to save the space, which makes updates/deletes com-

putationally more expensive and complex since data needs to be de-compressed, updated/deleted

and re-compressed. Therefore, Héman et al. [39] proposeed a new column-oriented data structure,

called a Positional Delta Tree (PDT). A PDT is designed to make merging in of these updates fast

by providing the tuple positions where differences have to be applied at update time. The PDT

requires less I/O and CPU time based on positional merging than does value based merging. This

work still looked at optimising the I/O between hard disk and CPU, even if they used the Mon-

etDB, which is an in-memory system approach. To improve the queries performance, Lemke et

al. [60] proposed a new algorithm to process queries such as scan and aggregation operations on

the compressed column-oriented data structures. Ivanova et al. [46] studied a new architecture to

provide an intermediate in the column-oriented structures, which uses a lightweight mechanism.

Their approach can also improve the query performance significantly. Krueger et al. [57] presented

a linear merge algorithm to utilise the power of parallel computing for fast updating in compressed

in-memory column-oriented structures.

However, even if the trajectory query processing is performed on an OLAP system, these

column-oriented data structures cannot support trajectory queries well. This is because such struc-

tures are designed for relational data only, and trajectory data is not relational data. Due to the

underlying use of the relational model in these column-oriented data structures, analytical trajec-

tory queries cannot be well-supported.



Chapter 3

SharkDB Design

3.1 Introduction

Driven by the rapid development in sensor technology, GPS-enabled mobile devices and wireless

communications, large amounts of data describing the motion history of moving objects, known as

trajectories, are currently being generated at an unprecedented rate from a variety of application

domains such as geographical information systems, location-based services, vehicle navigation,

video tracking and so on. This calls for effective and efficient technologies to manage large scale

trajectory data, which serves as a corner stone for more advanced data analytical tasks.

Even though spatial databases have been extensively studied as a research area for decades with

several successful commercialisations1, they were designed to support basic spatial types only such

as points, lines and polygons. Trajectories, on the other hand, are not easy to fit into a relational

table with a pre-defined schema since each tuple (i.e. trajectory) has a different number of attributes

(i.e. time-stamped points). To fix this problem, the entire sequence of points can simply be treated

as a single attribute and stored in one column. But this kind of storage will severely deteriorate

query performance since it will make it almost impossible to utilise the spatio-temporal locality

amongst trajectories. Having witnessed the limitations of existing spatial database systems, in

the past decade researchers have dedicated significant efforts in proposing novel techniques for

1Many database management systems offer additional components or extensions to support spatial types and oper-

ators such as Oracle, MySQL, PostgreSQL, etc.

45
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trajectory data management. What lies in the core of these techniques is trajectory indexes, the

basic design principle of which is grouping trajectory segments that are close to each other and

putting them in the same node (in a tree-based index) or cell (in a grid index).

The evolution of modern technology allows large amounts of memory to be installed in a

computer system, thus providing potential opportunities to significantly improve the efficiency of

managing large amounts of data by shifting more or even all data from disk-based storage into

main memory. This has triggered widespread research interests in in-memory data management

from both the database and data mining community, ranging from memory-based indexing tech-

niques [89] to in-memory database systems [85]. However, existing main-memory based database

systems are designed for relational data, which is not suitable for storing and querying the trajec-

tory data that possess both spatial and temporal information.

In order to take advantage of a column-oriented data structure and compression techniques for

storing and analysing trajectory data, two main challenges need to be solved. The first one is how to

convert trajectory data into a column-oriented data structure, which not only supports varied length

and multi-dimensional trajectory data, but can also perform efficient query processing in the main

memory. The second challenge is how to deploy compression techniques on the column-oriented

data structure, which can further support query processing on compressed data without sacrificing

much performance. Therefore, in this chapter, the importance of calibrated trajectory data is first

investigated by a preliminary study. Based on this investigation, a novel frame based structure

is proposed to address the above challenges. The proposed frame based structure is a column-

oriented structure, which is a read-optimized data structure for storing and processing massive

amounts of trajectory data. This data structure combines the merits of high throughput of main

memory and the benefits of a column-wise store for analytical tasks. Meanwhile, this design also

supports effective trajectory data compression and query processing on the compressed trajectory

data.
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3.2 A Preliminary Study on Heterogeneous Trajectory Data

3.2.1 Motivation

A fundamental ingredient of such trajectory analysis tasks is the distance/similarity measure that

can effectively determine the similarity of trajectories. But unlike other simple data types such

as ordinal variables or geometric points where the distance definition is straightforward, the dis-

tance between trajectories needs to be carefully defined in order to reflect the true underlying

similarity. This is due to the fact that trajectories are essentially high dimensional data with

both spatial and temporal attributes, which needs to be considered for similarity measures. More

than ten distance/similarity measures have been proposed in the literature, for example, Euclidean

Distance (ED) [47], Dynamic Time Warping (DTW) [103], Piecewise Dynamic Time Warping

(PDTW) [51], Distance based on Longest Common Subsequence (LCSS) [49], Edit Distance with

Real Penalty (ERP) [19], Edit Distance on Real Sequence (EDR) [20]. Many of these works and

some of their extensions have been widely cited in the literature and applied to facilitate query

processing and data mining of trajectory data. The details of six similarity measures have been de-

scribed in the literature review chapter. We list the core definition of such similarity measures in the

below. To define such similarity measure, assuming there are two trajectories T = [p1, p2, ..., pm]

and T ′ = [p′1, p
′
2, ..., p

′
n], core definitions are:

Euclidean Distance Measure

Euclidean(pi, p
′
j) = d(pi, p

′
j) =

√
(pi.x− p′j.x)2 + (pi.y − p′j.y)2 (3.1)

DTW/PDTW The PDTW uses the Piecewise Aggregate Approximation(PAA) algorithm to

simplify the trajectory, but the core definition of PDTW is same as DTW.

DTW (pi, p
′
j) =



0, if m = n = 0

∞, if m = 0 or n = 0

d(pi, p
′
j) +min(DTW (pi−1, pj−1), DTW (pi−1, pj),

DTW (pi, pj−1)), otherwise

(3.2)
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EDR The α is the match function of EDR. If the d(pi, pj) is less than the given threshold, α is

equal to 0, otherwise, α is equal to 1.

EDR(pi, p
′
j) =



n, if m = 0

m, if n = 0

min(EDR(pi−1, pj−1) + α,EDR(pi−1, pj) + 1,

EDR(pi, pj−1) + 1), otherwise

(3.3)

ERP

ERP (pi, p
′
j) =



pi, if n = 0

p′i, if m = 0

min(ERP (pi−1, pj−1) + d(pi, p
′
j), ERP (pi−1, pj) + pi),

ERP (pi, p
′
j−1) + p′j), otherwise

(3.4)

LCSS The ε is the given threshold of LCSS.

LCSS(pi, p
′
j) =


0, if m = 0 or n = 0

LCSS(pi−1, pj−1) + 1, if |pi − p′j| ≤ ε

max(LCSS(pi−1, pj), LCSS(pi, pj−1)), otherwise

(3.5)

Given the multitude of competitive techniques, a good understanding of the effectiveness of

various similarity measures is important. Very often a newly introduced distance measure has

claimed a particular advantage over some others by using an exemplified explanation. Also most

of those works focused on evaluating the efficiency of their pruning and searching algorithms,

while leaving the effectiveness study, i.e. how their proposed distance measure truly reflects the

similarity between trajectories under different circumstances, inadequate or even completely omit-

ted. In this light, we argue that there is a strong need for an empirical study on the effectiveness

of trajectory similarity measures. More specifically, in this study we have implemented six widely

used trajectory similarity measures (shown in the following list), and study their effectiveness in

different circumstances using a common real world taxicab trajectory dataset.
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• Euclidean Distance Measure

– Euclidean Distance

• Dynamic Time Warping based Measures

– DTW

– PDTW

• Edit Distance based Measures

– EDR

– ERP

• Longest Common Subsequence based Measures

– LCSS

3.2.2 Effectiveness Study

In this section, the trajectory dataset used in this study is first introduced. Then the types of

transformations applied to the trajectories; and the experimental observations regarding the effec-

tiveness of the compared similarity measures are also proposed.

Dataset

The dataset of Beijing taxi trajectories [140] is employed for this experimental study. This is a real-

world trajectory dataset generated by 30,000 taxicabs in Beijing over a period of three months.

The sampling rate of this data set is approximately 30 seconds, which means the time duration

between consecutive sampling points is about 30 seconds. Since in this study we mainly focus

on effectiveness rather than scalability, 1000 trajectories are randomly selected from the dataset,

where each contains at least 100 sampling points.
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Trajectory Transformations

Evaluating the effectiveness of different similarity measures objectively is a challenging task due

to the lack of a widely recognised benchmark dataset, where the ground-truth distance between

any pair of trajectories is known in advance. Therefore, while most previous works put emphasis

on the scalability test for the similarity measures, none of them have conducted experiments on

the effectiveness. This study tackles this problem from a novel aspect by having the following

two observations. First, an identical motion history can be represented by different trajectories

due to the variance in sampling time, sampling rate or possible noise. Second, in spite of different

representations, they should still have high similarity based on any good similarity measure since

they all actually refer to the same motion record.

Based upon this, the evaluation procedure works as follows. It firstly picks up a trajectory as the

original trajectory. Then several types of transformations on the original trajectory are performed

in a controlled way (by using parameters), resulting in a set of transformed trajectories. For each

transformation, this study evaluates the distance between the original and transformed trajectories

and tunes the parameter to see how the distance between the trajectories is affected. The rationale

behind this is that, with a reasonable similarity measure, the trajectory with a lower degree of

transformation should have a higher similarity to the original trajectory, and vice versa.

Three types of transformation functions are devised, namely re-sampling a trajectory, shifting

trajectory points, and adding noise. These transformations are controlled by two parameters, rate

and distance. The parameter rate is used to specify the percentage of the trajectory points that

will be transformed; for instance, rate = 0.1 means that 10% of the trajectory points are to be

transformed by the transformation function, and distance = 0.0001 means that the trajectory

points are to be shifted around 11 metres by the transformation function. The parameter distance is

a threshold of how far a trajectory point might be shifted in relation to the original point. Table 3.1

summarises all the transformation functions and their parameters.

Re-sampling trajectory. There are two ways to re-sample a trajectory, i.e. increasing sam-

pling rate and decreasing sampling rate. To increase the sampling rate, the rate extra points will be

randomly added to the original trajectory. Analogously, to decrease the sampling rate, this exper-

iment randomly remove rate points from the original trajectory. Fig. 3.1 and Fig. 3.2 exemplify
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TABLE 3.1: Types of Trajectory Transformations

Transformation Type Operation Adjustable Parameters

Re-sampling Increase sampling rate (add points) rate

Decrease sampling rate (remove points) rate

Point shift Random shift rate, distance

Synchronised shift rate, distance

Noise Add noise rate, distance

those two opposite transformations.

FIGURE 3.1: Increase Sampling Rate Transformation Function

Point shift. Unlike the re-sampling transformation, a point shift does not change the number

of trajectory points. Instead, it changes the locations of them. To do so, this study randomly

selects the rate of the trajectory points and shifts them by distance. There are two ways to shift the

points, i.e. random shift and synchronised shift. A random shift will change the position of each

selected point arbitrarily without considering the other shifted points, while synchronized shift will

translate all the selected points in the same way (same offset and direction). Additionally, a point

shift transformation would not change the shape of the original trajectories. Fig. 3.3 and Fig. 3.4

illustrate these two shift transformations.
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FIGURE 3.2: Decrease Sampling Rate Transformation Function

FIGURE 3.3: Random Shift Transformation Function

Adding noise. The last transformation function is to add rate noise/outliers to the original tra-

jectory. The gap between the noisy points and the original trajectory is controlled by the parameter

distance. An example is used to demonstrate this transformation in Fig. 3.5.

Experimental Observations

In this section, the set of transformations is applied to the original trajectories and the distance/similarity

between the original and transformed trajectories are computed based on each similarity measure.

Specifically, for each similarity measure, two sets of experiments are conducted. First, the param-

eter distance is fixed asa constant (distance = 0.0015), and then the parameter rate is varied
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FIGURE 3.4: Synchronized Shift Transformation Function

FIGURE 3.5: Add Noise Transformation Function

from 0.1 to 0.6 with a step of 0.1. However, EDR and LCSS measures use another threshold ε

to determine the matched pairs of points. The relationship between distance and ε will heavily

affect the results. Therefore, two sets of experiments for LCSS and EDR are conducted, i.e. with

ε = 0.002 being greater than distance, and ε = 0.0004 being less than distance. It was found

that, adding 10%− 60% noise points into the trajectory was too much and could change the shape

of the original trajectory, hence the transformation rate was reduced by reducing the adding noise

function from 0.1 to 0.06 with a step of 0.01, which is one-tenth of the previous parameter rate.



54 SHARKDB DESIGN

Second, the parameter rate is fixed as constant (rate = 0.3)2, and the value of parameter

distance was changed from 0.0005 to 0.004 (Euclidean distance in spatial space) with the step

of 0.0005. It only changes the transformation distance for random shift, synchronised shift and

adding noise as these are the only transformations are affected by this parameter.

For all the similarity measures except LCSS and EDR, the distance between the original and

transformed trajectories was reported, with a greater value indicates a lower similarity.
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FIGURE 3.6: Result of Euclidean Distance with different transformation rate

Euclidean Distance Measure. The results of Euclidean distance with varying transformation

rate are shown in Fig. 3.61. We can see that, the distance between the original and transformed

trajectories with re-sampling and noise increases quickly as the transformation rate rises. This

implies that the Euclidean distance is sensitive to sampling rate or noise. On the other hand,

shifting sampling points within a certain range has little influence on the distance.

The results of Euclidean distance with different transformation distances is illustrated in Fig. 3.7.

As expected, the distance between the original and transformed trajectories with point shift gradu-

ally increases as the transformation distance increases. But adding noise will make the transformed

trajectory completely dissimilar to the original one, which again indicates that Euclidean distance

is sensitive to outliers.
2Transformation rate of add noise function is set to 0.03
1Transformation rate of add noise function is one-tenth of x-axis’s value, the follow figures use same setting for

transformation rate of add noise. The y-axis distance value is defined by definition of trajectory similarity measures
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FIGURE 3.7: Result of Euclidean distance with different transformation distances
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FIGURE 3.8: Result of DTW with different transformation rate

Dynamic Time Warping based Measures. The performance of DTW with a changing trans-

formation rate is shown in Fig. 3.8. It can be observed that DTW achieves a relatively good

performance with a low transformation rate (i.e. rate < 20%), and DTW is more robust to the

random shift transformation. In addition, it is more sensitive to a decreasing sampling rate than

an increasing sampling rate. Also DTW may not be a good choice when the trajectory data is

contaminated by noise.

This study then evaluates the DTW distance with different transformation distances. As shown
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FIGURE 3.9: Result of DTW with different transformation distances

in Fig. 3.9, DTW is more sensitive to transformation distance than transformation rate as all dis-

tances increase quickly when the transformation distance grows larger. DTW may not handle

dramatic sampling points shift well especially the synchronised shift.
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FIGURE 3.10: Result of PDTW with different transformation rate

Fig. 3.10 shows the results of PDTW with a changing transformation rate, which are similar to

those of DTW, since PDTW is a variant of DTW. However, after applying the PAA method, the ef-

fectiveness of PDTW is better than DTW. With the same scale and unit as in the DTW experiments,

we can see the distances reported by PDTW are less than those of DTW for all transformation rates,
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FIGURE 3.11: Result of PDTW with different transformation distances

especially for increasing sampling rate, adding noise and synchronised shifting function.

The performance of PDTW with different transformation distances is shown in Fig. 3.11. Un-

like DTW, PDTW is not sensitive to length of distance of transformation. As a result, PDTW may

work well in measuring the similarity of trajectories with a large number of inaccurate points (i.e

points with large deviations from its true location).
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FIGURE 3.12: Result of EDR with a changing transformation rate and ε less than distance of transfor-
mation

Edit Distance based Measures. The effectiveness of EDR with a changing transformation rate
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FIGURE 3.13: Result of EDR with different transformation rate and ε larger than distance of transfor-
mation

is firstly evaluated. In Fig. 3.13, the distances between the original and transformed trajectories are

all large, since the transformation distance of the sample points is larger than its threshold ε. In this

case, most shifted points will have no matched point in the original trajectory, hence increasing the

EDR distance.

Another set of experiments is also conducted in which the transformation distance is restricted

to be smaller than ε, the result of which is shown in Fig. 3.13. Based on the result, we can see that

EDR is very sensitive to altering sampling rate or adding noise. However, EDR still serves as a

good distance measure for handling sampling point shift.

Second, the experiment results of ERP distance with changing transformation rates are illus-

trated in Fig. 3.14. From the result we observe that ERP is robust to sample points shifting. Even

with a very high transformation rate, ERP still achieves good performance in capturing the simi-

larity between trajectories with sample point shifting. ERP can also handle the trajectories with a

small amount of noise. However, it is sensitive to the changes in sampling rate of trajectories.

Fig. 3.15 shows the experiment result of ERP distance with different transformation distances.

Based on this distance measure, the transformed trajectory with random shift is very similar to the

original one, which means that ERP distance is robust to random shift. Nevertheless, ERP is quite

sensitive to noisy data since adding noise to the original trajectory will result in a large distance

value.
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FIGURE 3.14: Result of ERP with a changing transformation rate
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FIGURE 3.15: Result of ERP with a changing transformation distances

Longest Common Subsequence Measure. Finally, this study evaluates the distance based on

LCSS for different transformations, as shown in Fig. 3.16. Due to the different definition of LCSS,

it uses normalised similarity as the output, which is instead of distance. Interestingly, LCSS has

perfect performance for the transformation with increasing sampling rate, but bad performance for

transformation with decreasing sample rate. This is due to the fact that LCSS is calculated based

on common subsequences shared between trajectories, which is not affected by increasing the

sampling rate. For instance, given a trajectory sequence Tr = [(1, 1, t1), (2, 2, t2), ..., (10, 10, t10)]
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FIGURE 3.16: Result of LCSS with a changing transformation rate and ε less than distance of transfor-
mation
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FIGURE 3.17: Result of LCSS a changing transformation rate and ε larger than distance of transforma-
tion

with length l = 10. By increasing the sampling rate, we have a transformed trajectory TrI =

[(1, 1, t1), (1.5, 1.5, t′1), (2, 2, t2), (2.5, 2.5, t
′
2), ..., (10, 10, t10)] with length l = 20; by decreasing

the sampling rate, we have a transformed trajectory TrD = [(1, 1, t1), (3, 3, t3), ..., (9, 9, t9)] with

length l = 5. Clearly, the length of common sequences that is reported by LCSS between Tr

and TrI is larger than that between Tr and TrD. In addition, LCSS has a good performance

to process noisy trajectory data, but might not be suitable for measuring trajectories that contain
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shifted sampling points.

An extra experiment for LCSS is performed by setting the threshold ε larger than the transfor-

mation distance, the result of which is shown in Fig. 3.17. As expected, the transformed trajectories

are all treated as identical to the original one, except the one with the decreasing sample rate.

TABLE 3.2: Comparative Results of Trajectory Similarity Measures

Euclidean Distance DTW PDTW EDR ERP LCSS

Add noise Sensitive Sensitive Fair Sensitive Sensitive Robust

Increasing sampling rate Sensitive Fair Fair Sensitive Sensitive Robust

Decrease sampling rate Sensitive Sensitive Sensitive Fair Fair Sensitive

Random shift Robust Robust Robust Robust Robust Fair

Synchronised shift Robust Sensitive Robust Robust Robust Fair

In conclusion, there is no trajectory similarity measure that can beat all the others in every

circumstance. Table 3.2 summarised the results for each trajectory similarity measures, which are

compared based on transformation functions (first column). There are three levels, “Sensitive” ,

“Fair” and “Robust”, which are illustrated the results. In general, Euclidean distance is a good

choice when the trajectory data have similar sampling rates and high quality (small point shift),

due to its simplicity of implementation and low computation complexity. PDTW is more robust

to most transformations than DTW since it adopts the piece-wise aggregation to the raw trajectory

before the distance computation. Edit distance based measures (EDR and ERP) achieve good ef-

fectiveness with point shift transformations, but are sensitive to altering sampling rate and outliers.

In contrast, LCSS is almost immune to increasing sampling rates and noise but is sensitive to point

shift. It seems that no similarity measure works well for a decreasing sampling rate, implying that

processing low-sampling-rate trajectories can be a challenging problem [64][137]. Moreover, this

preliminary study illustrates that the heterogeneous trajectory data can affect the performance of

such fundamental trajectory queries. Hence, it is indicated that the trajectory data need to be syn-

chronized before the query processing to avoid this issue. In the next section, a new trajectory data

structure, which is called I/P frame based trajectory data structure, is proposed. This trajectory
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data structure can synchronize the trajectory data in nature and can improve the performance of

trajectory similarity search. A comprehensive study of I/P frame based trajectory data structure is

presented in the next section.

3.3 An I/P Frame based Trajectory Data Structure

This section details the three data structures as well as their encoding algorithms used to store the

raw trajectory data into the in-memory column-oriented data structure.

3.3.1 Frame-based Storage

In contrast to basic operations (i.e. SELECT or DELETE), most analytic tasks such as window

query and nearest neighbour query only need to touch a few trajectories to get the required answer.

However, the row-oriented data structure is not good for this task, since it is hard to avoid a whole

table scan during trajectory query processing, if these data are not indexed. On the other hand, the

column-oriented data structure is known to have better performance in analytic task compared with

a row-oriented data structure [85]. To get this advantage, this thesis proposes a novel frame based

column-oriented data structure to store trajectory data in the main memory. Thus, a sequence of

frames is created directly from trajectory data directly. A particular time interval is assigned to

each single frame, then each trajectory sample point is allocated to the related frame based on its

recorded time. Therefore, a frame contains all of the trajectory sample points in the whole dataset

which are recorded at the time interval of the frame. And that time interval is called the frame rate.

For instance, as Fig. 3.18 shows, if the time interval is set to one minute (i.e. the frame rate is 60

seconds), the time period from 9:01 to 9:05 is split into four frames. Hence, the sample points in

the trajectory T1 = p′1, p
′
2, p
′
3, p
′
4 and T2 = p1, p2, p3, p4 will be aligned to the related frame, in this

example, p′1, p1 and p′2, p2 are assigned into Frame1 and Frame2 respectively.

To keep each frame simple and tidy, each frame contains no more than one point for each

trajectory. To make this frame structure continuous in temporal space, each frame must be strictly

synchronised by the same time period (i.e. with the same frame rate). Normally, the frame rate will

be the same as the sampling rate of the trajectory. For example, if the sampling rate of the trajectory
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FIGURE 3.18: Trajectory snapshot

dataset is 60 seconds. Then the frame rate will be set to 60 seconds per frame as Table 3.3 shows.

However, a trajectory in a raw trajectory dataset may have a different sampling rate compared

with other trajectories due to an unstable GPS signal. Therefore, this situation can make the whole

trajectory dataset become heterogeneous, which may affect the frame structure. To avoid this issue,

if there is more than one sample point, which belongs to the same trajectory, they are aligned to

the same frame. Synchronous Euclidean Distance(SED) [67] is calculated for each sample point.

SED is a kind of distance measure that considers both spatial and temporal information. For

instance, as Fig. 3.19 shows, the SED of P (SED(P )) is calculated by D(P(x,y,t), P
′
(x′,y′,t)), where

x′ = A.x +
A.t− P.t
B.t− P.t

(A.x − B.x), y′ = A.y +
A.t− P.t
B.t− P.t

(A.y − B.y). Therefore, the sample

point with largest SED is kept, whereas the rest of the sample points in that frame are removed

since such a point contains more information than other points that have smaller SED. In the same

time, if there is no sample point of a trajectory in a frame, which is between the trajectory’s start

frame and end frame, it uses a line interpolation method to add a new sample point of the trajectory

in that frame. A set of accuracy experiments is conducted in Chapter 5 to show the influence of

heterogeneous trajectories.

FIGURE 3.19: Example of SED

After that, converting each frame into a column-oriented data structure become straightforward.
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TABLE 3.3: Example of Frame based Structure

9:01-9:02 9:02-9:03 9:03-9:04 9:04-9:05

Frame 1 Frame 2 Frame 3 Frame 4

(1,p′1) (1,p′2) (1,p′3) (1,p′4)

(2,p1) (2,p2) (2,p3) (2p4)

Basically, it only needs to insert each frame as a single column into the in-memory database. The

ID of each column is named as its own time interval (e.g. 9 : 01–9 : 02) as Table 3.3 shows. In

addition, each sample point (i.e. the object) in the column contains its trajectory ID, longitude

and latitude. After aligning, the timestamp information of a sample point is no longer needed any

more, since the temporal information can be recovered by the column ID. The advantage is that this

frame data structure is a natural column-oriented data structure and synchronised by time, hence,

storing this data in the column-oriented structure is simple.

3.3.2 I/P Frame-based Storage

For in-memory databases, it is good to utilise compression techniques to reduce the size of the

data and improve query performance, since the compressed data can reduce the footprint of data

in the memory, which can in turn reduce the searching time in memory. The approach considered

to compress the trajectory data was the delta encoding technique, which keeps information for the

first point and uses the δ value to record the information for the rest of the points. Therefore, the

delta encoding will not change the sampling rate of trajectories and it allows the storage system to

use less space to store the trajectory data. However, a problem arises when using delta encoding.

For each column, the type of object (point) must be the same, which means that the objects in

a single column can only be the original points or the delta encoded points, but not a mixture of

both. However, the start time of trajectory and the length of trajectory is arbitrary, so delta encoding

cannot be deployed directly. Therefore, a novel I/P frame based data structure is proposed to reduce

the memory consumption without encountering this problem.

Building an I/P frame data structure includes a grouping process and an encoding process.

First of all, the whole sequence of frames is split into small groups, called frame groups, and each
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TABLE 3.4: Example of I/P-frame Structure

Frame 1 Frame 2 Frame 3 Frame 4

(1,p) (1,∆p) (1,∆p) (1,∆p)

(2,p) (2,∆p) (3,∆p) (4,∆p)

(3,p) (3,∆p) (4,∆p)

(4,p) (4,∆p)

frame group contains n continuing frames. Based on the example in Table 3.3, if n is set to 4, then

Frame1 to Frame4 is allocated in a group. After the encoding phase, for each group, we keep

the first frame of raw information as an I-frame, and the subsequent frames, called P-frames, use

delta encoding for compression. In the example is shown in Table 3.4, Frame1 is kept as I-frame

IF1. The rest of the frames Frame2 to Frame4 are P-frames P1 to P3, then the sample points

are encoded in P1 by calculating the difference between IF1 and its related sample point in P1 as

a P-frame point P1.PF1. Then, we continue to encode the sample points in P2 and P3 as P-frame

points P2.PF1 and P3.PF1 respectively. In general, the coordinate changes between I-Frame point

and each P-Frame point are very small, therefore, we can use less bits to record such offset value

for each P-Frame point. Hence, in the example shown in Table 3.4, the I-Frame point costs 16 bits

(8 bits for longitude and 8 bits for latitude); and for each P-Frame point can only cost 4 bits for

encoding the coordinate shifts. It is easy to see that each P-Frame point saves 12 bits compared

with I-Frame point. Finally, we get one I-frame column and three encoded P-frames columns as

shown in Table 3.4.

However, this I/P frame encoding algorithm still has some drawbacks. To reconstruct a segment

of a trajectory that is contained in a frame group, in the current solution has to scan all of columns

in that group must be scanned, which includes both I-frame and P-frames; and this process is very

expensive, since it has to scan a lot of memory. Therefore, the query processing performance can

be reduced; and the process does not fully utilise the power of a column-oriented data structure.
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3.3.3 Cache-aware Frame-based Storage

To increase the speed of trajectory reconstruction, the number of sequential scans of columns

should be minimised during query processing. The idea of avoiding a sequential scan of all

columns in a frame group is to reduce the number of scans in a P-frame, since the P-frames are

closely related to I-frames. Therefore we fix the length of both the I-frame column and P-frame

columns in a frame group, which means that the length of each P-frame column is equal to the

length of the I-frame column. As a result, for the same segment of a trajectory in a frame group,

each P-frame point of that trajectory shares the same index as the point in the I-frame. Meanwhile,

if a trajectory segment has not fully filled a frame group such as a trajectory segment with one

I-frame point and two P-frame points in a n = 4 frame group, we use a Nil code as a place-holder

in the rest of P-frames in that group. Hence, to reconstruct a trajectory segment, we can scan the

I-frame point in the I-frame only and access the P-frame points in P-frames directly in memory

by adding the offset from I-frame point. Moreover, in each P-frame point, the trajectory ID is

no longer needed, since it can be recovered from the I-frame point. For example, as Table 3.5

shows, to reconstruct trajectory T4, first the I-frame is scanned to get its I-frame point, then the

related P-frame points can be accessed directly in memory by adding an offset from the beginning

address of each P-frame column. This can improve the speed significantly during the trajectory

reconstruction processing.

Moreover, in modern computer system architectures, accessing data from memory to CPU

is via a hierarchical memory structure. Typically, a CPU has built-in cache memories, which

is connected to the system main memory directly. On the other hand, the reading action from

memory to CPU is parametrised by CPU cache line size (typically 64 bytes), which is the basic

transferring unit. For a reading action, the CPU will read 64 bytes data from memory whether or

not this data will be fully used or not. Therefore, to increase the performance, ideally the CPU

cache line should be filled up as much as possible with useful data for each memory access to

reduce the total number of accessing from CPU. However, this task is challenging as we need to

store the P-frame point of a trajectory segment continuously and at the same time we cannot break

the column-oriented data structure.

Hence, a hybrid data structure is used to store the P-frames in a frame group as they are highly
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TABLE 3.5: Example of Cache-aware Frame-based Structure

9:01-9:02 9:02-9:03 9:03-9:04 9:04-9:05

(1,p) (1,∆p) (1,∆p) (1,∆p)

(2,p) (2,∆p) Nil Nil

(3,p) (3,∆p) (3,∆p) Nil

(4,p) (4,∆p) (4,∆p) (4,∆p)

(a) Non-cache Optimized Structure

(b) Cache Optimized Structure

FIGURE 3.20: Example of Cache-aware I/P-frame Structure

related. The hybrid data structure is based on a two dimensional array, which is created as an

array[x][y], where x is equal to the number of I-frame points in this frame group, and y is equal

to the number of P-frame columns in this frame group. So, the value of x in the array is the index

of the I-frame points; the value of y indicates the column number of the P-frame group; and the
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object at array[x][y] is the P-frame point. For example, array[1][2] is the P-frame point PF1,2,

which is shown in Fig. 3.20, and 1 for first I-frame point and 2 for second P-frame column. As

a result, the CPU can fetch an I-frame point with its related P-frame points and fill a cache line

block via a single memory access. When the CPU tries to access the next P-frame point, it is

already in the CPU cache, and therefore CPU can retrieve it directly without needing to search the

memory again. Consequently, it will increase the performance of query processing. For example,

as Fig. 3.20 shows, assuming a memory access reads two points vertically from the P-frame array,

this will cost two memory seeking requests to decode a trajectory segment in a frame group stored

in a system with a non-cache optimisation data structure, since the other points in the cache line

are not related to this segment and are therefore not usable. On the other hand, only one memory

access would be required to decode this trajectory segment when using a cache optimised data

structure, since the related four points can be read from CPU cache directly.

3.4 Database Maintenance

To store and manage a new trajectory dataset, a new database needs to be created in SharkDB.

The key issue in creating a new database is that the number of columns are unpredictable, since

the trajectory data is continuously being collected from its source, which means that the total

length of whole trajectory dataset is unknown. In this section, the process to create a new database

in SharkDB based on the frame data structure is first introduced to address this issue. Then an

appending method is presented to append new sample points to existing trajectories.

Creating the Database The frame data structure requires the sample rate of all trajectories

(synchronised sample rate of trajectory) to be the same to avoid the previously noted accuracy

problem, which means that the trajectory dataset needs to be synchronised before being imported

into the database. However, it is impossible to guarantee this from any raw trajectory dataset due

to unstable GPS signals. Actually, this problem belongs to the data cleaning area, which is not

the research direction of this thesis. Hence, in this study, all trajectories are first synchronised to

ensure the sampling rate of the imported trajectory data is uniform.

After the trajectory dataset is synchronised, it is time to start creating a new database. As

discussed before, the trajectories will be split and encoded as frame group structure. Based on
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this, there are three parameters, required to set up the database. The first one is the earliest time of

the whole trajectory, and the second one is the time interval of each frame, which is equal to the

sampling rate of this dataset. The last parameter is the number of frames in single frame group,

which is a key parameter that can affect the performance of the database significantly. More details

about selecting the number of frames per frame group are discussed in the experiments chapter.

After the database is created, the trajectory data can be imported into the database by the two-phase

algorithm. As shown in Fig. 3.21, two components are implemented for data importing. First of

all, trajectories are converted to a column based structure and aligned to the frame data structure

in the aligning component. After this, in the encoding component, the frames are split into small

groups and encoded to the I/P frame structure format.

Raw 
Trajectories

I/P Frame-based 
Storage

In-memory Storage Component

Aligning Encoding

FIGURE 3.21: Creating Database

Appending the Trajectory In contrast to a transaction database, appending to an existing tra-

jectory is more important than updating an existing trajectory as a trajectory records the historical

information of moving object, which means that such data should not change once it has been

generated. To expand an existing trajectory Te by given a trajectory ID TID and a new trajectory

Tnew, the database system only needs to select the last frame group FGlast of Te and decode it to

get a trajectory segment. Then, we connect this trajectory segment with Tnew. After this, Tnew is

allocated and encoded as the new frame groups with related frame group column ID. Finally, the

last frame group FGlast is removed and these new frame groups are inserted into database.

3.5 Summary

This chapter first presents a preliminary study on heterogeneous trajectory data, which shows that

heterogeneous trajectory data can harm the trajectory query processing. Then an I/P frame struc-

ture, a new in-memory column-oriented storage data structure for storing and querying trajectory
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data, is proposed. Finally, an I/P frame based column-oriented data structure with CPU-cache

optimisation is implemented to provide an efficient storage system.



Chapter 4

Query Processing in SharkDB

4.1 Introduction

The trajectory of a moving object is typically modelled as a time-stamped sequence of consecu-

tive locations in a multidimensional (generally two or three dimensional) space. Large amounts of

trajectory data are currently generated and managed in many application domains such as environ-

mental information systems, meteorology, wireless technology, video tracking, and video motion

capture [139, 100, 136, 120, 24, 133, 23]. In general, the most basic problem of query processing

in SharkDB is to support frequently used database operations, which are used to import a new

trajectory into the system or download a specific trajectory from the system.

In addition, such types of data have provided unprecedented information to help us understand

the behaviour of moving objects, and resulted in growing interest in the data analysis of such data.

In analytical tasks, two fundamental trajectory queries are often used: the window query and the

kNN query. Typical examples include collecting GPS location histories of taxicabs for safety and

management purposes, tracking animals for their migration patterns, urban planning by detecting

hot areas from human trajectories, and using traffic trajectories for road optimisation.

Another important problem in such analytical tasks is designing techniques for identifying

trajectories that are similar. Such techniques can be used by many data analysis tasks that include

trajectory clustering, classification, and mining, which have a broad range of real applications.

For instance, in many sports such as football and tennis, it is very useful for sports researchers

71
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to figure out the movement patterns of top players by finding similar trajectories in the motion of

objects (players, balls). By analysing similar trajectories of animals, it is possible to determine

their migration patterns. In a city traffic monitoring system, it is helpful to locate popular routes

by comparing similarities between the trajectories of vehicles.

In this chapter, to address the above problems, a set of queries/operations are proposed in

SharkDB. The proposed queries/operations are divided into three categories that include basic op-

erations, advanced operations and analytic operations. The details of these categories are listed

below. Then, for each category, several algorithms are implemented in order to solve them effi-

ciently.

Basic Operations This category represents classic and frequently used database operations as

the basic operations. The basic operations normally contain SELECT, DELETE, INSERT and AP-

PEND as classic trajectory operations for the transaction databases, which consider each trajectory

as a single record. More specifically, the INSERT operation is used to add new trajectory data

with a new trajectory ID into the database. The DELETE operation is used to delete an existing

trajectory (by trajectory ID) from SharkDB. The SELECT operation is used to retrieve an existing

trajectory by trajectory ID, which can be done by decoding its frame points in I/P frame structure

to the original format. As both spatial and temporal information are recorded in trajectory data

permanently, trajectory data should not be changed. Therefore, in SharkDB, trajectory data is con-

sidered to be a kind of historical data, which means that the UPDATE operation (i.e. update the

information of an existing trajectory) is not supported. In addition, spatio-temporal information

can be continuously collected from the same moving object. Thus, in SharkDB, an APPEND op-

eration is proposed instead of the UPDATE operation. The APPEND operation is used to add new

information (i.e. sample points) into an existing trajectory. Therefore, the new spatio-temporal

information from same moving object can be appended to the existing trajectory by this moving

object identifier (i.e. trajectory ID). The implementation details of these operations are discussed

in Section 4.2.

Advanced Operations This category represents a set of advanced operations that are typically

applied to trajectory data and include the window query and the kNN query. A window query will

find all trajectories in the data set that are active during a given period and that pass through a

given region. A kNN query will find the top-k trajectories in the trajectory data set that are close
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to a given point and are active during a given period of time. These queries can be extended to

many real applications such as urban computing, and traffic monitoring. Thus the queries that

are included in this category are the foundation of trajectory analytic tasks. Algorithms that can

process these operations efficiently are proposed in Section 4.3.

Analytic Operation This category represents an important operation (i.e., trajectory similarity

search) that can be applied by applications to trajectory data. Given a query trajectory, the tra-

jectory similarity search is used to find a trajectory or a set of trajectories that are similar to the

query trajectory. The similarity between two trajectories is calculated via similarity measures. In

contrast to the advanced operations, the operations in this category can be used directly in many ap-

plications such as trajectory clustering and trajectory pattern mining. The algorithms for trajectory

similarity searches in SharkDB are presented in Section 4.4.

4.2 Basic Operations

In this section, a naive approach for basic operations is proposed firstly in Section 4.2.1. Then a

multi-thread based approach is presented to improve the performance of the basic operations.

4.2.1 Single Thread based Approach

The naive way to process SELECT and DELETE by trajectory ID in I/P frame structure is to

search the auxiliary table first to get the column number of the start frame group column ID and

the end frame group column ID by given trajectory ID. Then the system scans each selected frame

column and finds the related frame group. For a SELECT operation, this frame group will be

decoded to the original trajectory sample point, and for a DELETE operation, this frame group can

be removed instantly. Since the frame groups are stored in an array structure, the rest frame groups

that are followed by the deleted frame group need to be packed (i.e. to be connected with head

part of array) to avoid memory fragments. Although such operation may encounter some overhead

since the memory copy takes some time, the performance of DELETE operation is still acceptable.

This is because the memory copy is much faster than hard disk. The performance evaluation is

described in Chapter 5.
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To insert a new trajectory into SharkDB, first the raw trajectory is encoded to the frame-based

structure, which was proposed in the previous section. Then it splits these frame points into frame

groups, and each frame group is encoded as an I-frame point and P-frame points. Finally, these

frame groups are added into the relevant frame group columns.

In contrast to the INSERT operation, to expand a trajectory Told by given a trajectory ID TID

and a new trajectory Tnew, APPEND operation needs to select only the last frame group FGlast of

Told and decode it to get a trajectory segment. Then, Tnew is connected to this trajectory segment.

After this, it allocates and encodes this trajectory to get the new frame groups with related frame

group column ID and TID. Finally, the last frame group FGlast is removed and these new frame

groups are inserted into the frame group columns.

4.2.2 Multi-Thread based Approach

For importing based operations (i.e. SELECT and APPEND), the performance is mainly limited

by I/O speed, since the data needs to be imported from an external source (e.g. hard disk). On

the other hand, there is no I/O cost when loading data from memory. Therefore, the bottleneck of

loading based operations (i.e. SELECT and DELETE) is the speed of CPU, since these operations

rely on sequential scanning of the main memory, which is operated by the CPU. As discussed

previously, it is easy to see that the processing speed of SELECT and DELETE operations on a

traditional row-oriented data structure is faster than on an I/P frame data structure because an I/P

frame structure needs multiple sequential scans to re-build the original trajectory; and a traditional

row-oriented data structure can get the original trajectory via just one memory scan.

A general configuration for a modern server contains multiple CPUs with multi-cores built-in

into each CPU. Therefore, it has become standard that modern servers support parallel computing

for query processing, which can fully release the power of hardware. The problem of parallel query

processing is a divide and conquer problem. Thus the challenges are how to divide a query into

sub-queries to send to different threads and how to combine the sub-query results into the final

result. Based on the advantages of the I/P frame data structure, the divide and conquer process

is simple, and very stable. This is because, each frame group is highly independent and “share

nothing” with other frame groups. In this section, the parallel approach for basic operations is
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discussed, which can reduce the running time of these operations, especially for SELECT and

DELETE operations.

The SELECT operation is straightforward on a single thread, but not so straightforward for

parallel computing. For SELECT operation processing, the algorithm searches for a given trajec-

tory ID in the auxiliary table to get the range frame groups that contain the information about the

query trajectory. Then this algorithm creates a threads pool, and each thread is assigned to a CPU

core. In the next step, selected frame groups are split into m blocks, where m equals the number

of threads in the thread pool and is based on user profile or system availability; and each block is

assigned one single thread for processing. After this, for each thread, the decoding process can

also be done independently and in parallel without needing any other frame group’s information.

Finally, these decoded frame groups (i.e. simple points) can be combined and returned as the final

results. The implementation of the DELETE operation is similar to the SELECT operation, the

main difference for the DELETE operation is that the frame groups do not need to be decoded.

Hence, once the frame group is found, it can be removed from the column directly.

For INSERT and APPEND operations, parallel computing techniques are applied to the encod-

ing phase. Therefore, after the input trajectory has been split into frame groups, these frame groups

are assigned into m blocks and each block is sent to a single thread to encode to frame points (e.g.

I-frame point and P-frame points). Unfortunately, as discussed before, the performance of such

operations are limited by system I/O performance and system I/O will not gain any benefits from

parallel computing techniques due to hardware limitations. However, applying parallel computing

in both INSERT and APPEND can still improve the overall performance since the encoding time

is reduced.

4.3 Advanced Operations

There are two fundamental advanced operation query types, window query and top-k nearest neigh-

bour (kNN) query. In this section, a simple frame based approach and a hierarchical I/P frame data

structure based approach are proposed to answer these queries. A parallel version for such ap-

proaches is also discussed.
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4.3.1 Simple Frame based Approach

For query processing, it is necessary to reduce the number of reconstructed trajectory segments

in the frame group as much as possible. In other words, the unnecessary frame groups should be

pruned as much as possible. Therefore, a two phase processing is deployed that includes pruning

and refining, which are shown in Algorithm 1. In the pruning phase, first the frame group columns

which are out of the given time period (Line 1) are filtered out. For the I-frame point (i.e. origi-

nal trajectory sample point) in each frame group, the algorithm calculates the maximum moving

distance Dmax for its P-frame points members (Line 2–4). The Dmax is equal to the user defined

maximum possible moving speed multiple by the time duration of this frame group. Then we use

Dmax as the boundary value of this trajectory segment for pruning (Line 5) based on different query

types (i.e. window query or kNN query). In the refining phase (Line 6–8) , trajectory segments

are decoded and reconstructed from the I-frame point with its related P-frame points and the final

answer is found, based on the given query type. Details of the differences in query processing

between the window query and the kNN query are discussed below.

Window Query: Given a spatio-temporal query window W (Area, Interval), where Area is

the spatial window and Interval is the temporal window. A window query is to find all trajectory

segments TS (TS.spatial denotes the spatial information and TS.timestamp denotes the tempo-

ral information) in a dataset, where TS.spatial is contained in Area and TS.timestamp is within

Interval. Therefore, for the window query, at the pruning phase (Line 5),Dmax is used to estimate

the moving area of its related frame group (i.e. trajectory segment). If the moving area overlaps

the query window, the P-frame points are decoded to find the actual answer to the window query

(Line 7–8).

kNN Query: For the kNN query, this algorithm calculates the distance from the I-frame point

to the query point and subtracts the Dmax as the lower bound. If the lower bound is larger than

the current kth closest true distance, which means this trajectory segment cannot be closer than

the current best examined trajectory, it can be pruned safely (Line 5). Otherwise, this trajectory

segment moves into the refining phase (Line 6–8) to find its true distance to the query point. Since

it is each frame group (i.e. the trajectory segment)being processed, and not the complete trajectory,

it is necessary to avoid different frame groups with same trajectory ID being pushed into result set.
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Algorithm 1: Frame Search Algorithm
Input: Query Q, Frame structure F

Output: Results set

1 ColumnIds← TimeInterval(Q, F );

2 for i← ColumnIds.start to ColumnIds.end do

3 foreach frame group FG in FrameColumn.get(i) do

4 Dmax ← CalculateDistance(FG, maxSpeed);

5 if Check(Dmax, Q) then

6 Tr = Decode(FG);

7 if CheckTrajectory(Tr, Q) then

8 Update(Tr);

9 end

10 end

11 end

12 end

This situation can lead to several trajectory segments with same trajectory ID (i.e. these segments

belong to one trajectory) to be consider as final results. It can cause the number of final results

(i.e. the returned trajectories) to be less than k, which will make this query fail. Therefore, the

priority heap is extended to a hashed priority heap, in which its elements are hashed by trajectory

ID. When updating a new frame group, the system will first check the elements in the results set

to see whether there is an element containing the same trajectory ID as the new frame group. If it

exists, the system will only update the existing element by using this new frame group rather than

creating a new element in the results set.

4.3.2 Hierarchical Frame based Approach

During the query processing, the most time consuming part is the sequential searching of the I-

frame columns. To reduce the searching time, this section proposes a new hierarchical frame

structure that expands on the simple frame based approach.
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As Fig. 4.1 shows, this structure is built from bottom to top, which is based on the sample I/P

frame data structure to reduce the number of I-frame columns visited during query processing. To

reduce the complexity of the whole multi-layer structure, the frame group is still used as the basic

unit in the structure. First of all, this algorithm extracts the I-frame columns from the current top

level to build a new I/P frame structure layer, which becomes an upper level of the current level.

Then it assigns every n I-frame columns into a frame group, where n is the number of frames in

a frame group. After this, it uses the same encoding methods proposed in the previous section to

encode the I-frame columns in the new frame groups. That means, in each new frame group, it

can keep the first I-frame column unchanged as the new I-frame column and re-encode the rest of

the I-frame columns as new P-frame columns. In Fig. 4.1, an example of the process used to build

a level 2 structure from a level 1 structure and build a level 3 structure from a level 2 structure,

respectively. During the processing, new layers are built until the time duration of the frame group

is larger than the average time duration of the trajectories at the current level. This is because if it

does not stop building at this level, most trajectories will be represented as a single frame point at

the upper level, which cannot assist in improving query processing.

Level 1

Level 2

Level 3

��� ��� ��� ��� ��� ��� ��� ��	 ��


��� ��� ���

���

FIGURE 4.1: Hierarchical I/P-frame Data Structure

Although the encoding technology can reduce the space consumption substantially, keeping

the I-frame column information in each level is still consuming space and will limit the number of

layers in hierarchical structure due to memory space limitations.

When building a new layer, for each new I-frame point that needs to be copied from the lower
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level, it copies only the memory address from original I-frame point instead of copying the infor-

mation in full. The full information for such I-frame points is kept in the bottom level frames only.

Therefore, we can reduce the memory consumption for this data structure.

In addition, the same strategy is used to copy/encode new level P-frame points. Hence, when

the algorithm accesses such a P-frame point, it can get the information directly without needing

to decode the P-frame point, which can increase the traversing speed of the algorithm on this data

structure.

At the same time, in the highest level of the hierarchical structure, the frame points for each

trajectory become sparse, which leads to not only making the time duration between each frame

column very large, but also the distance between two frame points becomes longer. Hence, it is

easy to see that the bound Dmax will be too large to trigger the pruning. A large value of Dmax will

increase the searching space dramatically, which can reduce the performance of query processing

or even make it the same as the exhausted search. To solve this issue, for each frame group starting

at the bottom level, this algorithm calculates its MBR information and embeds it into its I-frame

point instead of calculating the Dmax during query processing. The upper level MBR information

is calculated based on the MBR information of its lower level frame groups to keep the upper level

MBR covering all of MBRs in the lower level frame groups used to build this frame group. For

example, the MBR of FG2,1 is the superset of MBRs that include frame groups from FG1,1 to

FG1,3.

In addition, since the structure of each layer in the whole hierarchical structure is the same, this

two phase processing can be maintained with fewer changes. To traverse the hierarchical structure,

this algorithm uses the best first algorithm as shown in Algorithm 2. Firstly, it initiates a priority

heap and pushes the first level frame groups within the query time range into it (Line 1). Then if a

popped frame group is already in the bottom level, it uses an algorithm the same as Algorithm 1 to

update the results set (Line 3–4). Otherwise, the algorithm travels into next level by decoding the

popped frame group directly, and filtering out decoded frame groups in next level that are outside

the time range of query (Line 6–7). Finally, it examines the filtered frame groups and updates the

priority queue in Line 8–9. Now we detail the process for each type of query:

Window Query: For each selected frame group, the algorithm checks the MBR information

in its I-frame point. If the MBR overlaps the query window, it decodes them. For example, in
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Algorithm 2: Hierarchical Frame Search Algorithm
Input: Query Q, Hierarchical Frame structure HF

Output: Results set

1 PQ← initial(HF , Q.timeRange) ;

2 while FG← PQ.pop() do

3 if FG at bottom level then

4 Same as Algorithm. 1;

5 else

6 framegroups← Decode(FG, HF );

7 foreach frame group FG in framegroups do

8 if Check(FG, Q) then

9 PQ.push(FG);

10 end

11 end

12 end

13 end

Fig. 4.1, if frame group FG3,1 at level 3 is popped from the candidate list, it then selects each

frame group from FG2,1 to FG2,3 at level 2, which are used to build frame group FG3,1. The

refining phase is the same as for the simple frame based approach (Line 4).

kNN Query: For the kNN query, the algorithm uses the minimum distance from the MBR to

the query point as the new low bound for the pruning phase. The Check() function calculates its

low bound and pushes it into the priority heap. As for Algorithm 1, if a frame group is already in

the bottom level, it calculates the distance from the query point to the frame group. If this distance

is less than the closest distance so far, the frame group with this distance is pushed into the hashed

priority heap to update the results set.



4.3 ADVANCED OPERATIONS 81

4.3.3 Parallel Query Processing on Frame Structure

A general configuration of a modern server typically contains multiple CPUs with multi-cores

built-in each CPU. Therefore, most standard servers will support parallel computing for query pro-

cessing, which can fully release the power of parallel computing. The problem of parallel query

processing is like a divide and conquer problem, for example, how to divide a query into sub-

queries to send to different threads and how to combine the sub-query results into the final result.

Based on the advantage of an I/P frame data structure, where each frame group is highly indepen-

dent and “share nothing” with other frame groups, the divide and conquer process is simple, and

very stable. Algorithm 3 shows the parallel query processing of a hierarchical structure. Firstly,

the algorithm creates a thread pool to manage the process threads (Line 1). Then it assign each

frame group column to a different thread to process and pushes the results to the queue (Line 2).

After this, parallel decoding is used to get the next level frame groups from the popped frame group

and assign them to a different thread. Each individual thread runs Algorithm 2 to check and keep

traversing the hierarchy. After this, it merges the results from each individual thread. The details

of approaches for the parallel window query, and the parallel kNN query are discussed below.

Algorithm 3: Parallel Search Algorithm
Input: Query Q, Hierarchical Frame structure HF

Output: Results set

1 TP ← thread initial;

2 PQ← parallelInitial(HF , Q.timeRange, TP );

3 while FG← PQ.pop() do

4 parallelDecoding(FG, HF , TP );

5 Run Algorithm 2 in each single thread;

6 Merge results from each thread and do Update();

7 end

Window Query: To store the results in parallel, an array[x][y] is created to organise the result

trajectories; and each array[x] represents a result trajectory and each array[x][y] represents a

sample point from a result trajectory. If a thread finds its results contain new trajectories (new
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IDs), it will create new arrays in this array. When creating the new array for a new result, this

thread locks this object to block the new array creation request from other threads until finished to

avoid creating multiple arrays for one trajectory.

kNN Query: The challenge of parallelisation of the kNN query is that the value of the closest

so far (the minimum distance from current candidate trajectory to query point) needs to keep

updating efficiently to shrink the spatial search area during query processing. Therefore, during

query processing, each single thread uses the current closest so far value for pruning and returns

a new trajectory id with its distance if any better candidate is found. Once a single thread finds a

better candidate, it first applies a lock on both the closest so far variable and the hashed priority

queue. Then, this thread updates the closest so far variable if the distance to this candidate is less

than current value; and updates the hashed priority queue. Finally, this thread releases the locks and

sends a signal the to system to wait to assign the next frame group. The system continues assigning

frame group(s) to free threads in the thread pool until all the frame groups in the candidate list have

been investigated.

4.4 Analytic Operations

In this section, the problem definition of the trajectory similarity search, which considers both

spatial and temporal information, is introduced. Then, the algorithms for processing the trajectory

similarity search on the I/P frame data structure are discussed.

4.4.1 Problem Definition

The general definition of the trajectory similarity search is that given a query trajectory, the al-

gorithm will find trajectories in trajectory database, which are similar to the query trajectory (i.e.

the similarity between query trajectory and result trajectories is high). In general, the similarity

is calculated based on the distance between the query trajectory and the trajectories in database,

and the distance is calculated by similarity measures such as DTW and LCSS etc. However, this

general definition is not suitable for large scale trajectory data. There are two major issues, the first

is that a trajectory may contain several months or even several years records for only one moving
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object. In practice, most similarity trajectory analytic tasks focus on a particular time period, for

example, finding the different patterns of traffic between the peak time and off-peak time every

day. Therefore, the traditional trajectory similarity search cannot return useful results for such

trajectory analytic tasks when using large scale datasets. The second issue concerns the variable

length of trajectory data. As discussed previously, the length of each trajectory in the database

is different. For example, if we compare the similarity between a two hour trajectory and a two

month trajectory, it does not make any sense for a similarity analysis. To solve these two issues,

the definition of a trajectory similarity search is extended and refined in the following, where we

assume that all of the trajectories are frame encoded.

Given a time period [HS,HE], a query trajectory Tq and a threshold α, a trajectory similarity

query is used to find a set of trajectory segments TiSj ∈ Ti, where the length of TiSj equals Tq and

Ti is the original trajectory in trajectory database. Meanwhile, for each frame point pjm ∈ TiSj and

pqm ∈ Tq, the distance d(pjm, p
q
m) < α, where 1 6 m 6 l and l is the length of Tq, then trajectory

segment TiSj matches Tq. Moreover, the time duration of both TiSj and Tq must be within the

given time period [HS,HE].

FIGURE 4.2: Similar Trajectory

Consequently, the minimum distance between two trajectories (i.e. the minimum distance

between sample point pairs) is not used to measure the similarity between two trajectories, since

such measures are point based measures and cannot reflect the similarity between two trajectories.

For instance, as Fig. 4.2 shows, the trajectory T1 is similar to Tq, however, if we use the minimum

distance to measure the similarity, T2 will be considered more similar than T1 to Tq, since the

minimum distance between T2 and Tq is less than between T1 and Tq. Therefore, this is the reason

why we compare the distance for each point pair to make sure the result trajectory segment is

similar to the query trajectory in practice. That means if a trajectory segment TS is similar to Tq,
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the distance from pTS1 to pq1 must be less than α and the distance from pTS2 to pq2 must be less than α

and so on. Based on this measure, the trajectory T1 is now selected as a result and T2 is not, since

the distance between pq2 and p22 and the distance between pq4 and p24 are larger than α (the α is shown

as the circle). For example, in Fig. 4.3, assuming there is a trajectory T1 and a query trajectory Tq,

for the similarity query, the time period [HS,HE] is set from t1 to t7 and the threshold is α, where

HS = t1 and HE = t7. Then for trajectory T1, as we can see that a sub-trajectory from p11 to

p13, which is denoted as T1S1, and another sub-trajectory from p15 to p17, which is denoted as T1S2,

match the query trajectory Tq. Therefore, both trajectory segments T1S1 and T1S2 are selected as

the results for trajectory T1. Moreover, if the time period is changed from t1 to t5, although the

sub-trajectory p25 to p27 matches the query trajectory, the timestamp of p26 and p27 is out of the given

time period. Hence, sub-trajectory T1S2 cannot be returned as a result.

FIGURE 4.3: Example of a Similar Trajectory

4.4.2 Sliding Window based Approach

The naive way to solve this query is to decode the trajectory from the frame structure first, and

then find the results directly. It is easy to see that this naive solution is not an efficient way to

process this query as it does not utilise the advantages of the frame structure very well. Therefore,

to maintain the efficiency of the trajectory similarity search on the frame structure, three challenges

need to be addressed. The first challenge is to prune unnecessary the trajectories (i.e. frame groups)

effectively and efficiently, which means that decoding the frame should be avoided in the pruning

processing as it will add to the running time. To calculate the actual distance, the candidate frame

groups need to be decoded to the original sample point. This case raises the second challenge,

which is the requirement to decode the frame to the original sample points very quickly. The
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last challenge is to find the trajectory segments from candidate trajectory set efficiently. To solve

these challenges, a novel method is proposed, which includes three-phase, pruning, decoding and

searching. This three-phases method is discussed below.

In order to prune the frame groups and process the trajectory similarity search, the algorithm

first synchronise the query trajectory by using trajectory calibration techniques [106], if the query

trajectory does not come from the same dataset. This is because, if the trajectories are heteroge-

neous, the similarity measure may suffer from the accuracy problem, which is discussed in [106].

After the query trajectory is calibrated, the algorithm selects frame groups that are within a given

time period, and starts the first phase of query processing, which is the pruning phase.

In the pruning phase, the algorithm uses the maximum moving distance Dmax to prune the

frame group. So, the I-frame point is tested first and if the minimum distance between the I-frame

point and the query trajectory is larger than Dmax + α, it means that this frame group does not

contain any sample point that is closer to any point in the query trajectory than α and, therefore,

the frame group can be pruned safety. After all of the frame groups are scanned, the filtering

processing is executed on these candidate frame groups.

The filtering process sorts the candidate frame groups by trajectory ID. After that, it can get the

length of each continuing frame group (i.e. number of sample points) and compare that with the

length of the query trajectory. If the length of a continuing frame group is less than the length of

the query trajectory, then these frame groups can be filtered out, since their previous frame group

and next frame group have been pruned. For example, assuming a trajectory contains 5 frame

groups from FG1 to FG5 and n is set to 8. After the pruning process, frame groups FG1 and FG5

are pruned, the rest of the frame groups FG2, FG3 and FG4 are put into the candidate set. In

this filtering process, we calculate the total length of FG2, FG3 and FG4 (i.e. the sample points

that these frame groups contain). If the total length of these frame groups is less than the length

of the query trajectory, we can filter out the frame groups FG2, FG3, FG4 directly as they cannot

contain the result trajectories.

In the decoding step, the candidate frame groups can be decoded directly to re-construct the

candidate trajectories. In order to find the exact similar trajectory segments, it uses a sliding

window query to check each candidate trajectory segment. The size of the sliding window is equal

to the length of the query trajectory. During query processing, for each candidate trajectory, this
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window is moved along this trajectory, and the actual distance of each point pair is calculated

to check whether there is a segment of the candidate trajectory that meets the requirement. For

example, it can first test the trajectory segment, which is contained in the window, and then it

slides the window on to the next point to repeat the computation task. It keeps the sliding window

moving until it reaches the end of the trajectory. If there is more than one possible result such as

the trajectory segment from p14 to p16, and another trajectory segment from p15 to p17 both meet the

requirement of the query trajectory, as shown in Fig. 4.4, in this case, the average distance from the

query trajectory to each trajectory segment is calculated and the one with the minimum average

distance is selected. In this example, the trajectory segment from p14 to p16 is returned as the result.

Otherwise, if two trajectory segments are not connected, then both segments are returned in the

final results.

FIGURE 4.4: Example of Connected Trajectory

However, this algorithm still has some drawbacks. First of all, the boundary value Dmax could

be very large if n is large, which can cause low performance of pruning phase, while the searching

space is now very large. The second is that the decoding phase still needs more optimisation to

reduce the processing time. Furthermore, using a sliding window approach is time-consuming.

This is because, in most cases, the length of the query trajectory is much shorter than that of

the candidate trajectory, which means the time complexity of search phase is O(ab), where a is

the length of the candidate trajectory and b is the length of the query trajectory. Therefore, this

algorithm needs further optimisation to improve its performance.

4.4.3 MBR based Approach

As discussed previously, each frame group has been embedded into the MBR. Therefore, in the

pruning phase, this approach calculates the MBR information of the query trajectory first. And
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then this algorithm uses the minimum distance between the MBR of the query trajectory and the

MBR of each frame group as the new boundary value, which is also combined with α, to prune

the frame groups. Using the MBR information can improve the performance significantly as it

will reduce the search space considerably. Meanwhile, parallel processing can be invoked in the

filtering phase, since each frame group is independent, which is the one of advantage of the frame

structure. Following this, each frame group can be assigned to a different thread to check against

the bound values. In addition, the filter step remains the same, since it can be done very quickly.

In the decoding step, parallel processing is invoked to further accelerate the decoding speed.

Based on this, each frame group will be assigned to different threads for decoding. To continue

improving the performance of the searching phase, we utilise the benefits of the frame structure.

As all of the trajectories are synchronised, we can transform trajectories to string format (e.g.

each sample point is considered and converted a special character). Therefore, if the distance

between two sample points is less than α, these two points can be looked at as being the same

character. Moreover, it allows us to perform text similarity measures to do the similarity search on

the trajectory. Text similarity searching has been extensively studied, and the KMP algorithm [53]

is used in the algorithm. There are two advantages of using KMP to do similarity search, the first

is that the KMP algorithm is easy to extend to support the distance calculation, the second that is

the time complexity of the KMP algorithm is linear O(a + b), where a is the length of candidate

trajectory and b is the length of the query trajectory. Hence, it is more efficient than the sliding

window computation.

4.5 Summary

In this chapter, all queries/operations that are supported by SharkDB can be put into three cate-

gories. For each category, several algorithms are proposed to support efficient query processing.

In the basic operation category, parallel based algorithms are introduced to accelerate transaction

based operations. A hierarchical frame based approach with parallel implementation is proposed to

efficiently process window queries and kNN queries. Finally, a MBR+KMP algorithm is presented

to increase the performance of trajectory similarity searches.
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Chapter 5

Performance Evaluation

5.1 Introduction

In the previous chapter, a set of approaches were proposed to gain significant processing efficiency

for a large range of queries. Therefore, it is essential to conduct comprehensive experiments to

demonstrate the effectiveness and efficiency of the proposed approaches. In addition, such ex-

periments are still not enough to evaluate a database system. Generally, to evaluate the overall

performance of a database system, the market will use workload benchmarks.

Moreover, the workload benchmarks are normally divided into two parts, online transaction

processing (OLTP) workload benchmarks and online analytical processing (OLAP) workload bench-

marks. OLTP workload benchmarks are designed based on a set of transaction based operations,

which combine a number of read and write operations at the same time and only need to search a

few rows of data such as SELECT and DELETE. On the other hand, OLAP workload benchmarks

are mainly focused on analytic queries, which requires a large amount of sequential scans, but

apply only to several columns.

Workload benchmark evaluations already exist for traditional database system evaluation. How-

ever, they have never been designed to evaluate trajectory based database systems. Traditional

workload model is designed for transaction based databases and do not support typical trajectory

queries such as the window query, the kNN query and the similarity search. Moreover, the main

drawback of most workload benchmarks consider only a single or specific workload model. Such

89
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workload models do not suit real world applications because, real world applications usually con-

tain different types of workloads and, therefore, require a mixed workload model. For example, in

trajectory database system, a mixed workload model will contain all of the operations previously

discussed.

Another drawback is that most traditional database systems are disk-oriented, which means the

traditional workload models are mainly focused on evaluating the I/O performance because the I/O

is the bottleneck of disk-oriented database systems. However, the I/O cost has been removed from

main memory based database systems. Hence such workload models cannot reflect the actual

performance of main memory based database system. In this chapter, a new design workload

model is proposed to evaluate the SharkDB storage system as well as the traditional trajectory data

structure.

To sum up, in this section, the experiments are divided into two parts that include operation

level evaluation and system level evaluation. In the operation level evaluation, a set of experiments

to evaluate the performance of different approaches against the traditional method are conducted.

In the system level evaluation, a set of workload models under different usages are used to test the

system as a whole.

5.2 Operation Level Evaluation

This section conducts extensive experiments on real trajectory datasets to study the performance

of the proposed data structure and query processing methods.

5.2.1 Experimental Setup

In this evaluation, two real world trajectory datasets are used, which were collected from two big

cities. The detailed statistics of the datasets are given in Table 5.1.

The experiments at this level compare the time cost of the proposed column-oriented data struc-

tures against the row-oriented data structure. The row-oriented data structure we implemented seg-

ments the trajectories and stores them in-memory, and is called a segmented trajectory database.

In the segmented trajectory database, a trajectory is split into small segments, and each segment
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TABLE 5.1: Trajectory Dataset

Dataset # Sample Points # Trajectories Size

Dataset A 0.7 billion 243,194 14.6 GB

Dataset B 80 million 28,784 2.52 GB

contains a fixed number (or no more than a fixed number) of sample points. Each segment is de-

scribed as a MBR, which also includes its start time and end time to speed up the query processing.

To determine the optimal number of sample points in each segment, different values were trialled,

and 50 was finally chosen as it achieved the best performance in the experiments.

Table 6.2 shows the default value and the range of each parameter. In this thesis, only the

kNN query with k = 5 is examined, since how the length of the time interval of the query can

affect the performance is attracted more interest in this evaluation. Ts is denoted as the sampling

rate of the trajectory datasets, so 2Ts means the time interval of each frame is twice trajectory

sampling rate. The default value of the time interval for a frame is Ts, to avoid the accuracy issue

and to make a fair comparison with the baseline method. For the proposed hierarchical based

approach, this evaluation sets the building stop condition to be equal to the time duration of each

frame group when it reaches the average trajectory length. Meanwhile, this experiment uses 10

cores for the parallel model testing. For each set of experiments, 100 queries are generated and the

average running time is calculated as the measurement. Each query is generated randomly with

selected value of parameters. All the algorithms including the segmented trajectory database are

implemented in Java and run on a sever with two Intel 8-core CPUs and 192 GB memory.

TABLE 5.2: Parameters Setting

Parameter Default Value Range

# frames per frame group n 16 8–32

time interval per frame Ts 1/4Ts–3Ts

area of spatial window (AS) 3% 1%–1%

length of time interval (TI) 3h 1h – 11h
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5.2.2 Performance Evaluation

Frame Storage Evaluation

In this section, this experiment compares the performance between the segmented trajectory database,

frame storage, I/P frame storage and cache-aware I/P frame storage on real world datasets. To min-

imise the effect from the query processing approach, for the I/P frame storage and cache-aware I/P

frame storage, only the simple frame based approach is used; for frame storage, sequential search-

ing is applied to each frame column.

Performance of Basic Operations: Testing of the basic operations includes selecting by tra-

jectory ID and deleting by trajectory ID. Since an insertion operation involves reading data from

the hard disk into memory, the performance is limited by the read speed of the hard disks. There-

fore, this experiment does not preform perform testing on insertion operations. The experiment

will run following queries for testing, where id is a trajectory id chosen from the dataset randomly:

Selection : Select ∗ from Table where tid = id;

Deletion : Delete from Table where tid = id;

Fig. 5.17 shows the results of both selection and deletion operations. The segment trajectory

database has the worst performance since it has to scan the segment table multiple times to re-

construct the whole trajectory. Such results also indicate that the bandwidth between CPU and

memory becomes the new bottleneck of in-memory systems. Therefore, scanning the correct the

segments in the segment table is time consuming if the scanning algorithm is not optimized for

memory management.Moreover, the cache-aware I/P frame encoding method has the best perfor-

mance due to this method having been optimised for both memory and CPU cache management.

On the other hand, deletion operations are dependent on the memory speed since the data will

need to be removed from memory. Therefore, the CPU cache optimisation has no effect on the

efficiency of deletion operations.

Performance of Window Query: Firstly, the efficiency of these four approaches with differ-

ent window sizes and a default time interval is evaluated. From the results shown in Fig. 5.2, we

can see that the performance of the column-oriented data structure is very stable. This is because

the main cost of query processing on a column-oriented data structure is searching the I-frame
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FIGURE 5.1: Results of Basic Operations

columns; and the number of I-frame columns that need to be searched is fixed since the time in-

terval of all the queries is the same in this experiment. Hence, the performance of the I/P frame

storage is better than the frame storage, since fewer I-frame columns need to be searched. More-

over, the cache-aware I/P frame storage optimises the decoding performance, so it has the best

performance. Then, another experiment is conducted by changing the size of the time window of

each query, the results of which are also shown in Fig. 5.2. Based on the results, as we can see

that the length of the time interval is the main factor affecting query performance, especially for

column-oriented data structures, since the length of the time interval decides how many frames

need to be searched in I/P frame based storage.

Performance of kNN Query: The query performance with regard to the length of the time

interval for each query is investigated in these experiments. The results are shown in Fig. 5.3.

Similar to window query, the length of the time interval for each query is also the main factor to

affect query performance. But in contrast to the window query, the kNN query needs to investigate

more frame points to get the final answers. Therefore, for I/P frame data structure, the cost of

decoding P-frame points can also be much larger than for the window query. At the same time, the

cache-aware I/P frame storage can reduce the decoding cost as it is optimised for the CPU cache

to increase decoding performance. Hence, the cache-aware I/P frame data structure is much faster

than regular I/P frame data structure, compared with the window query. Finally, we can see that

the I/P frame data structure can increase the performance by at least 10 times as compared to a

row-oriented database.
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FIGURE 5.2: Performance of Window Query in Frame Storage Evaluation
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FIGURE 5.3: Performance of kNN Query

Effect of Frame Rate The next experiment studies the query performance as the frame rate

varies, with the running time of the kNN query on dataset A used as the measurement. As the



5.2 OPERATION LEVEL EVALUATION 95

frame rate will cause the same effects in the three types of frame data structure, we only examine

the cache aware I/P frame storage. The results are presented in Fig. 5.4. Without considering the

accuracy, the experiment with 3Ts has the best performance since the size of whole dataset has been

reduced significantly. In addition, the increasing frame rate will make the distance between two

sample points longer thus increasing the search area for each frame group. Therefore, it causes

more candidate frame groups to be pushed into the candidate list and consequently reduce the

performance in the refining phase.
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FIGURE 5.4: Effect of Frame Rate

Effect of Number of Frames in each Frame Group: Finally, the query performance with

different n values is evaluated, using the same measurement method as the effect of frame rate

experiments. The running time by the length of the time interval is reported in Fig. 5.5. As the

basic frame data structure does not have a frame group structure; and both I/P frame data structure

and cache-aware I/P frame data structure use the same frame group structure, in this experiment

we examined only the cache-aware I/P frame data structure. It is easy to see that the performance

increases as the value of n increases. This is because, in the query processing on the P-frames,

the system can access the P-frame points directly without needing to search the P-frame columns

and send to the CPU to decode, which reduces the search time and increases the performance.

Meanwhile, the system can gain more benefits from the compression technique, which can reduce

the consumption of memory bandwidth.
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FIGURE 5.5: Effect of Number of Frames

Query Processing Evaluation

The next set of experiments focus on the performance of different query processing approaches: a

simple frame based approach, a hierarchical frame based approach and a hierarchical frame based

approach with parallel computing. We will test the performance of the window query and the kNN

query.

Performance of Basic Operations Since both flat and hierarchical frame based approaches

are designed for analytic query processing (i.e. window query, kNN query and similarity search),

for basic operations this experiment involves only comparing a the parallel computing option with

that of single thread processing. The results are shown in Fig. 5.6. As we can see, the performance

of the operations using parallel processing significantly outperform that of the single thread. This

is because the parallel computing can perform multiple frame group searching and re-construct

trajectories at the same time.

Performance of Window Query Similar to the previous experiments, the results are illustrated

in Fig. 5.7. It is no surprise that, the hierarchical frame based approach is better than simple

frame based approach, which shows that using the hierarchical structure and MBR can reduce the

search space significantly. On the other hand, the parallel computing technology can improve the

performance as the time interval increases. This is because the overhead cost of parallel computing

is more than that of a single thread, since it has to create a thread pool to manage the threads

at beginning, which leads to a lower increase in overall performance if the investigated I-frame

columns are small (i.e. short time interval). But this overhead cost is constant, so the parallel
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FIGURE 5.6: Results of Basic Operations

computing approach can achieve a high increase in performance when the search space is large.
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FIGURE 5.7: Performance of Window Query in Query Processing Evaluation
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Performance of kNN Query Let us now evaluate the performance of kNN query with chang-

ing the length of the time interval, the results of which are shown in Fig. 5.8. As we can see the

hierarchical frame based approach can improve the performance around 30%. As the kNN query

needs to investigate more frames, the parallel computing approach boosts the performance close to

the theoretical performance improvement, which is near 10 times faster as compared with a single

thread.
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FIGURE 5.8: Performance of kNN Query
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FIGURE 5.9: Scalability

Scalability Evaluation The scalability of all the approaches under two queries/operations is

also evaluated. To achieve this, from dataset A, we randomly selected a number of trajectories with

the number varying from 70 k to (approx.) 243 k. Therefore, when the number of trajectories is

increased, the density of trajectories in a certain area (i.e. the area is covered by the whole trajectory
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dataset) will also increase. The running times are reported in Fig. 5.9, which illustrates that the

time cost for each of the three data structure types increases linearly/sub-linearly with respect to

the size of dataset. The hierarchical frame based approach with parallel computing achieves the

best performance in this experiment.

Evaluation of Trajectory Similarity Search

In this section, four algorithms with different processing strategies are implemented. The similarity

search algorithms are divided into two main parts. The first part comprises the pruning phase and

decoding phase and the second part comprises the calculation phase. Details of the implemented

algorithms are listed in Table 5.3, where S denotes a single thread based algorithm, P denotes

a multi-thread based algorithm and RC is denoted as reconstructing algorithm (i.e. decoding

algorithm). Moreover, the same real world datasets are used for this experiment, and the additional

parameter settings are listed in Table 5.4.

TABLE 5.3: Implemented Algorithms

Algorithm The First Part The Second Part

Naive algorithm S-Dmax + S-RC Sliding Window

S-MBR-KMP S-MBR + S-RC KMP

P-MBR-SW P -MBR + P -RC Sliding Window

P-MBR-KMP P -MBR + P -RC KMP

TABLE 5.4: Parameters Setting on Similarity Tests

Parameter Default Value Range

# simple points of query 150 30–330

length of α (meters) 100 50–300

Effect of Query Time Interval The query time interval is a main factor that can affect the

performance of query processing. The results of these algorithms are shown in Fig. 5.10 for both

datasets. The running time of the naive algorithm is increasing very fast while the duration of the

query time is increasing, since a longer query time will require more frame groups (i.e. more sam-

ple points) to be tested. The performance of the single thread MBR-KMP algorithm is better than
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that of the naive algorithm due to a better pruning algorithm and distance calculating algorithm,

however, the trend of performance is similar to the naive algorithm. For multi-thread MBR-KMP

algorithm, as we can see, its performance is same as for the single thread MBR-KMP algorithm.

This is because the overhead cost of multi-thread processing is more than that for single-thread,

such as thread pool management and thread allocation management. But, when the duration of

the query time increases, the power of parallel processing starts to release, and as we can see, the

performance of the multi-thread MBR-KMP algorithm is stable. Therefore, the performance of the

multi-thread MBR-KMP algorithm dominates that of the other two algorithms.
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FIGURE 5.10: Effect of Query Time Interval

Effect of α The next experiment studies the different values of α, since it is another factor that

affects the performance of queries. The results of these algorithms are reported in Fig. 5.11. Com-

paring the multi-thread MBR-DP algorithm and the multi-thread MBR-KMP algorithm, the multi-

thread MBR-DP algorithm is 20% faster than multi-thread MBR-DP algorithm, which means KMP

algorithm can reduce the computational cost compare with the sliding window algorithm. How-

ever, as we can see, the running time of the multi-thread MBR-KMP algorithm is five times faster

than the naive method, which shows the advantage of this pruning method on a frame structure as

it can prune the unnecessary frame groups effectively, and significantly reduce the time required

for the last calculating step. The performance of the naive method decreases very quickly, since a

larger α will lead the pruning method of the naive method to lose efficacy and increase the calcu-

lation workload. Moreover, the performance of the multi-thread MBR-KMP algorithm is stable,

and shows that the parallel processing can maintain the performance of these tasks very well.
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FIGURE 5.11: Effect of α

Effect of Query Length The impact of varying query length is shown in Fig. 5.12. There is no

doubt that the longer query trajectories need more running time to get the results. This is because,

the longer query trajectories are likely to intersect with more trajectories in the trajectory dataset;

and this will increase the number of trajectories pushed into the calculation phase. First of all, it

can be seen that the performance of the multi-thread MBR-KMP algorithm is two times faster than

single-thread MBR-KMP algorithm, which provides the evidence that parallel computing can gain

many benefits from this novel frame structure, even if our algorithm is only partially paralleled (i.e.

the pruning phase and decoding phase are paralleled, but the calculation phase is not). Moreover,

it also shows that the parallel processing can significantly improve the performance of the pruning

and decoding algorithms. In addition, the running time of the sliding window based algorithm can

be seen to increase faster than the KMP based algorithm as a longer query length will require more

calculations in the calculation phase.

Effect of n In this test, the performance with different values of n is investigated. The results

are shown in Fig. 5.13. As n (n 6 24) increases, the performance of these algorithms also in-

creases. The reason is that the larger the value of n is set in an I/P frame structure, the fewer frame

groups will be checked in the pruning phase. Moreover, a frame group with more P-frame points

will also have better performance than a frame group with fewer P-frame points, since decoding

P-frame points is much faster than searching for frame groups (i.e. I-frame points) in the memory.

It is obvious that the number of frame groups can be reduced by setting a large n, which means

the performance can also increase considerably with a large n. Therefore, the value of n can affect
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FIGURE 5.12: Effect of Query Length

the performance of the similarity search more significantly than the window query and the kNN

query, since the similarity search requires decoding more frame groups. In addition, a large value

of n will also increase the size of the MBR or Dmax of each frame group and thus reduce the

efficiency of the pruning process. As we can see, when n is larger than 24, the increased decoding

performance is counteracted by inefficient pruning processing.
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FIGURE 5.13: Effect of changing the valur of n

Effect of TS The results of the similarity search are similar to the results of the window query

and the kNN query, and are shown in Fig. 5.14. The lowest frame rate (i.e. 3Ts) has the best

performance. Moreover, the performance of the multi-thread MBR-KMP algorithm is much better

than that of the naive algorithm, when the frame rate is set to its highest value (i.e. 1/4 Ts). As the

highest frame rate has the largest data size in this experiment, it shows that the parallel computing



5.2 OPERATION LEVEL EVALUATION 103

is a good idea for processing of large amounts of data.
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FIGURE 5.14: Effect of TS

5.2.3 Accuracy Evaluation

The accuracy testing is designed particularly for frame type of data structure, and as mentioned

above, the time interval of each frame (i.e. frame rate) will affect the accuracy of the frame encod-

ing methods if time interval of each frame is larger than sampling frequency. At the same time, the

compression ratio is calculated by the size of the encoded data in the memory divided by the size

of the original data in the memory.

Effect of Frame Rate The accuracy is evaluated by changing the time interval of each frame.

To measure the accuracy, we first randomly select 200 points; and find their kNN trajectories as

ground truth, where k = 100. Then we use these points as the query points to do the same query

processing on our approaches. After getting the results, we use recall to measure the accuracy.

For example, for a query point, its kNN (k = 5) ground truth is 1, 2, 3, 4, 5, and result of the

proposed approaches is 1, 2, 3, 4, 6, and its recall is 80%. The results are shown in Table 5.5 with

their compression ratios. As expected, increasing the time interval of a frame will result in a

low accuracy rate, but the compression performance is increased in this case. On the other hand,

when the time interval of each frame is less than the sampling rate of the trajectory, there is no

improvement in accuracy, but the need for memory is increased.

Based on the previous experiment, it is clear that changing the frame rate in the I/P frame

structure can affect the accuracy of results significantly. In this experiment, we set five different
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TABLE 5.5: The results of Accuracy

Dataset A Dataset B

Time interval Recall Ratio Recall Ratio

1/4 Ts 100% 69.3% 100% 69.3%

1/2 Ts 100% 36.3% 100% 36.3%

Ts 100% 18.3% 100% 18.3%

2T2 82% 11.2% 86% 11.2%

3T3 76% 7.4% 77% 7.4%

frame rates, which are same as for the previous experiment, but with different α values to test the

accuracy of the similarity search. The α is set to a value from 50m to 300m. The accuracy is also

measured by recall, and the results are shown in Fig. 5.15. These is no doubt that the accuracy

will be reduced, when we set the frame rate to be the same as the original trajectory sampling rate.

As expected, if the frame rate is larger than original trajectory sampling rate (e.g. 1/4 Ts and 1/2

Ts) and the α value is small, the accuracy of the results will not be affected. This is because, the

interpolated sample points do not change the shape of the trajectory, and no information will be

lost due to the interpolation. Similar to the window query and the kNN query, the accuracy can be

affected significantly when the frame rate is lower than the original trajectory sampling rate as the

shape of the trajectory has been changed due to many sample points of trajectories having been

removed. Finally, as we can see, the accuracy is very low with a small value of α. Therefore, it

has a trade-off between data size and accuracy. If the application is more sensitive about accurate

results, it is better to choose higher frame rates.

5.2.4 Compression Ratio Evaluation

Then this experiment investigates the compression ratio with regard to the number of frames in a

frame group. The results are shown in Table 5.6 for both datasets. We clear observe that e.g. the

higher the value of n, the higher compression ratio we can achieve. This is because increasing n

will reduce the total number of I-frame columns in the storage system; and the cost of retrieving

P-frame points is much less than I-frame points.
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FIGURE 5.15: Accuracy

TABLE 5.6: The Results of Compression Ratio

n = 8 n = 16 n = 24 n = 32

Dataset A 21.1% 18.3% 16.1% 15.0%

Dataset B 21.1% 18.3% 16.1% 15.0%

5.2.5 Synthetic Trajectory Data Evaluation

In this section, a synthetic trajectory dataset is generated with 3 billion sample points; and the sam-

pling rate distribution is based on normal distribution with different mean and standard deviation

of sampling rate. The range of means and standard deviations of the sampling rates is shown in

Table 5.7. Meanwhile the sampling rate ranges from 30 seconds to 240 seconds during generation.

Moreover, in this experiment, the frame rate is set to equal to the mean sampling rate, and the same

settings are used (kNN query) as in the previous experiment for accuracy and performance testing.

TABLE 5.7: Synthetic Evaluation Parameters Setting

Parameter Default Value Range

mean sampling rate (seconds) 120 60—180

standard deviation 15 5—25

Effect of Standard Deviation Fig. 5.16(a) illustrates the effect of different standard deviations

of the sampling rate. As we can see, the heterogeneous trajectory can negatively impact the accu-

racy of the query processing, especially when the standard derivation is high. This is because, if the
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sampling rate of a part of the trajectory is higher than the mean sampling rate, some of the sample

points will be removed during frame encoding. Therefore, the higher the standard deviation, the

more sample points will be removed, thus decreasing the accuracy rate, similar to the evaluation

of the effect of frame rate. However, as we can see that this system has a good tolerance for low

standard deviations. On the other hand, there is no effect on performance for different standard

deviation since it does not affect the frame rate.

Effect of Mean Sampling Rates Fig. 5.16(b) shows the results of different mean sampling

rates. We can find that performance increases with lower mean sampling rate, since fewer frame

group columns will be scanned during the query processing. This is because, the larger mean

sampling rate has a longer frame rate, which reduces the number of frame group columns in a

certain time period. At the same time, based on the evaluation settings, the smaller mean sampling

rate can increase the accuracy. This can be explained by the smaller frame time interval in each

frame, which means the number of sample points that need to be removed is lower than the larger

frame time interval for trajectories with high sampling rates.
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FIGURE 5.16: Synthetic Evaluation

5.3 System Level Evaluation

This section first introduces the ideas of benchmarks that are designed as a workload model to test

the system. Then parameters selection is discussed, and finally, there is as a focus on the datasets

that are used for evaluation.
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5.3.1 Workload Model Design

A key motivation to use an in-memory database system to manage trajectory data is to gain signif-

icant processing efficiency for a large range of queries. Therefore, it is essential to have a set of

common trajectory queries to use for testing traditional trajectory database design approaches.

To achieve this goal, five operations are invoked and divided into three categories in this work-

load model. The five operations are SELECT, DELETE, Window Query, kNN Query and Similar-

ity Search. The reason why this design does not invoke INSERT and APPEND operations is that

the performance of such operations is limited by the I/O performance, since the data needs to be

read from external storage such as hard disk. The I/O performance evaluation is out of scope of

this thesis as it focuses on in-memory systems. Hence, INSERT and APPEND operation are not

included in the workload model.

As discussed previously, the basic operations are the “lightest” operations performed in SharkDB

storage system, and the analytic operation is the heaviest operation. To fully test SharkDB, three

types of workloads are prepared to simulate different system usages: a typical workload, a opera-

tional workload and an analytic workload. Each workload contains a different weighted mixture of

the trajectory operations discussed above. The weight of each operation is marked as a percentage,

for example, if the weight of a operation is 15%, it will be tested 15 times in a workload evaluation

with 100 times testing for all operations. First of all, the typical workload will focus on transaction

based operations (i.e. SELECT and DELETE). Secondly, the operational workload will focus on

fundamental trajectory queries (i.e. window query and kNN query). The last workload is analytic

workload, which will focus on analytic queries. The details of each workload are list in Table 5.8.

TABLE 5.8: Workload Setting

SELECT DELETE Window Query kNN Query Similarity Search

Typical Workload 35% 35% 10% 10% 10%

Operational Workload 10% 10% 35% 35% 10%

Analytic Workload 5% 5% 10% 10% 70%
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5.3.2 Parameters Selection and Datasets

The parameters of SharkDB can be divided into two categories, the first are the system based pa-

rameters such as the value of n and the frame rate. The second category is query based parameters

such as the temporal window of the query or the average length of selected trajectory. The objective

of this workload evaluation is to evaluate the performance of SharkDB under different workload

usages, therefore, we keep the system based parameters is fixed and tune the query based parame-

ters. For each operation type, the key parameters are selected based on previous experiments, and

are the key factors that affect the performance of the various queries. The details of the parameters

are listed in Table 5.9.

TABLE 5.9: Parameters Setting

Parameter Default Value Range

Length of Trajectory 3000(sample points) 1500–9000

length of time interval 3h 1h – 11h

length of α (meters) 100 50–300

The datasets used in the benchmark evaluations are the same datasets are used as the previous

chapters. Each sample point contains three attributes, longitude, latitude and a timestampe. Each

attribute costs 8 bytes to store in the main memory in raw format. Meanwhile, the trajectory ID

will cost 4 bytes to be stored in I-frame column in the SharkDB. For delta encoding, we use 4

bytes to encode spatial information (the error of each sample point is less 1 meter). The details of

datasets are listed in Table 5.10.

TABLE 5.10: Trajectory Dataset

Dataset # Sample Points # Trajectories Size

Dataset A 0.7 billion 243,194 14.6 GB

Dataset B 80 million 28,784 2.52 GB

In this benchmark evaluation, the segmented trajectory database is used, which is same as

previous experiments. For each set of experiments, 10 CPU cores are used for SharkDB; and a

total 10000 of queries are generated in each evaluation tests. And the number of each type query
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are based on the weighted setting in above. Then the average speed is calculated as a measure. All

benchmarks are run on a sever with two Intel 8-core CPUs and 192 GB memory.

5.3.3 Typical Workload Evaluation

In this section, the segmented trajectory database and SharkDB are tested under a typical workload

model.

Tune Parameters of Basic Operations First, this workload compares the performance of

SharkDB with the segmented trajectory database for different trajectory length, which is shown

in Fig. 5.17 and Fig. 5.18. As we can see, even the performance of the DELETE operation in the

segmented trajectory database is better than in SharkDB at the large dataset. The overall workload

performance of SharkDB is still better than the segmented trajectory database. This is because

SharkDB significantly improves the performance of advanced operations and analytic operations.
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FIGURE 5.17: Typical Workload — Effect of Trajectory Length for SELECT

On the other hand, the trajectory based queries (i.e. window query, kNN query and similarity

search) need more CPU time than the basic query to process, especially on large dataset. As the

length of the trajectory increases, the performance difference between the segmented trajectory

database and SharkDB reduces slightly, since SharkDB needs more time to search and decode

frame codes. However, such cases will not affect the overall performance workload testing as a

whole.

Tune Parameters of Advanced Operations
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FIGURE 5.18: Typical Workload — Effect of Trajectory Length for DELETE

This workload evaluation compares the performance of the different approaches for advanced

queries. As Fig. 5.19 and Fig. 5.20 show, when the query time interval of the kNN query increases,

the overall running time in the segmented trajectory database increases, since the kNN query is

the most time consuming query for the segmented trajectory database. Even if the weight of the

kNN query is small in this workload evaluation, it still can affect the overall performance of the

segmented trajectory database. Moreover, the performance of SharkDB is still stable due to the

proposed efficient kNN query algorithm. For changing query time intervals for the window query,

the performance of both SharkDB and the segmented trajectory database is stable as the window

query costs less CPU-time than the kNN query does.
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FIGURE 5.19: Typical Workload — Effect of Time Interval for Window Query

Tune Parameters of Analytic Operation
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FIGURE 5.20: Typical Workload — Effect of Time Interval for kNN Query

Fig. 5.21 and Fig. 5.22 show the final results of this workload evaluation with two parameters,

the length of time interval and α. As we can see, the average running time on SharkDB and the

segmented trajectory database increases, when we increase either the length of time interval or the

value of α. This is because the analytic query is sensitive to such parameters and the similarity

search will cost more than 30 times running time compared to the basic operations. Therefore, the

running time change for an analytic operation can still affect the overall performance even if the

analytic operation has only 10% weight in this workload evaluation.
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FIGURE 5.21: Typical Workload — Effect of Time Interval for Similarity Search
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FIGURE 5.22: Typical Workload — Effect of α for Similarity Search

5.3.4 Operational Workload Evaluation

In this section, the segmented trajectory database and SharkDB are tested under an operational

workload model.

Tune Parameters of Basic Operations The operational workload evaluation first conducts a

set of experiments by using different trajectory lengths for basic operations, the results of which

are shown in Fig. 5.23 and Fig. 5.24. As we can see, the overall performance of both SharkDB

and the segmented trajectory database are not affected by this parameter. This is because the

basic operations can be processed quickly in both systems under different trajectory lengths, which

means the basic operations will no longer be a key factor to affect the performance of analytic based

storage systems.
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FIGURE 5.23: Operational Workload — Effect of Trajectory Length for SELECT
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FIGURE 5.24: Operational Workload — Effect of Trajectory Length for DELETE

Tune Parameters of Advanced Operations Fig. 5.25 and Fig. 5.26 demonstrate how the

length of query time interval can affect the overall performance. There is no doubt that SharkDB

still achieve the best performance under all tests, since SharkDB significantly reduces the query

processing time for both the window query and the kNN query. Due to the advanced operations

having the most weight in this experiment, the performance trend is similar to that of previous

experiments of single type of query in the previous chapter.
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FIGURE 5.25: Operational Workload — Effect of Time Interval for Window Query

Tune Parameters of Analytic Operation The results of this evaluation are shown in Fig. 5.27

and Fig. 5.28. As we can see, the performance trend is similar to the typical workload evaluation

under same circumstances, and SharkDB still outperforms the segmented trajectory database.
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FIGURE 5.26: Operational Workload — Effect of Time Interval for kNN Query
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FIGURE 5.27: Operational Workload — Effect of Time Interval for Similarity Search
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FIGURE 5.28: Operational Workload — Effect of α for Similarity Search
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5.3.5 Analytic Workload Evaluation

In this section, the segmented trajectory database and SharkDB are tested under an analytic work-

load model.

Tune Parameters of Basic Operations First of all, this workload evaluates both systems by

changing the length of the trajectory for basic operations. The results are illustrated in Fig. 5.29

and Fig. 5.30. As the expected, the effect on basic operations is minor and can no longer affect

the overall performance. This evaluation also provides evidence that the influence of running basic

operations in analytic based in-memory trajectory based systems is becoming trivial.
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FIGURE 5.29: Analytic Workload — Effect of Trajectory Length for SELECT
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FIGURE 5.30: Analytic Workload — Effect of Trajectory Length for DELETE

Tune Parameters of Advanced Operations The results from running advanced operations on

both systems with changing trajectory lengths are demonstrated in Fig. 5.31 and Fig. 5.32. As we
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can see, the effect on the window query is low. There are two reasons for this. The first is that the

window query can be processed in a short time, which is less than one fifth of the time required

to run a similarity search. The second is that the window query has only a small weight in this

evaluation test. On the other hand, the performance of the kNN query can still affect the overall

performance of the segmented trajectory database, since the kNN query is the one of the most

time-consuming query for segmented trajectory database. Meanwhile, the SharkDB uses both

novel algorithm and parallel computing to increase the performance of the kNN query. Hence the

effect of the kNN query is small in this workload evaluation test.
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FIGURE 5.31: Analytic Workload — Effect of Time Interval for Window Query
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FIGURE 5.32: Analytic Workload — Effect of Time Interval for kNN Query

Tune Parameters of Analytic Operation The last workload evaluation is to test the influence

of an analytic operation. The results are shown in Fig. 5.33 and Fig. 5.34. It is easy to see that the
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performance of SharkDB still beats that of the segmented trajectory database. As the similarity

search has 70% weight in this workload evaluation, the segmented trajectory database is more

sensitive to different parameters than SharkDB. To sum up, SharkDB can significantly speed up

the overall performance under a heavy workload.
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FIGURE 5.33: Analytic Workload — Effect of Time Interval for Similarity Search
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FIGURE 5.34: Analytic Workload — Effect of α for Similarity Search

5.4 Summary

In this chapter, extensive experimental results based on both real and synthetic datasets demon-

strate that the proposed method significantly outperforms several baseline algorithms with good
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scalability. Moreover, a new workload benchmark is introduced to compare SharkDB with a tra-

ditional database. Test of three workload models (Typical Workload, Operational Workload and

Analytic Workload) are conducted to evaluate SharkDB under different usages. In the experiment,

the effect of key parameters is discussed and analysed. The comprehensive experiments verify

that SharkDB has the best overall performance compared with a traditional data structure under all

workload models tested.



Chapter 6

SharkDB Implementation using SAP HANA

6.1 Introduction

Huge amounts of location data that records the motion history of moving objects, known as trajec-

tories, are being generated from different sources such as GPS-enabled devices and smartphones.

Analysing trajectory data can help people understand the behavioural patterns of moving ob-

jects, and improve the quality of service in applications such as geographical information systems,

location-based services, vehicle navigation systems and so on.

The main drawback of managing large scale trajectory data in traditional database management

systems (i.e. disk-oriented RMDBSs), is that such database management systems do not provide a

special data type or data format to support the trajectory data that are then stored in the traditional

table structure. This is because the trajectory is typically modelled as a time-stamped sequence

of consecutive locations in a multidimensional space, and the length of each trajectory is variable

(i.e. the number of sample points of each trajectory varies from case to case). Naturally, to solve

this problem, we can consider encoding each trajectory into one database object, which can be

supported in most RMDBSs. Although this format can be easy applied, the efficiency of this data

format is low, since the trajectory analytic queries on this data format need to scan the whole table

to get the query answers.

In the last decade, the capacity of main memory has rapidly increased, which means that the

dataset can be stored and processed within main memory entirely. Memory based storage is much

119
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faster than traditional disk-based storage, since the I/O bottleneck has been removed in main mem-

ory. In the previous work by [115], SharkDB, an in-memory storage system for massive trajectory

data is proposed, and it has achieved promising performance in trajectory query processing. In this

chapter, the computational power of SAP HANA, the in-memory column-oriented data analytics

platform designed by SAP, is exploited to support efficient query processing for moving object

trajectories. The new frame-based data structure design is tailored from a design developed by

the previous SharkDB project and makes the trajectory data with variable lengths and sampling

rates suitable for the relational databases model in SAP HANA. Extensive experiments based on

large-scale real dataset have demonstrated the superior performance of the frame-based design in

processing a variety of queries.

6.2 SAP HANA Overview

SAP HANA [85, 86], the newest in-memory based and column-oriented database management

system, was developed and implemented by SAP. The goal of SAP HANA is to handle huge

amounts of data and the real time complex query processing. Currently, the bottleneck of the

traditional disk-oriented database system is the I/O cost, since the I/O performance of hard disk

is very limited. To remove this bottleneck, SAP HANA moves all of the data from the hard disk

into main memory, which means all of the data are accessed and maintained in the main memory

directly. The hard disk in SAP HANA will only be used for data backup and to maintain the log

files. Moreover, SAP HANA supports both a row-oriented data structure and a column-oriented

data structure, and the column-oriented data structure is recommended by SAP, since the column-

oriented data structure can provide better performance for analytic queries.

6.3 Implementation Details

In this section, a frame based data structure is proposed for SAP HANA. Meanwhile, we also

implement two common traditional data structures that are used in traditional database systems,

which are called key-value format and sample point format.

A key motivation to use the SAP HANA in-memory database system to manage trajectory data
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is to increase the performance of queries. Therefore, we design a set of common queries, which

are divided into two categories, basic operations and advanced operations. The basic operations

are normal database operations, which include SELECT, INSERT, DELETE and APPEND. All of

the basic operations target a single trajectory by trajectory ID. The advanced operations include

two analytic queries, which are window query and kNN query. The window query is used to find

all trajectories passing a given region and active during a given period of time. The kNN query is

used to find the top-k trajectories that are close to a given point and active during a given period of

time. We will discuss the details of the implementation of these queries using three data structures

in the followings sections.

6.3.1 Key-Value Format

To store the trajectory data into the traditional data structure, a naive way is to store one trajectory

as a single object. Therefore, we can store the whole trajectory dataset into one table with two

columns Tid, Tobj , where Tid is the trajectory ID and Tobj contains all of the simple points that

belong to Tid. In order to speed up analytic query processing, for each trajectory object (i.e.

each row), we add the auxiliary information that includes the start time, the end time and the

MBR of the trajectory. Therefore, in the key-value format, there are five columns, which are

< Tid, Tobj, Tst, Tet, Tmbr >.

Basic Operations

Since the key-value format is of the traditional row-based data structure, basic operations (i.e.,

SELECT, DELETE, INSERT and APPEND) can be done in a very straightforward manner. For

INSERT operation, we first encode the trajectory sample points into one object, which is a raw

type that is supported by SAP HANA. Next we use normal SQL INSERT command to insert

this trajectory directly into table. The SELECT operation is a reverse operation of the INSERT

operation, which selects the encoded trajectory object by a given trajectory ID and then decodes

trajectory object directly. To implement APPEND operation, we combine both the SELECT and

INSERT operation. Therefore, we first select the target trajectory object and encode the trajectory

is to be appended as a new raw type object. After this, we add this new object to the end of the target
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trajectory object. Finally, we update the auxiliary information of the appended trajectory. The

DELETE operation is implemented as the normal DELETE operation, which deletes the trajectory

object by trajectory ID.

Advanced Operations

In this subsection, the algorithms for processing advanced operations on the key-value format

are proposed. A window query will first filter out the trajectories, which are out of the query

time interval, by using the trajectories’ auxiliary information (i.e. the start and end time of the

trajectory). After this, it scans the rest of trajectories. If the MBR of a selected trajectory overlaps

the query window, then it decodes this trajectory into its original sample points and find the actual

results. For processing the kNN query, MINDIST, which is the minimum distance from query point

to MBR, is used as the lower bound. If the MINDIST of a trajectory is larger than the minimum

distance of the current kth best trajectory, this trajectory can be safely pruned out, otherwise the

algorithm decodes the trajectory and calculates the actual distances from the query point to the

sample points in the trajectory.

6.3.2 Sample Point Format

The major drawback of the key-value format is that it needs to decode the whole trajectory into

sample points when processing advanced operations, which is very time-consuming. Meanwhile,

such operations need a larger amount of memory as the buffer to store the sample points. Therefore,

to solve this issue, a simple schema, which is called the sample point format, is used to store the

trajectory in the table. In this format, each row stores only one trajectory sample point. The format

of each row is < TID,X, Y, T >, where TID is the trajectory ID of this sample point, X and Y

represent the coordinates of this sample point and T is the timestamp of this sample point.

There are two benefits to the sample point format. Firstly, the data in the sample point format

structure does not require decoding when dealing with advanced operations, which is a signifi-

cant advantage of the sample point format. Another benefit is that it can compress the data of

each column in sample point format, and since SAP HANA supports compressing the data in a

column-oriented storage model to save space, then the data can be compressed column by column.
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Moreover, as discussed previously, the sample point format uses a simple data type, which can

achieve a higher compression ratio.

Basic Operations

Both INSERT and APPEND operations on the sample point format are the same, as they only

need to convert the trajectory data into sample point format and insert them directly into the table.

Due to all of the sample points being stored in one table, for the APPEND operation, we only

need to insert the sample points of the new trajectory into the table. The SELECT operation is

different from the key-value format, as we need to first select the trajectory sample points by given

trajectory ID and then order the sample points by timestamp to recover the whole trajectory. To

delete a trajectory, we can directly delete the sample points for a given trajectory ID.

Advanced Operations

For dealing with the window query on the sample point format, the sample points that are located

in the given spatial window and time interval are selected, then they are ordered by trajectory

ID and timestamp to get the final results. To process the kNN query, the algorithm still uses the

MBR information to speed up the query processing. It first tests each MBR with the kth minimum

distance, and if a candidate trajectory is found, the algorithm can select the sample points of this

trajectory within given time interval. Then, the algorithm calculates the actual distance from the

query point to each of the selected sample points to get the final answers.

6.3.3 Frame Format

As the number of columns is limited in SAP HANA, the original frame based data structure needs

to be re-designed to suit the traditional table structure. Hence, the frame group column ID is

extracted as a single column and combined with the trajectory ID to identify each frame group. In

the table, the information for a single frame group is now contained in one row. The information

from the I-frame point is stored in two columns as its x value and y value. The rest of columns are

used for storing P-frame point information, and similar to the I-frame point, each P-frame point

requires two columns, one for δx and another for δy.
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When converting the data from the original frame structure to the table based structure, the

algorithm first selects a single frame group from frame data structure, then it gets the frame group

column id of this frame group and puts it into FGCID. Next, the algorithm extracts the trajectory

ID and puts it into TID. After this, the x value and y value of the I-frame point are inserted into

IFX and IFY , respectively. Then the P-frame points (x and y from each) are inserted in the rest

of columns. An example of the table structure is shown in Table. 6.1.

TABLE 6.1: Example of Table based Structure

FGCID TID IFX IFY PF1PX PF1PY ...

1 1 p.x p.y ∆p.x ∆p.y ...

1 2 p.x p.y ∆p.x ∆p.y ...

1 3 p.x p.y ∆p.x ∆p.y ...

1 4 p.x p.y ∆p.x ∆p.y ...

Basic Operations

To insert a new trajectory, the algorithm first allocates the raw trajectory to the frame-based struc-

ture which is proposed in the previous section. Then these frame points are split into frame groups

and the frame column group ID is determined based on the timestamp of the raw trajectory. Next,

each frame group is encoded to generate I-frame point and P-frame points. Finally, it inserts each

frame group as a single raw in the table with a trajectory ID and the related frame group column

ID.

The SELECT operation for this data structure is straightforward. Since the SELECT is based

on trajectory ID, the frame groups are selected by given trajectory ID. In the next step, the results

are ordered by frame group column ID.Finally, it decodes both I-frame point and P-frame points

to the original sample point, and the timestamp can be recovered by the frame group column ID of

each frame group. The DELETE operation is similar to the SELECT operation. It removes frame

groups by given trajectory ID from the table directly.

In contrast to the previous format, to expand a trajectory Told by given a trajectory ID TID and

a new trajectory Tnew, it only needs to select the last frame group FGlast of Told and decode it to
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get a trajectory segment. Then, this trajectory segment is connected to Tnew. After this, it allocates

and encodes this trajectory to get the new frame groups with related frame group column ID and

TID. Finally, it removes the last frame group FGlast and inserts the new frame groups into the

database.

Advanced Operations

Given a window query with a rectangle query area and a time interval, this algorithm first calculates

the range of frame group columns (i.e. the range of ids of frame group columns) that need to be

investigated based on a given time interval. Then, it can select all the frame groups inside the given

rectangle. However, the P-frame points in each row have been delta encoded and do not contain

actual coordinate information. Hence, for each frame group, we pre-compute its MBR information.

If an MBR intersects with a given query window, it puts the related frame group into the candidate

set. After that, for each frame group in the candidate set, we decode the P-frames into sample

points. Finally, it filters out the sample points that are out of the query area and re-constructs the

segment of trajectory based on these sample points.

For the kNN query, we first get the range of frame groups, which is the same as for the window

query. Then, for each frame group (i.e. a single row), the algorithm first calculates the MINDIST

between the query point and this frame group by using its MBR information to find the candidate.

The algorithm keeps updating the candidate set if there is a better candidate found. The kNN query

requires a min-heap to store the candidate trajectories, hence a temporary table is created during

query processing, which contains two columns: trajectory ID TID, which is the primary key , and

the distanceDistance from this trajectory to the query point. Meanwhile, the elements in this table

are ordered by distance as well. As each trajectory has been encoded as frame groups, Distance

records only the shortest distance to the query point from the frame groups that have been inves-

tigated with the related trajectory ID. To avoid different frame groups with the same trajectory ID

being pushed into the priority queue, a table is used to simulate the min-heap because this can

cause such frame groups to be considered as final results, which makes the results incorrect. For

example, the distance d1 from the query point of frame group FG1 (trajectory ID is T1) is 2, the

distance d2 of frame group FG2 (trajectory ID is T1) is 3 and the distance d3 of frame group FG3

(trajectory ID is T2) is 4. Based on this approach, FG1 and FG2 are the two closest to the query
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point and are pushed into the priority queue, and if k = 2, then both of them will be included in the

final results. However, they belong to the same trajectory, so the actual results would contain only

one trajectory, which does not meet the query requirement. The correct result should return FG1

and FG3, since FG2 belongs to same trajectory as FG1. Therefore, as discussed previously, using

a table and a set trajectory ID as primary key can solve this issue, and when we find a candidate

frame group, we first check the trajectory ID of this frame group in the temporary table. If it exists,

we update its distance, otherwise we insert this ID and its distance into the table as a new tuple.

Moreover, as this table is simulating the priority queue, it will keep the size of table is equal to k

rows and remove any other rows.

6.4 Experiments

6.4.1 Experiment Settings

The dataset used is a very large dataset that contains five months of motion history of 20k vehicles

and the average sampling rate is 30 seconds per sample point. The total number of sample points

in this dataset is more than 4 billion and each trajectory contains around 40k sample points over a

one month duration. All of the data are converted into three table formats respectively, and these

tables are all loaded into the SAP HANA system and stored in the main memory. The SAP HANA

database system contains one TB of memory and four Intel 10-core CPUs. The algorithms are

implemented using SQL/L language.

There are three formats of tables used in the experiment: key-value format, simple point format

and frame format. As discussed previously, the experiments are split into two main parts. The first

part is the basic operations experiments that includes four basic operations: SELECT, DELETE,

INSERT and APPEND. The second part is the advanced operations experiments which includes

two trajectory based operations: window query and kNN query. For the basic operations experi-

ments, each query is run 1000 times in three tables to get the average running time. For advanced

operations experiments, each query is set with different parameters. There are two parameters for

window query, the spatial search window and the query time interval; and kNN query also has

two parameters, k and the query time interval. The details of the parameter settings are shown in
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Table 6.2. In addition, for the frame format, the number of frames per frame group n is set to 5

and the frame rate is set to 30 seconds, which is same as average sampling rate of the dataset.

TABLE 6.2: Parameters Setting

Parameter Default Value Range

# results k 5 5–30

area of spatial window AS 3% 1%–11%

length of time interval TI 3h 1h – 11h

6.4.2 Basic Operations

The basic operation test is made up of two sets of experiments. The first set of experiments in-

cludes SELECT by trajectory ID, and DELETE by trajectory ID, which are all operated in main

memory. Another set of experiments includes inserting a new trajectory into the database table

and appending a trajectory by trajectory ID, both of which need the data to be transferred from

other sources (e.g. a PC or a mobile device) to the SAP HANA database system via network. In

such operations, the main factor that could affect the performance is the length of the trajectory

(i.e number of sample points). Hence, this experiment sets the trajectory length from 10k sample

points to 60k sample points in a trajectory.

Fig. 6.1 shows the results of both the SELECT and DELETE operations for the three data

formats. As we can see, the key-value format has the best performance since such basic operations

are suitable for a row-oriented store, since trajectory information can be quickly selected by ID and

only one row needs to be selected for each query request. Therefore, the performance of the key-

value format is very stable over different trajectory lengths. For the SELECT operation, the frame

format needs to decode the data to recover the original trajectory, hence it takes longer than for

the sample point format. However, there is no need to decode the data in the DELETE operation,

so the frame format has better performance than the sample point format, since the number of

rows that need to be modified for the frame format is less than for the sample point format. As

we can see, even if the frame format structure cannot outperform the traditional row-oriented store

database for SELECT and DELETE operations, but the running time is still acceptable and due to

it being under one second, can still be considered as real time processing.
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FIGURE 6.1: Basic Operations(1)

Fig. 6.2 shows the result of INSERT and APPEND operations. As discussed previously, the

INSERT operation and the APPEND operation are similar, therefore, the performance results for

the INSERT operation and APPEND operation are also similar. This is no doubt that the key-value

format has the best performance, since it only needs one INSERT database operation for both IN-

SERT and APPEND operations, which takes less than one second. Both the frame format and the

sample point format need much longer running times for these operations, because these two data

formats need a large amount of INSERT database operations. On the other hand, the performance

of the frame format beats the performance of the sample point format, even if the frame format
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FIGURE 6.2: Basic Operations (2)

needs an extra encoding process when dealing with INSERT and APPEND operations. But the

number of INSERT database operations and the costs of network transmission for the frame for-

mat are less than for the sample point format. Therefore, this experiment also provides evidence

that the cost of network transmission of data and the INSERT database operation is larger than the

cost of data encoding, which also shows the advantage of the frame format.

6.4.3 Advanced Operations

Window Query Firstly the efficiency of the three formats with different spatial window sizes and
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the default time interval is evaluated. In Fig. 6.3(a), the results show that the key-value format

cannot handle the analytic queries, since it is mainly designed for basic operations. For each

query, the algorithm can only process the query after decoding the trajectory object. In this case,

decoding the whole trajectory is time consuming and will need a large amount of memory as the

buffer to store the decoded trajectories.

Upon increasing the size of the searching area, the performance of the sample point format de-

creases very quickly, since the sample point format only need to a SELECT operation. Therefore,

the larger the searching area the more data that needs to be retrieved from the sample point format.

The running time for the frame format is slightly increased as the size of window is increases. Be-

cause of the larger spatial window size, more frame points need to be decoded. However, there is

no doubt that the frame format outperforms the other two data formats. Given that the bandwidth

between CPU and memory is now becoming the new bottleneck of in-memory databases, the fact

that the frame format can reduce the amount of data that needs to be transferred to CPU to process,

means that the frame format can increase the efficiency of in-memory databases.

Another set of experiments is also conducted by using different length of time intervals, and

the results of these experiments are shown in Fig 6.3(b). Similar to the spatial window size tests, as

the length of time interval increases, the SAP HANA database system needs more time to get the

answer to the query. Furthermore, we can see that the time interval has less effect than the spatial

window size, since this has a high density of spatial data.

kNN Query Fig. 6.4(a) shows the experiment result of the kNN query with different query

time intervals. As we can see, the key-value format cannot process the kNN query in real time as

well as it can process the window query. The running time of the query is more than 600 seconds,

which is not acceptable for query processing in such an advanced in-memory database system.

Although, both the sample point format and the frame format can process the query within one

second the frame format still outperforms the sample point format. This is because the P-frame

points can be pruned by the proposed algorithm efficiently, but for the sample point format, the

distance to the query point of each sample point in the selected area must be calculated, and the

computational cost is very high. The results also show that the frame format is stable under the

load of large trajectory analytic tasks.

The query performance with regard to the value of k for each query is also investigated. The
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FIGURE 6.3: Effect of Window Query

results shown in Fig. 6.4(b) are similar to those of previous experiments. But the difference is that

even with a changing query time interval, the results of changing the value of k for the kNN query

are quite stable. This is because, this approach uses the temporal table as a priority queue and

maintains such small table in SAP HANA which can be done very efficiently.

6.4.4 Compression Ratio

In this subsection, the compression ratios of the three formats are compared. The compression ratio

is calculated as the size of the data in the SAP HANA database divided by the size of the original
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data. The compression ratio for the key-value format is 60.1%, for the sample point format is

55.2% and for the frame format is 39.9%. As we can see the compression ratio of the key-value

data structure is not good, since the column of stored trajectory objects is hard to compress. As

discussed previously, in the frame format, the P-frame points require less space to record a simple

point and it uses an integer data type to instead of a double data type, which can increase the

compression ratio. Therefore, the frame format achieves the best compression ratio.
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6.5 Summary

In this chapter, the frame-based data structure for in-memory trajectory storage is migrated into

SAP HANA. This new prototype takes advantages of both the power of SAP HANA as a fully

functional database system and the high efficiency of a frame-based structure for trajectory query

processing. The extensive experimental results show that this prototype can consistently achieve

better performance than the traditional trajectory storage models.
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Chapter 7

Final Remarks

7.1 Conclusions

This thesis presents SharkDB, an in-memory based column-oriented trajectory storage system.

Chapter 3 introduces a novel I/P frame data structure that is used in SharkDB. The algorithms to

support efficient query processing in SharkDB are presented in Chapter 4; and Chapter 5 proposes

a new workload model to evaluate SharkDB under different loading usage. Chapter 6 describes

the implementation details to build SharkDB on the SAP HANA in-memory database system.

Firstly, Chapter 3 investigates the drawbacks of a disk-oriented data structure for trajectory

data. Then a frame based data structure is proposed to store trajectory data. This frame based data

structure is then extended to an I/P frame data structure, which supports compression of trajectory

data to significantly reduce the size of the data. Finally, the I/P frame data structure is improved to

a cache-aware I/P frame data structure, which is optimised for CPU caching.

Chapter 4 classifies the supported query types of SharkDB into three categories: basic oper-

ations, advanced operations and analytic operations. In the basic operations category, SELECT,

DELETE, UPDATE and APPEND operations are implemented, which are the traditional oper-

ations for transaction database systems. To improve the performance of these basic operations

on the I/P frame data structure, a parallel computing based approach is proposed to increase the

processing speed. In the category of advanced operations, to efficiently answer both the window

135



136 FINAL REMARKS

query and the kNN query, a novel hierarchical I/P frame structure is proposed to increase the prun-

ing efficiency during the initial query processing. Moreover, parallel processing is also deployed

to deal with P-frame decoding. In the analytic operation category, the problem of the trajectory

similarity search is investigated and a three-phase processing algorithm is proposed. Firstly, the

MBR information from each frame group is used for pruning. In the next phase, the algorithm

decodes the candidate frame groups in parallel. In final phase, the KMP algorithm is invoked to

assist the trajectory similarity search. Extensive experimental results based on both real and syn-

thetic datasets demonstrate that the proposed algorithms significantly outperform several baseline

algorithms with good scalability.

In Chapter 5, extensive experiments are firstly conducted to evaluate the proposed approaches,

and then a new workload model is introduced to evaluate SharkDB. A tiered set of common oper-

ations are defined for workload evaluations, with the basic operations that cover simple database

operations, the advanced operations that cover complex common queries on trajectory data, and

the analytic operations that cover trajectory similarity searches. In the workload model, different

weights are set for different queries to simulate three types of workload usages: a typical work-

load, an operational workload and an analytic workload. The comprehensive experiments verify

that SharkDB has the best overall performance compared with traditional data structure under all

types of workload models tested.

In Chapter 6, the whole I/P frame structure is migrated and implemented into the SAP HANA

database system. To achieve this goal, the I/P frame structure is redesigned to allow the whole

structure to be stored in a normal table in the SAP HANA database system. The extensive ex-

perimental results show the newly designed frame formate for trajectory data can achieve better

performance and better compression ratios than the traditional trajectory data formats.

7.2 Future Work

This section discusses several possible future directions for the SharkDB development.
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7.2.1 An I/P frame Structure Extension for Hybrid Trajectory Datasets

In Chapter 3, a cache-aware I/P frame structure is presented for storing compressed trajectory data

in the main memory. In future work, an extended I/P frame structure could be implemented to

support storing hybrid trajectory datasets, which contain a different type of trajectory data. This

is because the data will be collected from different sources in the age of big data. For example,

trajectory data collected from vehicle contains extra information such as speed and direction. And

trajectory data uploaded by users may contain extra check-in or semantic information. This addi-

tional information can be very helpful or even necessary for analytic queries. The main challenge

comes from the difficulty of managing the unstructure data using an I/P frame structure and to

maintain the performance and compression ratio at the same time.

7.2.2 A Distributed SharkDB Implementation on Apache Spark

In the age of big data, the volume of data being generated is increasing very rapidly. This will

cause the main memory of a single machine main-memory could be filled up in a short time. How-

ever, it is not a good idea to store the historic data on the hard-disk, since many real applications

may require trajectory data over a long period for analysing, such as urban planing and traffic

trend analysis applications. Motivated by this, it is necessary to implement a distributed SharkDB

version. There are two advantages to a distributed version, the first one is that the storage space

capacity of a distributed system can be easily extended by adding a new node. Another advantage

is that the computational power of a distributed system is greater than that of a single big machine.

Hadoop is one of successful distributed frameworks that is based on MapReduce. Apache Spark

is a Hadopp-like distributed framework with in-memory computing technology. As SharkDB is an

in-memory based storage, Apache Spark is a good potential platform to which to migrate SharkDB.

There are two main challenges to this future work, the first is the load-balancing of the computa-

tional nodes of whole cluster to avoid overload in one computational node which would reduce the

performance. The second challenge is to minimise the communication cost between each compu-

tational node, since the network transmission of data is far slower than in memory or in hard-disk.

To address these two challenges, a carefully designed algorithm is required. This algorithm will

need to divide a query into sub-queries and ensure that none of the nodes are overloaded and that
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most of the data can be read locally.

7.2.3 Interface and APIs Design for SharkDB on SAP HANA

In Chapter 6, SharkDB was migrated to and implemented into SAP HANA. In particular, in this

thesis, SharkDB is implemented as a back-end storage and query system on SAP HANA. One

possible extension of SharkDB is about visualisation, which is very important for end users as it

can help the user to understand the results of query. Hence, it is better to provide a web-based

interface for users to input a query and get the results visually. A demo version of interface design

is deployed, which supports the window query and the kNN. In future work, a schedule is planned

to support more queries via this interface as well as to develop a new interface that allows users

to control the parameters of SharkDB. Furthermore, a plan to pack SharkDB as a library in SAP

HANA is also in the schedule, which will allow third party applications to connect to SharkDB for

trajectory analysing tasks via APIs.
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[35] R. H. Güting. Geo-relational algebra: A model and query language for geometric database

systems. Springer, 1988.
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