93 research outputs found

    Survey Paper: Mobility Management in Heterogeneous Wireless Networks

    Get PDF
    AbstractEver increasing user demands and development of modern communication technologies have led to the evolution of communication networks from 1st Generation (1G) network to 4G heterogeneous networks. Further, 4G with heterogeneous network environment will provide features such as, “Always Best Connected”, “Anytime Anywhere” and seamless communication. Due to diverse characteristics of heterogeneous networks such as bandwidth, latency, cost, coverage and Quality of Service (QoS) etc., there are several open and unsolved issues namely mobility management, network administration, security etc. Hence, Designing proficient mobility management to seamlessly integrate heterogeneous wireless networks with all-IP is the most challenging issue in 4G networks. Mobile IPv6 (MIPv6) developed by Internet Engineering Task Force (IETF) has mobility management for the packet-switched devices of homogeneous wireless networks. Further, mobility management of homogeneous networks depends on network related parameter i.e., Received Signal Strength (RSS). However the mobility management of heterogeneous networks, not only depends on network related parameters, but also on terminal-velocity, battery power, location information, user-user profile & preferences and service-service capabilities & QoS etc. Designing mobility management with all-IP, while, considering issues such as context of networks, terminal, user and services is the main concern of industry and researchers in the current era

    Media independent handovers : network selection for mobile IP nodes in heterogeneous wireless networks

    Get PDF
    Includes abstract.Includes bibliographical references (p. 79-82).In Next Generation Networks (NGN), also known as 4G, Beyond 3G, Converged, Integrated and Interworked Network, user node mobility in wireless and wired environments will seamlessly cross disparate network boundaries. The effort to offer ubiquitous computing, providing access to services anywhere and anytime, strongly encourages the ability to roam across the different existing and future networks. Literature shows investigation of concepts such as Always Best Connected (ABC) when heterogeneous networks co-exist , which will work or compete with other schemes like Home Network Default (HND), Compatibility and Network Operator Agreements (CNOA) to guide network selection or access . With the variety of available networks, the mobile node may be faced with having to decide which network to connect to. We concentrate on the network selection aspects of these envisaged mobile, overlay and integrated environment in heterogeneous networks. The standard developments by the IEEE802.21 Working group and the IETF Networking group form the base of our approach that seeks to see mobility across heterogeneous networks a reality. We propose an IEEE802.21 Media Independent Handover Function (MIHF) based network discovery and network selection, leading to a handover. The selection may be further assisted by an MIHF capable Broker Node that is Third party to the Network Providers to provide a central yet distributed database of the available networks as encountered by the Mobile Node, to cater for Nodes with no prior knowledge of networks and software repository. A Mobile Node (MN) in our solution uses 802.21 communication messages to obtain information about foreign networks encountered before selecting the networks to connect to. Our evaluation through simulations, shows that network selection in heterogeneous wireless networks environment for the appropriately equipped devices is greatly enhanced by the use of the Media Independent Handover Protocol. In scenarios where the mobile node has no prior knowledge of the encountered different network architectures, the use of a Broker node can, for an optimal number of available networks also greatly enhance the mobile node’s network selection by reducing the delay associated and the packet losses incurred

    Architecture d'interopérabilité et mécanismes de relève pour les réseaux sans fil de prochaine génération

    Get PDF
    Intégration, interopéribilité et mobilité -- An analytical framework for performance evaluation of IPV6-Based mobility management protocols -- An architecture for seamless mobility support in Ip-Based next generation wireless networks -- Adaptive handoff scheme for heterogeneous ip wireless networks -- Enhanced fast handoff scheme for heterogeneous wireless networks

    Analysis, design and experimental evaluation of connectivity management in heterogeneous wireless environments

    Get PDF
    Mención Internacional en el título de doctorThe future of network communications is mobile as many more users demand for ubiquitous connectivity. Wireless has become the primary access technology or even the only one, leading to an explosion in traffic demand. This challenges network providers to manage and configure new requirements without incrementing costs in the same amount. In addition to the growth in the use of mobile devices, there is a need to operate simultaneously different access technologies. As well, the great diversity of applications and the capabilities of mobile terminals makes possible for us to live in a hyper-connected world and offers new scenarios. This heterogeneity poses great challenges that need to be addressed to offer better performance and seamless experience to the final user. We need to orchestrate solutions to increase flexibility and empower interoperability. Connectivity management is handled from different angles. In the network stack, mobility is more easily handled by IP mobility protocols, since IP is the common layer between the different access technologies and the application diversity. From the end-user perspective, the connection manager is in charge of handling connectivity issues in mobile devices, but it is an unstandardized entity so its performance is heavily implementation-dependent. In this thesis we explore connectivity management from different angles. We study mobility protocols as they are part of our proposed solutions. In most of the cases we include an experimental evaluation of performance with 3G and IEEE 802.11 as the main technologies. We consider heterogeneous scenarios, with several access technologies where mobile devices have also several network interfaces. We evaluate how connectivity is handled as well as its influence in a handover. Based on the analysis of real traces from a cellular network, we confirm the suitability of more efficient mobility management. Moreover, we propose and evaluate three different solutions for providing mobility support in three different heterogeneous scenarios. We perform an experimental evaluation of a vehicular route optimization for network mobility, reporting on the challenges and lessons learned in such a complicated networking environment. We propose an architecture for supporting mobility and enhance handover in a passive optical network deployment. In addition, we design and deploy a mechanism for mobility management based on software-defined networking.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Arturo Azcorra Saloña.- Secretario: Ramón Agüero Calvo.- Vocal: Daniel Nunes Coruj

    Mecanismos de mobilidade rápida com suporte de QdS

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesA área das redes de comunicações está, neste momento, a deparar-se com um novo paradigma causado pela tendência de convergência de redes sem fios e celulares. Desta convergência resultará a existência de uma camada de rede integradora, para facilitar o suporte de mecanismos de Qualidade de Serviço e mobilidade. Aqui, o suporte de mobilidade rápida e transparente, sem ser perceptível pelo utilizador, tem sido alvo de muita atenção, apesar de ainda existirem algumas limitações no seu suporte. A mobilidade transparente entre redes celulares, sem fios e fixas, é ambicionada mas ainda não foi alcançada. O trabalho realizado nesta Dissertação consiste na descrição, especificação, implementação e teste de uma nova arquitectura de mobilidade sobre o protocolo IP. Esta arquitectura é baseada no protocolo de mobilidade Mobility Support for IPv6 e em extensões de Fast Handovers for Mobile IPv6, sendo capaz de efectuar handovers iniciados pelo terminal e pela rede. A mobilidade é transparente entre tecnologias de acesso heterogéneas, através da integração de mecanismos de qualidade de serviço, tais como autorização de handovers, controlo de acesso, reserva e atribuição de recursos no novo ponto de ligação e também integrada com subsistemas de autenticação. São também propostos outros mecanismos de mobilidade rápida que fazem uso do protocolo multicast para distribuir os fluxos de tráfego direccionados ao terminal, pelos routers de acesso vizinhos, permitindo que os terminais móveis mudem para qualquer router de acesso na vizinhança sem interrupção dos serviços em curso. Estes mecanismos foram projectados para terminais móveis com grandes requisitos de mobilidade. No âmbito do projecto IST Daidalos foi efectuada a integração de uma rede de próxima geração (4G) de forma a permitir a realização de testes de desempenho e conformidade aos mecanismos propostos. A presente Dissertação efectua uma avaliação de desempenho de uma arquitectura de mobilidade, em cenários intra- e inter-tecnologia, numa rede de testes real. Nesta avaliação foram utilizadas as métricas de atraso, jitter e perdas de pacotes nas fases de preparação e execução do handover. O impacto deste processo em comunicações de dados sobre TCP e UDP é também analisado. A arquitectura e os resultados obtidos no demonstrador real são apresentados e discutidos. ABSTRACT: The field of network communications is, nowadays, facing a new paradigm caused by the forthcoming convergence of cellular and wireless data networks, which seems unavoidable. This convergence will result on an integration layer, to ease the support for Quality of Service and mobility mechanisms. Here, the support for fast and seamless mobility, not perceptible by the user, has been getting much attention, although several limitations still exist in this support. Seamless mobility between cellular, wireless and wired data networks is envisioned, but not yet achieved. The work performed in the scope of this thesis aims to describe, specify, implement and test a novel mobility architecture based on the IP protocol. This architecture is based on the mobility protocol Mobility Support for IPv6 and on extensions of Fast Handovers for Mobile IPv6 RFCs, and is able to provide mobile terminal and network initiated handovers. The mobility is seamless across heterogeneous access technologies, by integrating Quality of Service mechanisms, such as handover authorization, access control, resources reservation and allocation at the new point of attachment, also integrated with an authentication sub-system. Other novel fast mobility mechanisms are also proposed, which make use of the multicast protocol to distribute the traffic flows directed to the terminal during the handover process among the neighbour access routers, allowing the terminal to handover to any access router in the vicinity without disruption of the ongoing services. These latter mechanisms were designed to mobile terminals with high mobility requirements. In the scope of the IST Daidalos framework an integration process of a next generation (4G) network was carried out in order to perform performance and compliance tests to the proposed mechanisms. Furthermore, this thesis also evaluates the performance of a mobility architecture, both in intra and intertechnology scenarios, in a real testbed. In this evaluation were considered metrics such as packet delay, jitter and loss of the handover in its preparation and execution phases. The impact of the handover on ongoing TCP and UDP data communications is also addressed. The architecture and results obtained from the real demonstrator are also presented and discussed

    IP Flow Mobility support for Proxy Mobile IPv6 based networks

    Get PDF
    The ability of offloading selected IP data traffic from 3G to WLAN access networks is considered a key feature in the upcoming 3GPP specifications, being the main goal to alleviate data congestion in celular networks while delivering a positive user experience. Lately, the 3GPP has adopted solutions that enable mobility of IP-based wireless devices relocating mobility functions from the terminal to the network. To this end, the IETF has standardized Proxy Mobile IPv6 (PMIPv6), a protocol capable to hide often complex mobility procedures from the mobile devices. This thesis, in line with the mentioned offload requirement, further extends Proxy Mobile IPv6 to support dynamic IP flow mobility management across access wireless networks according to operator policies. In this work, we assess the feasibility of the proposed solution and provide an experimental analysis based on a prototype network setup, implementing the PMIPv6 protocol and the related enhancements for flow mobility support. *** La capacità di spostare flussi IP da una rete di accesso 3G ad una di tipo WLAN è considerata una caratteristica chiave nelle specifiche future di 3GPP, essendo il principale metodo per alleviare la congestione nelle reti cellulari mantenendo al contempo una ragionevole qualità percepita dall'utente. Recentemente, 3GPP ha adottato soluzioni di mobilità per dispositivi con accesso radio basato su IP, traslando le funzioni di supporto dal terminale alla rete, e, a questo scopo, IETF ha standardizzato Proxy Mobile IPv6 (PMIPv6), un protocollo studiato per nascondere le procedure di mobilità ai sistemi mobili. Questa tesi, in linea con la citata esigenza di spostare flussi IP, estende ulteriormente PMIPv6 per consentire il supporto alla mobilità di flussi tra diverse reti di accesso wireless, assecondando le regole e/o politiche definite da un operatore. In questo lavoro, ci proponiamo di asserire la fattibilità della soluzione proposta, fornendo un'analisi sperimentale di essa sulla base di un prototipo di rete che implementa il protocollo PMIPv6 e le relative migliorie per il supporto alla mobilità di flussiope

    Securing Handover in Wireless IP Networks

    Get PDF
    In wireless and mobile networks, handover is a complex process that involves multiple layers of protocol and security executions. With the growing popularity of real time communication services such as Voice of IP, a great challenge faced by handover nowadays comes from the impact of security implementations that can cause performance degradation especially for mobile devices with limited resources. Given the existing networks with heterogeneous wireless access technologies, one essential research question that needs be addressed is how to achieve a balance between security and performance during the handover. The variations of security policy and agreement among different services and network vendors make the topic challenging even more, due to the involvement of commercial and social factors. In order to understand the problems and challenges in this field, we study the properties of handover as well as state of the art security schemes to assist handover in wireless IP networks. Based on our analysis, we define a two-phase model to identify the key procedures of handover security in wireless and mobile networks. Through the model we analyze the performance impact from existing security schemes in terms of handover completion time, throughput, and Quality of Services (QoS). As our endeavor of seeking a balance between handover security and performance, we propose the local administrative domain as a security enhanced localized domain to promote the handover performance. To evaluate the performance improvement in local administrative domain, we implement the security protocols adopted by our proposal in the ns-2 simulation environment and analyze the measurement results based on our simulation test
    corecore