365 research outputs found

    Efficient Excitation of Characteristic Modes for Radiation Pattern Control by Using a Novel Balanced Inductive Coupling Element

    Get PDF
    A design strategy exploiting the Characteristic Modes Analysis (CMA) is described for improving the radiation efficiency of a mounted-on-platform radiator. To this aim, a novel Balanced Inductive Exciter (BIE) is introduced to improve the modal excitation purity of some Characteristic Modes (CMs). In fact, even if the optimal position of the exciters on the hosting platform is determined by using the Characteristic Modes Theory (CMT), the excitation purity of each mode plays a fundamental role in the radiation efficiency of the radiating system. In particular, achieving a good level of excitation purity strongly reduces the reactive power (Preac) stored in the near field zone and hence maximizes the amount of the radiated power (Pr). To better highlight the benefits offered by the presented approach, a set of BIEs is applied on a platform to obtain a fully-reconfigurable radiation pattern. The evaluation of the Preac, Pr and Equivalent Isotropically Radiated Power (EIRP) provided by the BIE reveals the importance of a pure modal excitation. To assess the reliability of the proposed BIEs some prototypes have been manufactured and tested

    Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks

    Get PDF
    Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework

    Agile multi-beam front-end for 5G mm-wave measurements

    Get PDF
    The 5th generation new radio (5G NR) standards create both enormous challenges and potential to address the spatio-spectral-temporal agility of wireless transmission. In the framework of a research unit at TU Ilmenau, various concepts were studied, including both approaches toward integrated circuits and distributed receiver front-ends (FEs). We report here on the latter approach, aiming at the proof-of-principle of the constituting FEs suitable for later modular extension. A millimeter-wave agile multi-beam FE with an integrated 4 by 1 antenna array for 5G wireless communications was designed, manufactured, and verified by measurements. The polarization is continuously electronically adjustable and the directions of signal reception are steerable by setting digital phase shifters. On purpose, these functions were realized by analog circuits, and digital signal processing was not applied. The agile polarization is created inside the analog, real-time capable FE in a novel manner and any external circuitry is omitted. The microstrip patch antenna array integrated into this module necessitated elaborate measurements within the scope of FE characterization, as the analog circuit and antenna form a single entity and cannot be assessed separately. Link measurements with broadband signals were successfully performed and analyzed in detail to determine the error vector magnitude contributions of the FE

    Overview of the International Radar Symposium Best Papers, 2019, Ulm, Germany

    Get PDF

    Expeditions to Antarctica: ANT-Land 2021/22 Neumayer Station III, Kohnen Station, Flight Operations and Field Campaigns

    Get PDF

    Dual CP Polarization Diversity and Space Diversity Antennas Enabled by a Compact T-Shaped Feed Structure

    Get PDF
    A compact T-shaped feed structure (IFS) is reported that enables the realization of two types of diversity antennas: a polarization diversity antenna (PDA) and a spatial diversity antenna (SDA). Both systems have a high potential for mobile wireless communication applications. The IFS includes four ports and two independent coaxial channels with effective isolation between them all. The PDA is a dual CP omnidirectional antenna. Its optimized prototype achieves measured impedance bandwidths of 16.4% and 15.28% in its LHCP and RHCP states, respectively, and realized gains in both between 4.8 and 6.46 dBic. The inner thin coaxial cable (ITCC) of the TFS directly drives its LHCP subsystem, facilitating its improved omnidirectional performance. This ITCC is also used to directly feed the SDA's low-profile directional planar equiangular spiral antenna and its side port drives its omnidirectional RHCP antenna. Good hemispherical coverage is realized with a measured common impedance bandwidth larger than 14.35% with more than 40-dB isolation between its two ports. The corresponding measured realized gain of the SDA is between 4 and 7.8 dBic. The measured results for both optimized prototypes confirm their simulated performance characteristics.National Natural Science Foundation [61571289, 61571298, 61701303]; Natural Science Foundation of Shanghai [17ZR1414300]; Shanghai Pujiang Program [17PJ1404100]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Wi-Fi Long Distance Maritime Communications Data Analytics

    Get PDF
    Nowadays, wireless communications are becoming more and more important to the development of the society, not only in land, but also in the sea. When discussing about communications in maritime environments the scenario is different and harder, because of several factors, such as, the movement on the surface of the sea, the characteristics of the radio propagation and the possible intermittent obstruction that decrease the efficiency of signal propagation. Plenty of wireless communications solutions are already used in maritime environment, such as HF/VHF, which doesn't support high rates; satellite communications, which is an expensive technology and not affordable by most of users; and mobile communications (GSM, 3G and LTE), that only ensure connection near the coast. The main purpose of this dissertation is to contribute to the characterization of the propagation channel and the problems associated with the use of Wi-Fi technology for different frequencies in this kind of environment

    Satellite Communications

    Get PDF
    This study is motivated by the need to give the reader a broad view of the developments, key concepts, and technologies related to information society evolution, with a focus on the wireless communications and geoinformation technologies and their role in the environment. Giving perspective, it aims at assisting people active in the industry, the public sector, and Earth science fields as well, by providing a base for their continued work and thinking

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives
    corecore