1,097 research outputs found

    FLAT2D: Fast localization from approximate transformation into 2D

    Get PDF
    Many autonomous vehicles require precise localization into a prior map in order to support planning and to leverage semantic information within those maps (e.g. that the right lane is a turn-only lane.) A popular approach in automotive systems is to use infrared intensity maps of the ground surface to localize, making them susceptible to failures when the surface is obscured by snow or when the road is repainted. An emerging alternative is to localize based on the 3D structure around the vehicle; these methods are robust to these types of changes, but the maps are costly both in terms of storage and the computational cost of matching. In this paper, we propose a fast method for localizing based on 3D structure around the vehicle using a 2D representation. This representation retains many of the advantages of "full" matching in 3D, but comes with dramatically lower space and computational requirements. We also introduce a variation of Graph-SLAM tailored to support localization, allowing us to make use of graph-based error-recovery techniques in our localization estimate. Finally, we present real-world localization results for both an indoor mobile robotic platform and an autonomous golf cart, demonstrating that autonomous vehicles do not need full 3D matching to accurately localize in the environment

    Competing in the RoboCup Rescue Robot League

    Get PDF
    RoboCup Rescue is an international competition in which robots compete to find disaster victims in a simulated earthquake environment. It features both a Rescue Simulation League (RSL) which is entirely computer simulated, and a Rescue Robot League (RRL) with real robots and a test arena. This paper will describe the experience gained sending an undergraduate team to compete in the Rescue Robot League at the RoboCup German Open in 2008 and 2009. The design of the test arena and the rules of the competition will be outlined; as will the approaches taken by different teams; and the competition results

    Lidar: A New Self-driving Vehicle for Introducing Optics to Broader Engineering and Non-engineering Audiences

    Get PDF
    Since Stanley, the self-driven Stanford car equipped with five SICK LIDAR sensors won the 2005 DARPA Challenge, the race to developing and deploying fully autonomous, self-driving vehicles has come to a full swing. By now, it has engulfed all major automotive companies and suppliers, major trucking and taxi companies, not to mention companies like Google (Waymo), Apple and Tesla. With the notable exception of the Tesla self-driving cars, a LIDAR (Light, Detection and Ranging) unit is a key component of the suit of sensors that allow autonomous vehicles to see and navigate the world. The market space for lidar units is by now downright crowded, with a number of companies and their respective technologies jockeying for long-run leading positions in the field. Major lidar technologies for autonomous driving include mechanical scanning (spinning) lidar, MEMS micro-mirror lidar, optical-phased array lidar, flash lidar, frequencymodulated continuous-wave (FMCW) lidar and others. A major technical specification of any lidar is the operating wavelength. Many existing systems use 905 nm diode lasers, a wavelength compatible with CMOS-technology detectors. But other wavelengths (like 850 nm, 940 nm and 1550 nm) are also investigated and, in the long run, the telecom nearinfrared range (1550 nm) is expected to experience significant growth because it offers a larger detecting distance range (200-300 meters) within eye safety laser power limits while also offering potential better performance in bad weather conditions. This paper discusses the above-mentioned technical (optics and photonics) aspects of the most common lidar technologies, with the educational focus of identifying opportunities for employing such discussions in introducing optics to broader engineering audiences, drawing in part on experiences and examples from Kettering University

    LiDAR para regiões de interesse

    Get PDF
    In this document is presented the work developed in the master thesis on "Region of Interest LiDAR". The goal is to develop a LiDAR capable of characterizing a region of interest with high precision. Taking into account the high error in a triangulation LiDAR for great distances, an ROI LiDAR could be able to complement a triangulation LiDAR, making it possible to distinguish different spots at great distances. This LiDAR is validated using a simulation tool developed in Matlab throughout the thesis, based on a system consisting of a mirror, a lens and a sensor, where all defined parameters, from lens diameter, the focal length of the lens, the distance between mirror and lens and sensor size influence the results. These values were defined through different tests so that, with the defined values, it was possible to achieve the objectives of this thesis. This work theoretically shows that a LiDAR ROI is doable and feasible, being an option to consider for the automotive industry, completing a triangular LiDAR.Neste documento é apresentado o trabalho desenvolvido na tese de mestrado sobre "LIDAR para regiões de interesse". O objetivo é desenvolver um LiDAR capaz de caracterizar uma região de interesse com elevada precisão. Tendo em conta o erro elevado num LiDAR por triangulação, para grandes distâncias, um LiDAR para regiões de interesse conseguiria complementar um LiDAR por triangulação fazendo, com que seja possível distinguir diferentes pontos a grandes distâncias. Este LiDAR é validado usando uma ferramenta de simulação desenvolvida em Matlab ao longo da dissertação, baseada num sistema constituido por um espelho, uma lente e um sensor, onde todos os parâmetros definidos, desde o diametro da lente, a distância focal da lente, a distância entre espelho e lente e tamanho do sensor influenciam os resultados, estes valores foram definidos através de diferentes testes de modo a que com os valores definidos fosse possível atingir os objetivos desta tese. Este trabalho mostra, teoricamente, que um ROI LiDAR é fazível e viável, sendo uma opção a considerar para a indústria automóvel, completando assim um LiDAR por triangulação.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    An overview of lidar imaging systems for autonomous vehicles

    Get PDF
    Lidar imaging systems are one of the hottest topics in the optronics industry. The need to sense the surroundings of every autonomous vehicle has pushed forward a race dedicated to deciding the final solution to be implemented. However, the diversity of state-of-the-art approaches to the solution brings a large uncertainty on the decision of the dominant final solution. Furthermore, the performance data of each approach often arise from different manufacturers and developers, which usually have some interest in the dispute. Within this paper, we intend to overcome the situation by providing an introductory, neutral overview of the technology linked to lidar imaging systems for autonomous vehicles, and its current state of development. We start with the main single-point measurement principles utilized, which then are combined with different imaging strategies, also described in the paper. An overview of the features of the light sources and photodetectors specific to lidar imaging systems most frequently used in practice is also presented. Finally, a brief section on pending issues for lidar development in autonomous vehicles has been included, in order to present some of the problems which still need to be solved before implementation may be considered as final. The reader is provided with a detailed bibliography containing both relevant books and state-of-the-art papers for further progress in the subject.Peer ReviewedPostprint (published version

    Design And Modeling Of An Electrostatic Ally Actuated Mems Micromirror For Light Detection And Ranging

    Get PDF
    A Light Detection and Ranging (LIDAR) system, which is one of the promising technologies for autonomous vehicles, contains many miniature micromachined devices. The micromirror is one of the key components inside the LIDAR system that contributes to the performance of LIDAR. The “stroke” level of the micromirror affects the performance of the micromirror and hence the LIDAR. Therefore, this research focuses on a new approach to increase the level of stroke of the micromirror in an effort to enhance the device properties. In this thesis, four different design configurations of micromirrors are proposed and developed. The proposed micromirrors are based on dynamically-moving capacitor concepts that are actuated using electrostatic actuation. Unlike traditional micromirrors, the developed micromirrors employ three bottom electrodes, which enforces an upward deflection and, therefore, reduces the pull-in instability effect and improves the stroke of the micromirror. Critical design parameters of the micromirror that affect the stroke are studied to develop the four proposed designs. The PolyMUMPs fabrication technique is chosen to fabricate all four proposed micromirror designs. When the micromirror is fabricated using the PolyMUMPs fabrication technique, without any modification in the fabrication steps, the maximum achievable air cavity between the parallel plates is 2.0µm. However, in this thesis, in an unconventional way, the air cavity is increased from 2.0µm to 2.75µm. This is achieved by combining two oxide layers in the fabrication process. In this new design, a high stroke level of 5.07µm is achieved that, in return, will further enhance the performance of the LIDAR. COMSOL Multiphysics software and the MEMS module are used to investigate and analyze the performance of the proposed micromirrors and compare them with conventional MEMS micromirrors
    corecore