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Abstract
We study frequency linear-time temporal logic (fLTL) which extends the linear-time temporal
logic (LTL) with a path operator Gp expressing that on a path, certain formula holds with at
least a given frequency p, thus relaxing the semantics of the usual G operator of LTL. Such logic
is particularly useful in probabilistic systems, where some undesirable events such as random
failures may occur and are acceptable if they are rare enough. Frequency-related extensions of
LTL have been previously studied by several authors, where mostly the logic is equipped with an
extended “until” and “globally” operator, leading to undecidability of most interesting problems.

For the variant we study, we are able to establish fundamental decidability results. We show
that for Markov chains, the problem of computing the probability with which a given fLTL
formula holds has the same complexity as the analogous problem for LTL. We also show that for
Markov decision processes the problem becomes more delicate, but when restricting the frequency
bound p to be 1 and negations not to be outside any Gp operator, we can compute the maximum
probability of satisfying the fLTL formula. This can be again performed with the same time
complexity as for the ordinary LTL formulas.
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1 Introduction

Probabilistic verification is a vibrant area of research that aims to formally check properties
of stochastic systems. Among the most prominent formalisms, with applications in e.g.
modelling of network security protocols [19] or randomised algorithms [17], are Markov chains
and Markov decision processes (MDPs). Markov chains are apt for modelling systems that
contain purely stochastic behaviour, for example random failures, while MDPs can also
express nondeterminism, most commonly present as decisions of a controller or dually as
adversarial events in the system.

More technically, MDP is a process that moves in discrete steps within a finite state
space (labelled by sets of atomic propositions). Its evolution starts in a given initial state
s0. In each step a controller chooses an action ai from a finite set A(si) of actions available
in the current state si. The next state si+1 is then chosen randomly according to a fixed
probability distribution ∆(si, ai). The controller may base its choice on the previous evolution
s0a0 . . . ai−1si and may also choose the action randomly. A Markov chain is an MDP where
the set A(s) is a singleton for each state s.

For the systems modelled as Markov chains or MDPs, the desired properties such
as “whenever a signal arrives to the system, the system eventually switches off” can be
often captured by a suitable linear-time logic. The most prominent one in the verification
community is Linear Temporal Logic (LTL). Although LTL is suitable in many scenarios, it
does not allow to capture some important linear-time properties, for example that a given
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event takes place sufficiently often. The need for such properties becomes even more apparent
in stochastic systems, in which probabilities often model random failures. Instead of requiring
that no failure ever happens, it is natural to require that failures are infrequent, while still
having the power of the LTL to specify these failures using a complex LTL formula.

A natural solution to the above problem is to extend LTL with operators that allow us
to talk about frequencies of events. Adding such operators can easily lead to undecidability
as they often allow one to encode values of potentially infinite counters [6, 7]. In both the
above papers this is caused by a variant of a “frequency until” operator that talks about the
ratio of the number of given events happening along a finite path. The undecidability results
from [6, 7] carry over to the stochastic setting easily, and so, to avoid undecidability, care
needs to be taken.

In this paper, we take an approach similar to [21] and in addition to usual operators of
LTL such as X , U , G or F we only allow frequency globally formulae Gpϕ that require the
formula ϕ to hold on p-fraction of suffixes of an infinite path, or more formally, Gpϕ is true
on an infinite path s0a0s1a1 . . . of an MDP if and only if

lim inf
n→∞

1
n
·
∣∣∣{i | i < n and siaisi+1ai+1 . . . satisfies ϕ}

∣∣∣ ≥ p
This logic, which we call frequency LTL (fLTL), is still a significant extension to LTL,

and because all operators can be nested, it allows to express much larger class of properties
(a careful reader will notice that nesting of frequency operators is not the main challenge
when dealing with fLTL as it can be easily removed for the price of exponential blow-up of
the size of the formula).

The problem studied in this paper asks, given a Markov chain and an fLTL formula,
to compute the probability with which the formula is satisfied in the Markov chain when
starting in the initial state. Analogously, for MDPs we study the controller synthesis problem
which asks to compute the maximal probability of satisfying the formula, over all controllers.
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Figure 1 An example MDP.

For an example of possible application, suppose a network
service accepts queries by immediately sending back responses,
and in addition it needs to be switched off for maintenance
during which the queries are not accepted. In most states, a
new query comes in the next step with probability 0.5. In the
waiting state, the system chooses either to wait further (action
w), or to start a maintenance (action m) which takes one step
to finish. The service is modelled as an MDP from Figure 1,
leaving some parts of the behaviour unspecified. The aim is to synthesise a control strategy
that meets with a given probability the requirements on the system. Example requirements can
be given by a formula G F m ∧ G F (q→ X r) which will require that the service sometimes
accepts the request, and sometimes goes for maintenance. However, there is no quantitative
restriction on how often the maintenance can take place, and such restriction is inexpressible
in LTL. However, in fLTL we can use the formula G F m ∧ G0.95(q → X r) to restrict
that the service is running sufficiently often, or a strong restriction G F m ∧ G1(q→ X r)
saying that it is running with frequency 1. The formula may also contain several frequency
operators. In order to push the frequency of correctly handled queries towards a bound p,
the controller needs to choose to perform the maintenance less and less frequently during
operation.

Related work. Controller synthesis for ordinary LTL is a well-studied problem solvable
in time polynomial in the size of the model and doubly exponential in the size of the
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formula [2]. Usually, the LTL formula is transformed to an equivalent Rabin automaton,
and the probability of reaching certain subgraphs is computed in a product of the MDP (or
Markov Chain) with the automaton.

A similar approach is taken by [21]. They study a logic similar to our fLTL, where LTL is
extended with a mean-payoff reward constraints in which the reward structures are determined
by validity of given subformulas. The authors show that any formula can be converted to
a variant of non-deterministic Büchi automata, called multi-threshold mean-payoff Büchi
automata, with decidable emptiness problem, thus yielding decidability for model-checking
and satisfiability problems of labelled transition systems. Results of [21] cannot be applied
to probabilistic systems: here one needs to work with deterministic automata, but as pointed
out in [21, Section 4, Footnote 4] the approach of [21] heavily relies on non-determinism, since
reward values depend on complete future, and so deterministic “multi-threshold mean-payoff
Rabin automata” are strictly less expressive than the logic. Another variant of frequency
LTL was studied in [6, 7], in which also a modified until operator is introduced. The work [6]
maintains boolean semantics of the logic, while in [7] the value of a formula is a number
between 0 and 1. Both works obtain undecidability results for their logics, and [6] also yields
decidability for restricted nesting. Another logic that speaks about frequencies on a finite
interval was introduced in [20] but provides analysis algorithm only for a bounded fragment.

Significant attention has been given to the study of quantitative objectives. The work
[5] adds mean-payoff objectives to temporal logics, but only as atomic propositions and
not allowing more complex properties to be quantified. The work [3] extends LTL with
another form of quantitative operators, allowing accumulated weight constraint expressed
using automata, again not allowing quantification over complex formulas. [4] introduces
lexicographically ordered mean-payoff objectives in non-stochastic parity games and [9]
gives a polynomial time algorithm for almost-sure winning in MDPs with mean-payoff and
parity objectives. These objectives do not allow to attach mean-payoff (i.e. frequencies) to
properties more complex than atomic propositions. The solution to the problem requires
infinite-memory strategy which at high level has a form similar to the form of strategies we
construct for MDPs. Similar strategies also occur in [11, 10, 8] although each of these works
deals with a fundamentally different problem.

In branching-time logics, CSL is sometimes equipped with a “steady-state” operator
whose semantics is similar to our Gp (see e.g. [1]), and an analogous approach has been
taken for the logic PCTL [16, 13]. In such logics every temporal subformula is evaluated
over states, and thus the model-checking of a frequency operator can be directly reduced
to achieving a single mean-payoff reward. This is contrasted with our setting in which the
whole formula is evaluated over a single path, giving rise to much more complex behaviour.

Our contributions. To our best knowledge, this paper gives the first decidability results for
probabilistic verification against linear-time temporal logics extended by frequency operators
with complex nested subformulas of the logic.

We first give an algorithm for computing the probability of satisfying an fLTL formula
in a Markov Chain. The algorithm works by breaking the fLTL formula into linearly many
ordinary LTL formulas, and then off-the-shelf verification algorithms can be applied. We
obtain that the complexity of fLTL model-checking is the same as the complexity of LTL
model checking. Although the algorithm itself is very simple, some care needs to be taken
when proving its correctness: as we explain later, the “obvious” proof approach would fail
since some common assumptions on independence of events are not satisfied.

We then proceed with Markov decision processes, where we show that the controller
synthesis problem is significantly more complex. Unlike the ordinary LTL, for fLTL the
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controller-synthesis problem may require strategies to use infinite memory, even for very
simple formulas. On the positive side, we give an algorithm for synthesis of strategies for
formulas in which the negations are pushed to atomic propositions, and all the frequency
operators have lower bound 1. Although this might appear to be a simple problem, it is not
easily reducible to the problem for LTL, and the proof of the correctness of the algorithm
is in fact very involved. This is partly because even if a strategy satisfies the formula, it
can exhibit a very “insensible” behaviour, as long as this behaviour has zero frequency in
the limit. In the proof, we need to identify these cases and eliminate them. Ultimately, our
construction again yields the same complexity as the problem for ordinary LTL. We believe
the contribution of the fragment is both practical, as it gives a “weaker” alternative of the
G operator usable in controller synthesis, and theoretical, giving new insights into many of
the challenges one will face in solving the controller-synthesis problem for the whole fLTL.

2 Preliminaries

We now proceed with introducing basic notions we use throughout this paper.
A probability distribution over a finite or countable set X is a function d : X → [0, 1] such

that
∑
x∈X d(x) = 1, and D(X) denotes the set of all probability distributions over X.

Markov decision processes and Markov chains. A Markov decision process (MDP) is a
tuple M = (S,A,∆) where S is a finite set of states, A is a finite set of actions, and
∆ : S ×A→ D(S) is a partial probabilistic transition function. A Markov chain (MC) is an
MDP in which for every s ∈ S there is exactly one a with ∆(s, a) being defined. We omit
actions completely when we speak about Markov chains and no confusion can arise.

An infinite path, also called run, inM is a sequence ω = s0a0s1a1 · · · of states and actions
such that ∆(si, ai)(si+1) > 0 for all i, and we denote by ω(i) the suffix siaisi+1ai+1 · · · . A
finite path h, also called history, is a prefix of an infinite path ending in a state. Given a
finite path h = s0a0s1a1 · · · si and a finite or infinite path h′ = siaisi+1ai+1 · · · we use h · h′
to denote the concatenated path s0a0s1a1 · · · . The set of paths starting with a prefix h is
denoted by Cyl(h), or simply by h if it leads to no confusion. We overload the notation also
for sets of histories, we simply use H instead of

⋃
h∈H Cyl(h).

A strategy is a function σ that to every finite path h assigns a probability distribution
over actions such that if an action a is assigned a non-zero probability, then ∆(s, a) is
defined where s denotes the last state in h. A strategy σ is deterministic if it assigns Dirac
distribution to any history, and randomised otherwise. Further, it is memoryless if its choice
only depends on the last state of the history, and finite-memory if there is a finite automaton
such that σ only makes its choice based on the state the automaton ends in after reading the
history.

An MDPM, a strategy σ and an initial state sin give rise to a probability space Psin
σ

defined in a standard way [15]. For a history h and a measurable set of runs U starting from
the last state of h, we denote by Phσ(U) the probability Psin

σ ({h · ω | ω ∈ U} | h). Similarly,
for a random variable X we denote by Esin

σ (X) the expectation of X in this probability
space and by Ehσ(X) the expectation Esin

σ (Xh | h). Here, Xh is defined by Xh(h · ω) = X(ω)
for runs of the form h · ω, and by Xh(ω′) = 0 for all other runs. We say that a property
holds almost surely (or for almost all runs, or almost every run) if the probability of the runs
satisfying the property is 1.
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188 On Frequency LTL in Probabilistic Systems

Frequency LTL. The syntax of frequency LTL (fLTL) is defined by the equation:

ϕ ::= α | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Gpϕ

where α ranges over a set AP of atomic propositions. The logic LTL is obtained by omitting
the rule for Gpϕ. For Markov chains we study the whole fLTL whereas for MDP, we restrict
to a fragment that we call 1-fLTL. In this fragment, negations only occur immediately
preceding atomic propositions, and Gp operators occur only with p = 1.

For an infinite sequence γ = x1x2 . . . of numbers, we set freq(γ) := lim infi→∞ 1
i

∑i
j=1 xi.

Given a valuation ν : S → 2AP , the semantics of fLTL is defined over a path ω = s0a0s1 . . .

of an MDP as follows.

ω |= α iff α ∈ ν(s0) ω |= Xϕ iff ω(1) |= ϕ

ω |= ¬ϕ iff ω 6|= ϕ ω |= ϕ1 Uϕ2 iff ∃k : ω(k) |= ϕ2 ∧ ∀`<k : ω(`) |= ϕ1
ω |= ϕ1∨ϕ2 iff ω|=ϕ1 or ω|=ϕ2 ω |= Gpϕ iff freq(1ϕ,01ϕ,1 . . .) ≥ p

where 1ϕ,i is 1 for ω iff ω(i) |= ϕ, and 0 otherwise. We define true, false, ∧, and → by their
usual definitions and introduce standard operators F and G by putting Fϕ ≡ true Uϕ and
Gϕ ≡ ¬F¬ϕ. Finally, we use Pσ(ϕ) as a shorthand for Pσ({ω | ω |= ϕ}).

I Definition 1 (Controller synthesis). The controller synthesis problem asks to decide, given
an MDPM, a valuation ν, an initial state sin, an fLTL formula ϕ and a probability bound
x, whether Psin

σ (ϕ) ≥ x for some strategy σ.

As an alternative to the above problem, we can ask to compute the maximal possible
x for which the answer is true. In the case of Markov chains, we speak about Satisfaction
problem since there is no strategy to synthesise.

Rabin automata. A (deterministic) Rabin automaton is a tuple R = (Q, qin,Σ, δ,F) where
Q is a finite set of states, Σ is an input alphabet, δ : Q×Σ→ Q is a transition function, and
F ⊆ Q×Q is an accepting condition. A computation of R on an infinite word % = a0a1 . . .

over the alphabet Σ is the infinite sequence R[%] = q0q1 . . . with q0 = qin and δ(qi, ai) = qi+1.
A computation is accepting (or “R accepts %”) if there is (E,F ) ∈ F such that all states
of E occur only finitely many times in the computation, and some state of F occurs in it
infinitely many times. For a run ω = s0a0s1a1 . . . and a valuation ν, we use ν(ω) for the
sequence ν(s0)ν(s1) . . . of sets of atomic propositions.

As a well known result [2], for every MDPM, valuation ν and an LTL formula ϕ there is a
Rabin automaton R over the alphabet 2AP such that R is constructible in doubly exponential
time and ω |= ϕ iff R accepts ν(ω). We say that R is equivalent to ϕ. It is not clear whether
this result and the definition of Rabin automata can be extended to work with fLTL in a
way that would be useful for our goals. The reason for this is, as pointed out in [21, Section
4, Footnote 4], that the frequencies in fLTL depend on the future of a run, and so require
non-determinism, which is undesirable in stochastic verification.

3 Satisfaction problem for Markov Chains

In this section we show how to solve the satisfaction problem for MCs and fLTL. Let us fix a
MCM = (S,∆), an initial state sin and fLTL formula ψ. We will use the notion of bottom
strongly connected component (bscc) ofM, which is a set of states S′ such that for all s ∈ S′
the set of states reachable from s is exactly S′. If s is in a bscc, by bscc(s) we denote the
bscc containing s.
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We first describe the algorithm computing the probability of satisfying ψ from sin, and
then prove its correctness.

The algorithm. The algorithm proceeds in the following steps. First, for each state
contained in some bscc B, we compute the steady-state frequency xs of s within B. It is the
number Es(freq(1s,01s,1 . . .)) where 1s,i(ω) equals 1 if the ith state of ω is s, and 0, otherwise.
Afterwards, we repeat the following steps and keep modifying ψ for as long as it contains
any Gp operators:
1. Let ϕ be a LTL formula and p a number such that ψ contains Gpϕ.
2. Compute Ps(ϕ) for every state s contained in some bscc.
3. Create a fresh atomic proposition αϕ,p which is true in a state s iff s is contained in a

bscc and
∑
t∈bscc(s) xt · Pt(ϕ) ≥ p.

4. Modify ψ by replacing any occurrence of Gpϕ with Fαϕ,p.
Once ψ contains no Gp operators, it is an LTL formula and we can use off-the-shelf techniques
to compute Psin(ψ), which is our desired value.

Correctness. The correctness of the algorithm relies on the fact that αϕ,p labels states in a
bscc B if almost every run reaching B satisfies the corresponding frequency constraint:

I Proposition 2. For every LTL formula ϕ, every number p, every bscc B and almost every
run ω that enters B we have ω |= Gpϕ if and only if

∑
t∈B xt · Pt(ϕ) ≥ p.

The proposition might seem “obviously true”, but the proof is not trivial. The main
obstacle is that satisfactions of ϕ on ω(i) and ω(j) are not independent events in general: for
example if ϕ ≡ Fα and i < j, then ω(j) |= ϕ implies ω(i) |= ϕ. Hence we cannot apply the
Strong law of large numbers (SLLN) for independent random variables or Ergodic theorem
for Markov chains [18, Theorems 1.10.1-2], which would otherwise be obvious candidates.
Nevertheless, we can use the following variant of SLLN for correlated events.

I Lemma 3. Let Y0, Y1 . . . be a sequence of random variables which only take values 0 or
1 and have expectation µ. Assume there are 0 < r, c < 1 such that for all i, j ∈ N we have
E((Yi − µ)(Yj − µ)) ≤ rbc|i−j|c. Then limn→∞

∑n
i=0 Yi/n = µ almost surely.

Using the above lemma, we now prove Proposition 2 for fixed ϕ, B, p. Let R denote the
Rabin automaton equivalent to ϕ andM×R be the Markov chain product ofM and R.

First, we say that a finite path s0 . . . sk ofM is determined if the state qk reached by R
after reading ν(s0 . . . sk−1) satisfies that (sk, qk) is in a bscc ofM×R. We point out that
for a determined path s0 . . . sk, either almost every run of Cyl(s0 . . . sk) satisfies ϕ, or almost
no run of Cyl(s0 . . . sk) satisfies ϕ. Also, the probability of runs determined within k steps
is at least

∑bk/Mc
i=0 (1 − rM )irM = 1 − (1 − rM )bk/Mc where M is the number of states of

M×R and r is the minimum probability that occurs inM×R.
Now fix a state s ∈ B. For all t ∈ B and i ≥ 0 we define random variables Xt

i over runs
initiated in s. We let Xt

i (ω) take value 1 if t is visited at least i times in ω and the suffix of
ω starting from the ith visit to t satisfies ϕ. Otherwise, we let Xt

i (ω) = 0. Note that all Xt
i

have a common expected value µt = Pt(ϕ).
Next, let i and j be two numbers with i ≤ j. We denote by Ω the set of all runs and by

D the set of runs ω for which the suffixes starting from the ith visit to t are determined
before the jth visit to t (note that D can possibly be ∅). Because on these determined runs
Es(Xt

j − µt | D) = 0, we get

Es((Xt
i − µt)(Xt

j − µt)) ≤ 1− Ps(D) ≤ (1− rM )b(i−j)/Mc
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190 On Frequency LTL in Probabilistic Systems

as shown in [14]. Thus, Lemma 3 applies to the random variables Xt
i for a fixed t. Considering

all t ∈ B together, we show in [14] that freq(1ϕ,01ϕ,1 . . .) =
∑
t∈bscc(s) xtPs(ϕ) for almost all

runs initiated in the state s we fixed above. Because almost all runs that enter B eventually
visit s, and because satisfaction of Gpϕ is independent of any prefix, the proof of Proposition 2
is finished, and we can establish the following.

I Theorem 4. The satisfaction problem for Markov chains and fLTL is solvable in time
polynomial in the size of the model, and doubly exponential in the size of the formula.

4 Controller synthesis for MDPs

We now proceed with the controller synthesis problem for MDPs and 1-fLTL. The problem for
this restricted fragment of 1-fLTL is still highly non-trivial. In particular, it is not equivalent
to synthesis for the LTL formula where every G1 is replaced with G . Indeed, for satisfying
any LTL formula, finite memory is sufficient, while for 1-fLTL, the following theorem shows
that infinite memory may be necessary.

I Theorem 5. There is a 1-fLTL formula ψ and a Markov decision processM with valuation
ν such that the answer to the controller synthesis problem is “yes”, but there is no finite-
memory strategy witnessing this.

Proof idea. Consider the MDP from Figure 1 together with the formula ψ = G F m ∧
G1(q → X r). Independent of the strategy being used, no run initiated in s4 satisfies the
subformula q→ X r, while every run initiated in any other state satisfies this subformula.
This means that we need the frequency of visiting s4 to be 0. The only finite-memory
strategies achieving this are those that from some history on never choose to go right in the
controllable state. However, under such strategies the formula G F m is not almost surely
satisfied. On the other hand, the infinite-memory strategy that on i-th visit to s0 picks m if
and only if i is of the form 2j for some j satisfies ψ.

Note that although the above formula requires infinite memory due to “conflicting”
conjuncts, infinite memory is needed already for simpler formulae of the form G1(a U b). J

The above result suggests that it is not possible to easily re-use verification algorithms
for ordinary LTL. Nevertheless, our results allow us to establish the following theorem.

I Theorem 6. The controller-synthesis problem for MDPs and 1-fLTL is solvable in time
polynomial in the size of the model and doubly exponential in the size of the formula.

For the rest of this section, in which we prove Theorem 6, we fix an MDPM, valuation
ν, an initial state sin, and a 1-fLTL formula ψ. The proof is given in two parts. In the first
part, in Section 4.1 we show that the controller-synthesis problem is equivalent to problems
of reaching a certain set Υ and then “almost surely winning” from this set. To prove this, the
“almost surely winning” property will further be reduced to finding certain set of states and
actions on a product MDP (Lemma 13). In the second part of the proof, given in Section 4.2,
we will show that all the above sets can be computed.

4.1 Properties of satisfying strategies
Without loss of generality suppose that the formula ψ does not contain G1 as the outermost
operator, and that it contains n subformulas of the form G1ϕ. Denote these subformulas
G1ϕ1, . . .G1ϕn. For example, ψ = i →

(
G (q → a) ∧ G1(p1 U r ∨G1a)

)
contains ϕ1 =

p1 U r ∨G1a and ϕ2 = a.
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The first step of our construction is to convert these formulae ψ,ϕ1, . . . , ϕn to equivalent
Rabin automata. However, as the formulae contain G1 operators, they cannot be directly
expressed using Rabin automata (and as pointed out by [21], there is a fundamental obstacle
preventing us from extending Rabin automata to capture Gp).

To overcome this, we replace all occurrences of G1ϕi in such formulae by either true
or false, to capture that the frequency constraint is or is not satisfied on a run. Such a
replacement can be fixed only after a point in the execution is reached where it becomes
clear which frequency constraints in ψ can be satisfied. For a formula ξ ∈ {ψ,ϕ1, . . . ϕn},
any subset I ⊆ {1, . . . , n} of satisfied constraints defines a LTL formula ξI obtained from ξ

by replacing all subformulas G1ϕi (not contained in any other G1) with true if i ∈ I and
with false if i 6∈ I. The Rabin automaton for ξI is then denoted by Rξ,I . For the formula ψ
above, we have, e.g., ψ{1} = ψ{1,2} = i→

(
G (q→ a) ∧ true

)
, and ϕ∅1 = p1 U r ∨ false.

We use Q for a disjoint union of the state spaces of these distinct Rabin automata, and
Qψ for a disjoint union of the state spaces of the automata Rψ,I , called main automata, for
all I. Finally, for q ∈ Q belonging to a Rabin automaton R we denote by Rq the automaton
obtained from R by changing its initial state to q.

Let us fix a state s ofM and a state q of Rψ,I for some I ⊆ {1, . . . , n}. We say that a
run s0a0s1a1 . . . reaches (s, q) if for some k we have s = sk and q is the state reached by the
main automaton Rψ,I after reading ν(s0a0s1 . . . sk−1). Once (s, q) is reached, we say that a
strategy σ′ is almost-surely winning from (s, q) if Psσ′ assigns probability 1 to the set of runs
ω such that ν(ω) is accepted by Rqψ,I , and ω |= G1ϕi whenever1 we have i ∈ I.

I Proposition 7. There is a strategy σ such that Pσ(ψ) = x if and only if there is a set
Υ ⊆ S ×Qψ for which the following two conditions are satisfied:
1. There is a strategy σ′ such that Pσ′({ω | ω reaches a pair from Υ}) = x.
2. For any (s, q) ∈ Υ there is σs,q almost-surely winning from (s, q).

Intuitively, the proposition relies on the fact that if G1ϕi holds on a run, then it holds on all
its suffixes, and says that any strategy σ can be altered so that almost surely there will be a
prefix after which we know which of the G1ϕi will be satisfied.

I Example 8. Let us first illustrate the set Υ on a formula X q ∧ G F m ∧ G1(q→ X r)
that can be satisfied on the MDP from Figure 1 with probability 0.5. Figure 2 shows Rabin
automata for the formulae ψ{1} = X q∧G F m∧true (left) and ϕ{1}1 = q→ X r. In this simple
example, the “decision” whether the formula will be satisfied (and which G1 subformulas
will be satisfied) comes after the first step. Thus, we can set Υ = {(s1, q1)}.

q0 q1

q2q3

q4

true ¬q

qm

true

¬m

true

q5 q6

q7

q8

q

¬q r

¬r

true

true

Figure 2 Example Rabin aut.

We now prove Proposition 7. The direction ⇐ is
straightforward. It suffices to define σ so that it behaves
as σ′ initially until it reaches some (s, q) ∈ Υ for the first
time; then it behaves as σs,q.

Significantly more difficult is the direction ⇒ of Pro-
position 7 that we address now. We fix a strategy σ with
Pσ(ψ) = x. The proof is split into three steps. We first
show how to identify the set Υ, and then we show that
items 1 and 2 of Proposition 7 are satisfied. The last part
of the proof requires most of the effort. In the proof, we

1 Note that the product construction that we later introduce does not give us “iff” here. This is also why
we require the negations to only occur in front of atomic propositions
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will need to eliminate some unlikely events, and for this we will require that their probability
is small to start with. For this purpose, we fix a very small positive number λ; to avoid
cluttering of notation, we do not give a precise value of λ, but instead point out that it needs
to be chosen such that any numbers that depend on it in the following text have the required
properties (i.e. are sufficiently small or big; note that such choice is indeed possible). We
should stress that λ is influencing neither the size of representation of our strategy nor the
complexity of our algorithm.

Identifying the set Υ

In the first step, we identify an appropriate set Υ. Intuitively, we put into Υ positions
of the runs satisfying ψ where the way ψ is satisfied is (nearly) decided, i.e. where it is
(nearly) clear which frequency constraints will be satisfied by σ in the future. To this
end, we mark every run ω satisfying ψ with a set Iω ⊆ {1, . . . , n} such that i ∈ Iω iff
the formula G1ϕi holds on the run. We then define a set of finite paths Γ to contain all
paths h for which there is Ih ⊆ {1, . . . , n} such that exactly the frequency constraints from
Ih as well as ψIh are satisfied on (nearly) all runs starting with h. Precisely, such that
Pσ({ω′ | ω′ |= ψIh ∧ Iω′ = Ih} | h) ≥ 1 − λ. Finally, for every h ∈ Γ we add to Υ the pair
(s, q) where h = h′s and q is the state in which Rψ,Ih

ends after reading ν(h′).

Reaching Υ

It suffices to show that the strategy σ itself satisfies Pσ(Γ) = x. We will use the following
variant of Lévy’s Zero-One Law, a surprisingly powerful formalization of the intuitive fact
that “things need to get (nearly) decided, eventually”.

I Lemma 9 (Lévy’s Zero-One Law [12]). Let σ be a strategy and X a measurable set of runs.
Then for almost every run ω we have limn→∞ Pσ(X | hn) = 1X(ω) where each hn denotes
the prefix of ω with n states and the function 1X assigns 1 to ω ∈ X and 0 to ω 6∈ X.

For every I ⊆ {1, . . . , n} we define XI = {ω′ | ω′ |= ψI ∧ Iω′ = I} to be the set of runs that
are marked by I and satisfy the formula ψI . Then by Lemma 9, for almost every run ω that
satisfies ψ and has Iω = I, there must be a prefix h of the run for which Pσ(XI | h) ≥ 1− λ
because ω ∈ XI . Any such prefix was added to Γ, with Ih = I.

Almost-surely winning from Υ

For the third step of the proof of direction ⇒ of Proposition 7 we fix (s?, q?) ∈ Υ and
we construct a strategy σs?,q? that is almost-surely winning from (s?, q?). Furthermore,
let I? ⊆ {1, . . . , n} denote the set such that q? is a state from Rψ,I? . As we have shown
in Theorem 5, strategies might require infinite memory, and this needs to be taken into
consideration when constructing σs?,q? . The strategy cycles through two “phases“, called
accumulating and reaching that we illustrate on our example.

I Example 10. Returning to Example 8, we fix (s?, q?) = (s1, q1) and I? = {1}, with the
corresponding history from Γ being s0ws1. The strategy σs1,q1 we would like to obtain

first “accumulates” arbitrarily many steps from which all ϕ{1}1 can be almost surely
satisfied. I.e., it accumulates arbitrarily many newly started instances of the Rabin
automaton Rϕ1,{1} (all being in state q5) by repeating action w in s0.
Then it “reaches” with all the Rabin automata Rψ,{1} and Rϕ1,{1} accumulated in the
previous phase their accepting states q3 and q7 respectively. For Rϕ1,{1} this happens
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without any intervention of the strategy, but for Rψ,{1} the strategy needs to take the
action m. Then after returning to s0 it comes back to a state where the next accumulating
phase starts. Thus, we need to make sure we make the accumulating phases progressively
longer so that in the long run they take place with frequency 1.

The proof that such a simple behaviour suffices is highly non-trivial. To illustrate this, let us
extend the MDP from Figure 1 with an action decline with ∆(s1, decline) = s0. The strategy
σ from the proof of Theorem 5 satisfies Pσ(ψ) = 1 for ψ = G F m ∧ G1(q→ X r). However,
we can modify σ and obtain a “weird” strategy σ′ that takes the action decline in the i-th
visit to s1 with probability 1/2i. Such a strategy (a) still satisfies Pσ′(ψ) = 1/2 but (b) it
does not guarantee almost sure satisfaction of ϕ{1}1 in s1. Thus, it does not accumulate in
the sense explained above. We will show that any such weird strategy can be slightly altered
to fit into our scheme. J

To show that alternation between such accumulating and reaching suffices (and to make
a step towards the algorithm to construct such σs?,q?), we introduce a tailor-made product
constructionM⊗. The product keeps track of a collection of arbitrarily many Rabin automata
accumulated up to now. We need to make sure that almost all runs of all automata in the
collection are accepting, and we will do this by ensuring that: (i) almost every computation
of all Rabin automata eventually commits to an accepting condition (E,F ), and (ii) from the
point the automaton “commits” to the accepting condition, no more elements of E are visited
and (iii) some element of F is visited infinitely often. To ensure this, we store additional
information along any state q ∈ Q of each automaton:

(q,9) is a new instance that has to commit to an accepting condition soon;
(q, (E,F )◦) is an instance that has to visit a state of F soon;
(q, (E,F )•) is an instance that recently fulfilled the accepting condition by visiting F ;
(q,⊥) is an instance that violated the accepting condition it had committed to.

Let C denote the set of these pairs for all q ∈ Q and all accepting conditions (E,F ) of the
Rabin automaton where the state q belongs. Note that C is finite; because we need to encode
unbounded number of instances of Rabin automata along the run, each element of a collection
C ⊆ C might stand for multiple instances that are in exactly the same configuration. We say
that C ⊆ C is fulfilled if it contains only elements of the form (q, (E,F )•). The aim is to
fulfil the collection infinitely often, the precise meaning of “recently” and “soon” above is
then “since the last fulfilled state” and “before the next fulfilled state”.

Using the product M⊗, we show that if there is a satisfying strategy in M, there is
a strategy in M⊗ with a simple structure that visits a fulfilled state infinitely often (in
Lemma 13). Due to the simple structure, such a strategy can be found algorithmically.
Finally, we show that such a strategy in the product induces a satisfying strategy inM (in
Lemma 12) yielding correctness of the algorithm.

The product. LetM⊗ be an MDP with states S⊗ = S × 2C, actions A⊗ = A × 2C, and
transition function ∆⊗ defined as follows. We first define possible choices of a strategy in
M⊗. Given a state (s, Cs), we say that an action (a,Ca) is legal in (s, Cs) if a is a valid
choice in s in the original MDP, i.e. ∆(s, a) is defined; and Ca satisfies the following:

for all tuples (q,9) ∈ Cs we have (q,9) ∈ Ca or (q, (E,F )◦) ∈ Ca for some accepting
condition (E,F ), (q can “commit” to (E, F ), or keep waiting)
for all (q, x) ∈ Cs with x 6=9 we have (q, x) ∈ Ca, (all q are kept along with the commitments)
all (q, x) ∈ Ca, not added by one of the two above items, are of the form (qin,9) where
qin is the initial state of a Rabin automaton Rϕi,I? for i ∈ I?, (initial states can be added)
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Acc = (∅,{q3})
Acc = (∅,{q7})
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(q7,Acc•)
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s2
(q2,Acc◦)
(q7,Acc•)
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Figure 3 Illustration for Example 11. The names of actions fromM are omitted when only a
single action is available.

The randomness inM⊗ comes only fromM. We set ∆⊗((s, Cs), (a,Ca))(t, Ct) = ∆(s, a)(t)
for any state (s, Cs), any action (a,Ca) legal in (s, Cs), and any state (t, Ct) such that Ca
“deterministically evolves” by reading s into Ct. Precisely, we require that Ct is the minimal
set such that for any (q, x) ∈ Ca there is (q′, x′) ∈ Ct with q

ν(s)→ q′ and x q′

 x′ where the
latter relation is defined by 9 q′

 9 and ⊥ q′

 ⊥ and for any · ∈ {•, ◦} by
(E,F )·

q′

 (E,F )· if q′ 6∈ E ∪ F and C is not fulfilled, (no special state visited)

(E,F )·
q′

 (E,F )◦ if q′ 6∈ E ∪ F and C is fulfilled, (resetting back to ◦)

(E,F )·
q′

 (E,F )• if q′ ∈ F , (the accepting condition becomes fulfilled)

(E,F )·
q′

 ⊥ if q′ ∈ E; (the accepting condition is violated)

Finally, a state is called fulfilled if its second component is fulfilled.

I Example 11. Figure 3 shows one path in the productM⊗ for the MDP and the Rabin
automata from Example 8. The path shown illustrates how the initial states can be added
non-deterministically (in the first three steps), and then reaches a fulfilled state.

A very useful property of the product is that any strategy that ensures visiting fulfilled
states infinitely often yields a strategy in the original MDP such that the automata the
strategy added almost surely accept. This is formalised in the following lemma.

I Lemma 12. For a deterministic strategy π inM⊗ there is a strategy π′ inM that for any
h = (s0, C0) · · · (an, Dn)(sn+1, Cn+1) with Phπ({fulfilled state visited infinitely often}) = 1:

Ps0
π′(s0 . . . ansn+1) = P(s0,C0)

π (h), and
for any (q,9)∈Dn where R is the automaton of q, Ps0a0···sn

π′ ({ω | Rq accepts ω}) = 1.

To be able to use above lemma, we need to establish that it is sufficient to look for
a strategy that visits fulfilled states infinitely often. In other words that existence of the
satisfying strategy σ implies existence of a strategy that visits fulfilled states infinitely often.
Here we use the following lemma saying that σ and (s?, q?) give rise to two strategies in
the product M⊗ that can be used to add initial states into the collections, and to reach
fulfilled states. We will show below how these strategies can be used to finish the proof of
Proposition 7.

I Lemma 13. Assume s?, q?, I? are chosen as described on page 192. Then there are sets
M ⊆ S⊗, N ⊆ A⊗ where N contains only “accumulating“ actions, i.e. actions (a,C) with
{(qin,9) | qin is the initial state of Rϕi,I? for i ∈ I?} ⊆ C; and there are finite-memory
deterministic strategies π and ζ such that:
1. When starting in (s, C) ∈M , π only uses actions from N and never leaves M
2. When starting in (s, C) ∈M ∪ {(s?, {(q?,9)})}, ζ almost surely reaches a fulfilled state

(possibly leaving M) and then reaches M .
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Proof idea. The proof is involved and gives a crucial insight into the main obstacles of the
proof of Theorem 6. Due to the space constraints we only sketch it here.

We first prove that for any fixed `, almost every ω that satisfies all G1ϕI
?

i has infinitely
many good prefixes. Intuitively, a finite path h is good if, when starting from h, all the
automata Rϕi,I? for i ∈ I? started within ` first steps accept with probability at least 1− λ.

In the second step, we show how to avoid actions that cause that any Rϕi,I? does not
accept. To do so, we inductively start labelling the prefixes of runs of the MDP with elements
of C. Having fixed a label for a prefix, the label for its extension is obtained by “deterministic
evolving” as in the definition of the product MDP, and by (non-deterministically) adding
(qin,9). The latter part is performed by switching between a “pseudo-accumulating” and
“pseudo-reaching” phase. Initially, we start in a pseudo-reaching phase, only with singletons
corresponding to the current state of Rψ,I? , and do not add any (qin,9). When a good prefix
is reached (which happens almost surely), we switch to a pseudo-accumulating phase for the
next ` steps and we keep adding “initial states” (qin,9) of Rϕi,I? for each i ∈ I?. After `
steps, we switch back to a pseudo-reaching phase and do not add any new elements to the
label until we pass through a state whose label is fulfilled and get to a good prefix again, in
which point another pseudo-accumulating phase starts.

Along the way, we might obtain tuples of the form (q,⊥) in the label, or we might not
ever visit a fulfilled state. Indeed, if we repeated our steps to infinity, such an “error” might
take place almost surely. However, before an error happens with too high probability, the
labels start repeating because C is finite. We show that supposing ` was large enough and our
tolerance λ was small enough, there must be a strategy that almost-surely traverses such a
cycle without any error. We can extract from the pseudo-accumulating and pseudo-reaching
phases of such a strategy the setsM (and N), given by the tuples of the MDP states (actions)
and their labels. J

We are now ready to finish the proof of Proposition 7. We show that Lemma 13 allows
us to construct a strategy σ⊗ forM⊗ that almost surely (i) visits fulfilled states, and (ii)
with frequency 1 it takes actions from N . By Lemma 12 this strategy yields an almost-surely
winning strategy σs?,q? inM.

The strategy σ⊗ is constructed as follows. Inductively, for path h inM⊗, we say that
its first accumulating phase starts in the first step, ith accumulating phase takes i steps,
and the (i+ 1)th accumulating phase starts when the set M is reached through a fulfilled
state after the ith accumulating phase ended. Within every accumulating phase started in a
history h, σ⊗ is defined to play as π initiated after h. Similarly, outside every accumulating
phase ended in a history h, σ⊗ is defined to play as ζ.

4.2 The algorithm
To conclude the proof of Theorem 6, we need to give a procedure for computing the optimal
probability of satisfying ψ. It works in the following steps (for details, see [14]):
1. Initialize Υ := ∅, and construct Rξ,I for all ξ ∈ {ψ,ϕ1, . . . , ϕn} and I ⊆ {1, . . . , n}.
2. For every I find the largest sets (MI , NI) satisfying the conditions 1–2 of Lemma 13, and

add to Υ all pairs (s, q) such that MI can be almost-surely reached from (s, {(q,9)}).
3. Compute an optimal strategy σ′ for “reaching” Υ and return the probability. Intuitively,

we build the “naive” product ofM with all the main automata Rψ,I for I ⊆ {1, . . . , n};
reaching Υ is reduced to ordinary reachability of all states of the form (s, q1, . . . , qm)
such that (s, qi) ∈ Υ for some i.
By standard algorithms for reachability in MDP, we find an optimal strategy σ′′ in
the naive product that easily induces the strategy σ′ inM.
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By connecting Proposition 7, Lemmas 12 and 13, and the construction of σ⊗ above, there is
a strategy σ inM yielding probability ≥ p iff the set Υ computed by the algorithm can also
be reached with probability ≥ p.

We briefly discuss the complexity of the algorithm. Each of the Rabin automata in step 1
above can be computed in time 22poly(|ϕ|) , and since there is exponentially many such automata
(in |ϕ|), step 1. takes time 22poly(|ϕ|) . Step 2 can be performed in time poly(S) · 22poly(|ϕ|) . In
step 3 we are computing reachability probability in the naive product MDP which is of size
poly(S) · 22poly(|ϕ|) , and so also this step can be done in time poly(S) · 22poly(|ϕ|) .

5 Conclusions

We have given algorithms for controller synthesis of the logic LTL extended with an operator
expressing that frequencies of some events exceed a given bound. For Markov chains we gave
an algorithm working with the complete logic, and for MDPs we require the formula to be
from a certain fragment. The obvious next step is extending the MDP results to the whole
fLTL. This will require new insights. Our product construction relies on the (non-trivial)
observation that given G1ϕ, the formula ϕ is almost surely satisfied from any history of
an accumulating phase. This is no longer true when the frequency bound is lower than 1.
In such cases different histories may require different probability of satisfying ϕ. However,
both authors strongly believe that even for these cases the problem is decidable. Another
promising direction for future work is implementing the algorithms into a probabilistic model
checker and evaluating their time requirements experimentally.
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