223 research outputs found

    MDPs with Energy-Parity Objectives

    Get PDF
    Energy-parity objectives combine ω\omega-regular with quantitative objectives of reward MDPs. The controller needs to avoid to run out of energy while satisfying a parity objective. We refute the common belief that, if an energy-parity objective holds almost-surely, then this can be realised by some finite memory strategy. We provide a surprisingly simple counterexample that only uses coB\"uchi conditions. We introduce the new class of bounded (energy) storage objectives that, when combined with parity objectives, preserve the finite memory property. Based on these, we show that almost-sure and limit-sure energy-parity objectives, as well as almost-sure and limit-sure storage parity objectives, are in NPcoNP\mathit{NP}\cap \mathit{coNP} and can be solved in pseudo-polynomial time for energy-parity MDPs

    IST Austria Technical Report

    Get PDF
    We consider Markov Decision Processes (MDPs) with mean-payoff parity and energy parity objectives. In system design, the parity objective is used to encode ω-regular specifications, and the mean-payoff and energy objectives can be used to model quantitative resource constraints. The energy condition re- quires that the resource level never drops below 0, and the mean-payoff condi- tion requires that the limit-average value of the resource consumption is within a threshold. While these two (energy and mean-payoff) classical conditions are equivalent for two-player games, we show that they differ for MDPs. We show that the problem of deciding whether a state is almost-sure winning (i.e., winning with probability 1) in energy parity MDPs is in NP ∩ coNP, while for mean- payoff parity MDPs, the problem is solvable in polynomial time, improving a recent PSPACE bound

    Expectations or Guarantees? I Want It All! A crossroad between games and MDPs

    Full text link
    When reasoning about the strategic capabilities of an agent, it is important to consider the nature of its adversaries. In the particular context of controller synthesis for quantitative specifications, the usual problem is to devise a strategy for a reactive system which yields some desired performance, taking into account the possible impact of the environment of the system. There are at least two ways to look at this environment. In the classical analysis of two-player quantitative games, the environment is purely antagonistic and the problem is to provide strict performance guarantees. In Markov decision processes, the environment is seen as purely stochastic: the aim is then to optimize the expected payoff, with no guarantee on individual outcomes. In this expository work, we report on recent results introducing the beyond worst-case synthesis problem, which is to construct strategies that guarantee some quantitative requirement in the worst-case while providing an higher expected value against a particular stochastic model of the environment given as input. This problem is relevant to produce system controllers that provide nice expected performance in the everyday situation while ensuring a strict (but relaxed) performance threshold even in the event of very bad (while unlikely) circumstances. It has been studied for both the mean-payoff and the shortest path quantitative measures.Comment: In Proceedings SR 2014, arXiv:1404.041

    Minimizing Expected Cost Under Hard Boolean Constraints, with Applications to Quantitative Synthesis

    Get PDF
    In Boolean synthesis, we are given an LTL specification, and the goal is to construct a transducer that realizes it against an adversarial environment. Often, a specification contains both Boolean requirements that should be satisfied against an adversarial environment, and multi-valued components that refer to the quality of the satisfaction and whose expected cost we would like to minimize with respect to a probabilistic environment. In this work we study, for the first time, mean-payoff games in which the system aims at minimizing the expected cost against a probabilistic environment, while surely satisfying an ω\omega-regular condition against an adversarial environment. We consider the case the ω\omega-regular condition is given as a parity objective or by an LTL formula. We show that in general, optimal strategies need not exist, and moreover, the limit value cannot be approximated by finite-memory strategies. We thus focus on computing the limit-value, and give tight complexity bounds for synthesizing ϵ\epsilon-optimal strategies for both finite-memory and infinite-memory strategies. We show that our game naturally arises in various contexts of synthesis with Boolean and multi-valued objectives. Beyond direct applications, in synthesis with costs and rewards to certain behaviors, it allows us to compute the minimal sensing cost of ω\omega-regular specifications -- a measure of quality in which we look for a transducer that minimizes the expected number of signals that are read from the input

    LNCS

    Get PDF
    In this paper we survey results of two-player games on graphs and Markov decision processes with parity, mean-payoff and energy objectives, and the combination of mean-payoff and energy objectives with parity objectives. These problems have applications in verification and synthesis of reactive systems in resource-constrained environments

    Simple Stochastic Games with Almost-Sure Energy-Parity Objectives are in NP and coNP

    Get PDF
    We study stochastic games with energy-parity objectives, which combine quantitative rewards with a qualitative ω\omega-regular condition: The maximizer aims to avoid running out of energy while simultaneously satisfying a parity condition. We show that the corresponding almost-sure problem, i.e., checking whether there exists a maximizer strategy that achieves the energy-parity objective with probability 11 when starting at a given energy level kk, is decidable and in NPcoNPNP \cap coNP. The same holds for checking if such a kk exists and if a given kk is minimal

    On Frequency LTL in Probabilistic Systems

    Get PDF
    We study frequency linear-time temporal logic (fLTL) which extends the linear-time temporal logic (LTL) with a path operator GpG^p expressing that on a path, certain formula holds with at least a given frequency p, thus relaxing the semantics of the usual G operator of LTL. Such logic is particularly useful in probabilistic systems, where some undesirable events such as random failures may occur and are acceptable if they are rare enough. Frequency-related extensions of LTL have been previously studied by several authors, where mostly the logic is equipped with an extended "until" and "globally" operator, leading to undecidability of most interesting problems. For the variant we study, we are able to establish fundamental decidability results. We show that for Markov chains, the problem of computing the probability with which a given fLTL formula holds has the same complexity as the analogous problem for LTL. We also show that for Markov decision processes the problem becomes more delicate, but when restricting the frequency bound pp to be 1 and negations not to be outside any GpG^p operator, we can compute the maximum probability of satisfying the fLTL formula. This can be again performed with the same time complexity as for the ordinary LTL formulas.Comment: A paper presented at CONCUR 2015, with appendi

    Approximating the Value of Energy-Parity Objectives in Simple Stochastic Games

    Get PDF
    We consider simple stochastic games G with energy-parity objectives, a combination of quantitative rewards with a qualitative parity condition. The Maximizer tries to avoid running out of energy while simultaneously satisfying a parity condition. We present an algorithm to approximate the value of a given configuration in 2-NEXPTIME. Moreover, ?-optimal strategies for either player require at most O(2-EXP(|G|)?log(1/?)) memory modes
    corecore