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Energy and Mean-Payoff Parity
Markov Decision Processes
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Abstract. We consider Markov Decision Processes (MDPs) with meaifpay
parity and energy parity objectives. In system design, #réypobjective is used
to encodew-regular specifications, and the mean-payoff and energgctibags
can be used to model quantitative resource constraintsefiéey condition re-
quires that the resource level never drops belpwnd the mean-payoff condi-
tion requires that the limit-average value of the resou@samption is within
a threshold. While these two (energy and mean-payoff) idalssonditions are
equivalent for two-player games, we show that they differM®Ps. We show
that the problem of deciding whether a state is almost-simaing (i.e., winning
with probability 1) in energy parity MDPs is in N\ coNP, while for mean-
payoff parity MDPs, the problem is solvable in polynomiahd, improving a
recent PSPACE bound.

1 Introduction

Markov decision processes (MDPs) are a standard model &tersyg that exhibit both
stochastic and nondeterministic behaviour. The nondétésm represents the freedom
of choice of control actions, while the probabilities déiserthe uncertainty in the re-
sponse of the system to control actions. The control prolitenMIDPs asks whether
there exists a strategy (or policy) to select control adtionorder to achieve a certain
goal with a certain probability. MDPs have been used in shaeas such as planning,
probabilistic reactive programs, verification and synikes$ (concurrent) probabilistic
systems [11,22,1].

The control problem may specify a goal as a set of desireddrgsuch as-regular
specifications), or as a quantitative optimization objector a payoff function on the
traces of the MDP. Typically, discounted-payoff and meaggif functions have been
studied [14]. Recently, the energy objectives (correspantb total-payoff functions)
have been considered in the design of resource-constraimkeedded systems [3, 19, 7]
such as power-limited systems, as well as in queueing pseseand gambling models
(see also [4] and references therein). The energy objediygres that the sum of the
rewards be always nonnegative along a trace. Energy olaemdin be expressed in the
setting of boundaryless one-counter MDPs [4]. In the casd®Ps, achieving energy
objective with probabilityl is equivalent to achieving energy objective in the stronger
setting of a two-player game where the probabilistic cheare replaced by adversarial
choice. Thisis because if a traggiolates the energy condition in the game, then a finite
prefix of p would have a negative energy, and this finite prefix has pegitiobability in



the MDP. Note that in the case of two-player games, the eragctive is equivalent
to enforce nonnegative mean-payoff value [3, 5].

In this paper, we consider MDPs equipped with the combinatfa parity objective
(which is a canonical way to express theegular conditions [21]), and a quantitative
objective specified as either mean-payoff or energy camipecial cases of the parity
objective include reachability and fairness objectiveshsas Biichi and coBiichi condi-
tions. Such combination of quantitative and qualitativeeotives is crucial in the design
of reactive systems with both resource constraints andtifumad requirements [6, 10,
3,2]. In the case of energy parity condition, it can also lesweid as a natural extension
of boundaryless one-counter MDPs with fairness conditions

Consider the MDP in Fig. 1, with the objective to visit thedBilstateg, infinitely
often, while maintaining the energy level (i.e., the sumhef transition weights) non-
negative. A winning strategy frorq, would loop 20 times ongg to accumulate en-
ergy and then it can afford to reach the probabilistic stedgenfwhich the Biichi state
is reached with probability, and cost20. If the Biichi state is not reached immedi-
ately, then the strategy needs to rechdi@enits of energy and try again. This strategy
uses memory and it is also winning with probabilitjor the nonnegative mean-payoff
Biichi objective. In general however, the energy and mesyofb parity objectives do
not coincide (see later the example in Fig. 2). In particuta® memory requirement
for energy parity objective is finite (at most exponentialjil& it may be infinite for
mean-payoff parity.

We study the computational complexity of the problem of dexj if there exists a
strategy to achieve energy parity objective, or mean-gqgofty objective with proba-
bility 1 (i.e., almost-surely). We provide tight bounds for thiskdems in the following
sense.

1. For energy parity MDPs, we show that the problem is inMNEoNP, and present
a pseudo-polynomial time algorithm. Our bounds are the basteivable upper
bound unless parity games can be solvedfinich is a long-standing open ques-
tion.

2. For mean-payoff parity MDPs, we show that the problem igadade in polynomial
time (and thus PTIME-complete). Our result is a significampiovement over the
recent PSPACE upper bound of [16] for this problem.

We refer to [11, 15, 9] for importance of the computation ahast-sure winning set
related to robust solutions (independence of preciseitramgprobabilities) and the

more general quantitative problem. The computation of fheost-sure winning set
in MDPs typically relies either on the end-component arialys analysis of attrac-
tors and sub-MDPs. The result of [16] for mean-payoff paiyPs uses the analysis
of attractors and sub-MDPs. However the analysis is moreled than the typical

polynomial-time analysis and the resulting algorithm i®BPACE. Our results rely on
the end-component analysis, but in a much more refined waythigestandard analysis,
to obtain a polynomial-time algorithm. Our proof combineshiniques for mean-payoff

% pParity games polynomially reduce to two-player energy gafit&, 3, 5], and thus to energy
MDPs. Hence the problem for almost-sure energy parity MBRa ieast as hard as solving
two player parity games.



Fig. 1. An energy Biichi MDP. The playelrstates areo, g2, and the probabilistic state is.

and parity objectives to produce infinite-memory strategypesses, which is necessary
in general.

For energy parity MDPs the end-component based analysigrdsipolynomial-
time algorithm does not work since solving energy parity MO at least as hard
as solving two-player parity games. Instead, for energytyp&MDPs, we present a
quadratic reduction to two-player energy Biichi games tvigie in NPN coNP and
solvable in pseudo-polynomial time [7].

Due to lack of space we present the detailed proofs in therajipe

2 Definitions

Probability distributions. A probability distributionover a finite setd is a function
k:A—[0,1] suchtha’ ., x(a) = 1. Thesupportof « is the seSupp(x) = {a €
A | k(a) > 0}. We denote byD(A) the set of probability distributions aA.

Markov Decision Processes.A Markov Decision ProceséMDP) M = (Q, E.,§)
consists of a finite sef) of states partitioned intplayer-1 states); andprobabilistic
statesQp (i.e.,Q = Q1 U Qp), asetk C @ x @ of edges such that for ajl € Q,
there exists (at least ong) € @ such that(q,q’) € E, and a probabilistic transition
functiond : Qp — D(Q) such that for aly € Qp andq’ € @, we have(q,¢’) € E
iff 5(¢)(¢") > 0. We often writed(q, ¢') for 6(¢)(¢’). For a statey € @, we denote by
E(q) ={q € Q] (q,4") € E} the set of possible successors;of

End-components and Markov chainsA setU C @ isd-closedifforall g e UNQp
we haveSupp(d(q)) € U. The sub-MDP induced by é&closed seU is M | U =
(U,EN(S x S),d). Note thatM | U is an MDP if for allg € U there existg/ € U
such that(q,q') € E. A Markov chainis a special case of MDP whefg, = 0. A
closed recurrent sefor a Markov chain is a@-closed set/ C @ which is strongly
connected. End-components in MDPs play a role equivaletibsed recurrent sets in
Markov chains. Given an MDR/ = (Q, E, 0) with partition(Q1,Qp), asetU C @
of states is aend-componerit U is §-closed and the sub-MDPR/ | U is strongly
connected [11, 12]. We denote BYyM ) the set of end-components of an MDP.

Plays.An MDP can be viewed as the arena of a game played for infirmtalyry rounds
from a statey, € @ as follows. If the game is in a playérstateg, then playet chooses
the successor state in the #&{y); otherwise the game is in a probabilistic stat@and

the successor is chosen according to the probability bigtdnd(¢). This game results



in a play from ¢, i.e., an infinite pattp = goq1 ... such that(¢;, ¢;11) € F for all
i > 0. The prefix of length of p is denoted by(n) = qo . . . ¢n, the last state gb(n)
is Last(p(n)) = ¢,. We write {2 for the set of all plays.

Strategies.A strategy(for player1) is a functiono : @*Q1 — D(Q) such that for
allp e Q% q € Q1,andq € Qp,if o(p-q)(¢’) > 0, then(q,q') € E. We denote
by X the set of all strategies. Asutcomeof o from ¢ is a playqoq: - .. whereg;+1 €
Supp(o(qo - - - gi)) forall i > 0 such thay; € Q1.

Outcomes and measuresOnce a starting statg€ @ and a strategy € X are fixed,
the outcome of the game is a random wafkfor which the probabilities of evergvent
A C 2, which is a measurable set of plays, are uniquely defined 2%2]a state € @
and an eventd C (2, we denote byP7 (A) the probability that a play belongs 4 if
the game starts from the stateand playerl follows the strategy. For a measurable
function f : 2 — R we denote byE7 [f] the expectatiorof the functionf under the
probability measur@y (-).

Strategies that do not use randomization are called purdayepl strategys is
pureif for all p € Q* andq € @1, there is a stat¢’ € @ suchthat(p-q)(¢') = 1.

Finite-memory strategies.A strategy usedinite-memonyif it can be encoded by a
deterministic transducéMem, my, a.,,, ) WhereMem is a finite set (the memory of
the strategy)mo € Mem is the initial memory valueg, : Mem x Q@ — Mem is
an update function, and,, : Mem x Q1 — D(Q) is a next-move function. Thsize
of the strategy is the numbéem| of memory values. If the game is in a player-
stateq, andm is the current memory value, then the strategy chooses tkiestate
¢’ according to the probability distribution,, (m, ¢), and the memory is updated to
ay(m, q). Formally, (Mem, mg, a,, v} defines the strategy such thato(p - ¢) =
an (G (mo, p),q) for all p € Q* andq € @4, wherea,, extendsa,, to sequences
of states as expected. A strategymiemorylessf |[Mem| = 1. For a finite-memory
strategy, let M, be the Markov chain obtained as the productbivith the transducer
defining o, where((m, ¢), (m’,q’)) is an edge inM,, if m’ = «,(m,q) and either
q € Q1 andqg’ € Supp(ay,(m,q)), org € Qp and(q,q’) € E.

Two-player games. A two-player gamés a graphG = (@, E) with the same assump-
tions as for MDP, except that the partition@fis denoted @1, Q) whereQ- is the set
of player2 states The notions of play, strategies (in particular stratefpeplayer2),
and outcome are analogous to the case of MDP [7].

Objectives. An objectivefor an MDP M (or gameG) is a set¢p C {2 of infinite
paths. Letp : Q — N be apriority functionandw : E — Z be aweight functiof
where positive numbers represent rewards. We denoi#' ltlge largest weight (in ab-
solute value) according t@. Theenergy levebf a prefixy = qoq1 . .. ¢, of a play is
EL(w,7) = 1"y w(g, ¢i+1), and themean-payoff valieof a playp = qoqi ... is
MP(w, p) = liminf, o + - EL(w, p(n)). In the sequel, when the weight functian

4 Sometimes we take the freedom to use rational weights ¢i.e.F — Q), while we always
assume that weights are integers encoded in binary for exitypkesults.

5 The results of this paper hold for the definition of mean-fiayalue usinglim sup instead of
lim inf.



is clear from the context we omit it and simply wrii¢.(~) andMP(p). We denote by
Inf(p) the set of states that occur infinitely oftendnand we consider the following
objectives:

— Parity objectivesThe parity objectiveParity(p) = {p € 2 | min{p(q) | q €
Inf(p)} is even} requires that the minimum priority visited infinitely oftbe even.
The special cases 8lichiandcoBlchiobjectives correspond to the case with two
priorities,p : Q@ — {0,1} andp : Q — {1, 2} respectively.

— Energy objectives.Given an initial creditcy € N, the energy objective
PosEnergy(co) = {p € 2 | Yn > 0 : ¢o + EL(p(n)) > 0} requires that the
energy level be always positive.

— Mean-payoff objectivesGiven a thresholdr € Q, the mean-payoffobjective
MeanPayoff=" = {p € 2 | MP(p) > v} (resp.MeanPayoff”” = {p € 12 |
MP(p) > v}) requires that the mean-payoff value be at legsesp. strictly greater
thanv).

— Combined objective§.he energy parityobjectiveParity(p) N PosEnergy(co) and
themean-payoff paritpbjectiveParity(p) " MeanPayoff™ (for ~& {>, >}) com-
bine the requirements of parity and energy (resp., meaoff)apjectives.

Almost-sure winning strategies.For MDPs, we say that a playérstrategyo is
almost-sure winninig a statey for an objectivep if P (¢) = 1. For two-player games,
we say that a playet-strategy is winningin a state; for an objectives if all outcomes

of o starting inqg belong to¢. For energy objectives with unspecified initial credit, we
also say that a strategy is (almost-sure) winning if it isn@st-sure) winning fosome
finite initial credit.

Decision problems.We are interested in the following problems. Given an MDP
with weight functionw and priority functiorp, and a statey,

— the energy parity problenasks whether there exists a finite initial credjte N
and an almost-sure winning strategy for the energy parifgative fromgy with
initial credit ¢y. We are also interested in computing tinimum initial credit
in ¢o which is the least value of initial credit for which there gtsian almost-sure
winning strategy for playet in ¢o. A strategy for playet is optimalin ¢ if it is
winning fromgy with the minimum initial credit;

— the mean-payoff parity problerasks whether there exists an almost-sure winning
strategy for the mean-payoff parity objective with thrdshbfrom ¢,. Note that it
is not restrictive to consider mean-payoff objectives witresholdd because for
~e {>,>}, we haveMP(w, p) ~ v iff MP(w — v, p) ~ 0, wherew — v is the
weight function that assigns(e) — v to each edge € E.

The two-player game versions of these problems are defin@dgously [7]. It is
known that the initial credit problem for simple two-playerergy games [6, 3], as well
as for two-player parity games [13] can be solved inMNBoNP because memoryless
strategies are sufficient to win. Moreover, parity gamesicedn polynomial time to
mean-payoff games [17], which are log-space equivalenh&sgy games [3,5]. It is
a long-standing open question to know if a polynomial-tingodthm exists for these
problems. Finally, energy parity games and mean-payoffypgames are solvable in
NP N coNP although winning strategies may require exponentidliafinite memory
respectively, even in one-player games (and thus also in§)I[A®, 71].



Fig. 2. The gadget construction is wrong for mean-payoff parity MDPlayerl is almost-sure
winning for mean-payoff Biichi in the MDP (on the left) butger1 is losing in the two-player
game (on the right) because playefbox-player) can force a negative-energy cycle.

The decision problem for MDPs with parity objective, as veslwith mean-payoff
objective, can be solved in polynomial time [14,11, 9, 12wéver, the problem is in
NP N coNP for MDPs with energy objective because an MDP with enelgective
is equivalent to a two-player energy game (where the prdibtibistates are controlled
by player2). Indeed(1) a winning strategy in the game is trivially almost-sure viirgn
in the MDP, and2) if an almost-sure winning strategyin the MDP was not winning
in the game, then for all initial credit there would exist an outcomeof o such that
¢o +EL(p(i)) < 0 for some positiori > 0. The prefixp(i) has a positive probability in
the MDP, in contradiction with the fact thatis almost-sure winning. As a consequence,
solving MDP with energy objectives is at least as hard assglparity games.

In this paper, we show that the decision problem for MDPs witkrgy parity ob-
jective is in NPN coNP, which is the best conceivable upper bound unlessy/ggihes
can be solved in P. And for MDPs with mean-payoff parity obje; we show that
the decision problem can be solved in polynomial time, imprg a recent PSPACE
bound [16].

The MDP in Fig. 2 on the left, which is essentially a Markov ichds an exam-
ple where the mean-payoff parity condition is satisfied atsurely, while the energy
parity condition is not, no matter the value of the initiaédit. For initial creditcy, the
energy will drop below) with positive probability, namelgﬁ.

End-component lemma.We now present an important lemma about end-components
from [11, 12] that we use in the proofs of our result. It stakes for arbitrary strategies
(memoryless or not), with probability 1 the set of stategte@ikinfinitely often along a
play is an end-component. This lemma allows us to derivelosiuns on the (infinite)

set of plays in an MDP by analyzing the (finite) set of end-cormgnts in the MDP.

Lemma 1. [11, 12] Given an MDPM, for all statesq € @ and all strategiesr € .,
we havePy ({w | Inf(w) € E(M)}) = 1.
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Fig. 3. Gadget for probabilistic states in energy Blichi MDP. Diawi® are probabilistic states,
circles are playet states, and boxes are playestates.

3 MDPs with Energy Parity Objectives

We show that energy parity MDPs can be solved inMBoNP, using a reduction to
two-player energy Biichi games. Our reduction also presdhe value of the minimum
initial credit. Therefore, we obtain a pseudo-polynomigloaithm for this problem,
which also computes the minimum initial credit, using theutés of [7]. Moreover, we
show that the memory requirement for almost-sure winnirggagies is at mo{ QW
which is essentially optimél

We first establish the results for the special case of eneiighBVIDPs. We present
a reduction of the energy Buchi problem for MDPs to the epd@ichi problem for
two-player games. The result then follows from the fact thatlatter problem is in
NP N coNP and solvable in pseudo-polynomial time [7].

Given an MDPM, we can assume without loss of generality that every prdistibi
state has priorityl, and has two outgoing transitions with probabilyeach [8]. We
construct a two-player gant& by replacing every probabilistic state df by a gadget
as in Fig. 3. The probabilistic statgsof M are mapped to player-states inG with
two successorfg, L) and(q, R). Intuitively, player2 choosegg, L) to check whether
playerl can enforce the Biichi condition almost-surely. This isdase if playefl can
reach a Buchi state (with priority) infinitely often when he controls the probabilistic
states (otherwise, no Buchi state is ever visited, ancegint) states have priority,
the Biichi condition is not realized i&¥). And player2 chooseqq, R) to check that
the energy condition is satisfied. If playzcan exhaust the energy leveld# then the
corresponding play prefix has positive probabilitylih Note that(q, R) has priority0
and thus cannot be used by plagedp spoil the Biichi condition.

Formally, givenM = (Q, E, 0) with partition(Q1, @ p) of Q, we construct a game
G = (Q', E') with partition (Q}, Qs) whereQ| = Q1 U (Qp x {L}) and@}, =
Qr U (Qp x {R}), see also Fig. 3. The states@ that are already i) get the same

& Examplel in [7] shows that memory of siz& (|Q| — 1)-W + 1 may be necessary.



priority as in M, the stateg-, L) have priorityl, and the states, R) have priority0.
The setE’ contains the following edges:

— alledgeqq,q’') € FE suchthay € Qq;

— edgedq, (¢,d)), ((¢,d),¢') forallg € Qp,d € {L,R}, andq’ € Supp(d(q)).
The edgesq, ¢') and((q, d), ¢') in E’ getthe same weight &g, ¢’) in M, and all edges
(g, (¢,d)) get weightD.

Lemma 2. Given an MDPM with energy Bichi objective, we can construct in linear
time a two-player gamé&' with energy Bichi objective such that for all states in M,
there exists an almost-sure winning strategy frgmn M if and only if there exists a
winning strategy frong, in G (with the same initial credit).

Note that the reduction presented in the proof of Lemma 2 evowit work for
mean-payoff Buchi MDPs. Consider the MDP on Fig. 2 for whibk gadget-based
reduction to two-player games is shown on the right. The ganesing for playerl
both for energy and mean-payoff parity, simply becausegyl2ygan always choose to
loop through the box states, thus realizing a negative greerd mean-payoff value (no
matter the initial credit). However playéris almost-sure winning in the mean-payoff
parity MDP (on the leftin Fig. 2).

While the reduction in the proof of Lemma 2 gives a game with= |Q1|+ 3 |Q p|
states, the structure of the gadgets (see Fig. 3) is suckhénanergy level is indepen-
dent of which of the transitiongy, (¢, L)) or (¢, (¢, R)) is taken. Since winning strate-
gies in two-player energy parity games are energy-basedomdsess [7], the memory
bound of2-n-W can be transfered to almost-sure winning strategies ingyraichi
MDPs, wheren = |[Win N Q1| is the number of playet almost-sure winning states.
Also, the pseudo-polynomial algorithm of [7] for two-playenergy Biichi games can
be used for MDPs, with the sani¥|E| - |Q|® - W) complexity.

Using Lemma 2, we solve energy parity MDPs by a reduction tergyn Buchi
MDPs. The key idea of the reduction is that if playlehas an almost-sure winning
strategy for the energy parity objective, then player 1 damose an even prioritQ:
and decide to satisfy the energy objective along with satigfthat priority2i is visited
infinitely often, and priorities less thax are visited finitely often.

W.l.o.g. we assume that play&istates and probabilistic states alternate Fig) C
@, forallg € Qp,andE(q) C Qp forall ¢ € Q1. The reduction is then as follows.
Given an MDPM = (Q, E, ) with a priority functionp : @ — N and a weight
functionw : E — Z, we construct{M’, p’, w’) as follows.M’ is the MDPM =
(Q',E',¢") where:

- Q =QuU(Q x{0,2,...,2r}) U {sink} where2r is the largest even priority of
a state inQ. Intuitively, a state(q, i) € Q' corresponds to the stageof M from
which player1 will ensure to visit priority: (which is even) infinitely often, and
never visit priority smaller thay

— FE’ containsE U {(sink, sink)} and the following edges. For each probabilistic state
g€ Qp,fori=0,2,...,2r,

e (a)if p(¢’) >iforall ¢’ € E(q), then((q,%),(¢',3)) € E' forall ¢ € E(q),
o (b) otherwise((q,),sink) € E'.
For each playet stateg € @4, for eachy’ € E(q), fori =0,2,...,2r,



e (a) (g,sink) € E' and((q,4),sink) € E’, and

o (b)if p(q') = i, then(q, (¢, 7)) € E’ and((q,4), (¢',7)) € E".
The partition(Q}, Q's) of Q' is defined byQ] = @1 U (Q1 x {0,2,...,2r}) U {sink}
andQ» = @'\ Q). The weight of the edge§y, ¢'), (q,(¢’,%)) and ((g,%), (¢, 1))
according tow’ is the same as the weight ¢f, ¢’) according tow. The stateggq, 7)
such thap(q) = 7 have priority0 according tg’ (they are the Biichi states), and all the
other states i)’ (includingsink) have priorityl.

Lemma 3. Given an MDP M with energy parity objective, we can construct in
guadratic time an MDPM’ with energy Bichi objective such that for all stateg

in M, there exists an almost-sure winning strategy frggrin M if and only if there
exists an almost-sure winning strategy frggin M’ (with the same initial credit).

From the proof of Lemma 3, it follows that the memory requiegrnis the same as
for energy Buchi MDPs. And if the weights arefr-1, 0, 1}, it follows that the energy
parity problem can be solved in polynomial time.

Theorem 1. For energy parity MDPs,

1. the decision problem of whether a given state is almo®-sunning is in
NP N coNP, and there is a pseudo-polynomial time algorith®@{hE|-d- Q| - W)
to solve it;

2. memory of size-|Q|-W is sufficient for almost-sure winning strategies.

4 MDPs with Mean-payoff Parity Objectives

In this section we present a polynomial-time algorithm folvexg MDPs with mean-
payoff parity objective. We first recall some useful propeerbf MDPs.

For an end-componebt € £(M), consider the memoryless strategy that plays
in every states € U N @ all edges inE(s) N U uniformly at random. Given the
strategyoy, the end-componerif is a closed connected recurrent set in the Markov
chain obtained by fixingy .

Lemma 4. Given an MDPM and an end-component € £(M), the strategyoy
ensures that for all statesc U, we haveP” ({w | Inf(w) = U}) = 1.

Expected mean-payoff value Given an MDPM with a weight functionw, the ex-
pected mean-payoff valudenotedvalMP(w), is the function that assigns to every
state the maximal expectation of the mean-payoff objec¢tiat can be guaranteed by
any strategy. Formally, foy € @Q we haveValMP(w)(q) = sup,cs E7(MP(w)),
where MP(w) is the measurable function that assigns to a playe long-run av-
erageMP(w, p) of the weights. By the classical results of MDPs with meanpefia
objectives, it follows that there exists pure memorylessnogl strategies [14], i.e.,
there exists a pure memoryless optimal strateyysuch that for all; € @ we have
ValMP(w)(q) = EZ" (MP(w)).

It follows from Lemma 4 that the strategy; ensures that from any starting state
any other state is reached in finite time with probability 1. Therefore, thedue for



mean-payoff parity objectives in MDPs can be obtained bymating values for end-
components and then playing a strategy to maximize the éxjp@tto reach the values
of the end-components.

We now present the key lemma where we show that for an MDP shai iend-
component such that the minimum priority is even, the meayoff parity objective
Parity(p) N MeanPayoff=" is satisfied with probability 1 if the expected mean-payoff
value is at least at some state (the result also holds for strict inequallty)other
words, from the expected mean-payoff value of at leage ensure that both the mean-
payoff and parity objective is satisfied with probabilityrbin all states. The proof of
the lemma considers two pure memoryless strategies: orstdohastic shortest path
and the other for optimal expected mean-payoff value, antbomes them to obtain an
almost-sure winning strategy for the mean-payoff paritjgotive (details in appendix).

Lemma 5. Consider an MDPM with state spacé€), a priority functionp, and weight
functionw such that (a)M is an end-component (i.Q is an end-component) and
(b) the smallest priority i@ is even. If there is a statge @ such thatvalMP(w) > v
(resp.ValMP(w) > v), then there exists a strategy such that for all stateg € Q we
haveIP’g*(Parity(p)ﬂl\/leanPayofFZl’) =1 (resp.IP’g* (Parity(p)NMeanPayoff~") = 1).

Memory required by strategies.Lemma 5 shows that if the smallest priority in an end-
component is even, then considering the sub-game restticthe end-component, the
mean-payoff parity objective is satisfied if and only if theean-payoff objective is
satisfied. The strategy constructed in Lemma 5 requiresit@fimemory, and in the
case of loose inequality (i.eMeanPayoff=") infinite memory is required in general
(see [10] for an example on graphs), and if the inequalityristgi.e., MeanPayoff~"),
then finite memory strategies exist [16]. For the purposeoafutation we show that
both strict and non-strict inequality can be solved in polyial time. Since Lemma 5
holds for both strict and non-strict inequality, in sequighis section we consider non-
strict inequality and all the results hold for non-strictdquality as well.

Winning end-component. Given an MDP M with a parity objectiveParity(p)
and a mean-payoff objectiveanPayoff=" for a weight functionw, we call an
end-component winning if (&) min(p(U)) is even; and (b) there exists a state
with expected mean-payoff value at leastin the sub-MDP induced by/, i.e.,
maxgey ValMP(w)(g) > v in the sub-MDP induced b{/. We denote by the set
of winning end-components, and Iéin = |J;.,, U be the union of the winning
end-components.

Reduction to reachability of winning end-componentBy Lemma 5 it follows that in
every winning end-component the mean-payoff parity objeds satisfied with prob-
ability 1. Conversely, consider an end-compon&nthat is not winning, then either
the smallest priority is odd, or the maximal expected meayoff value that can be
ensured for any state i by staying inU is less tharv. Hence if only states i/
are visited infinitely often, then with probability 1 (i) Ber the parity objective is not
satisfied, or (ii) the mean-payoff objective is not satisfisdother words, if an end-
component that is not winning is visited infinitely ofteneththe mean-payoff parity
objective is satisfied with probability O. It follows thatdtvalue function for MDPs
with mean-payoff parity objective can be computed by cornmgithe value function for
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reachability to the setVin, i.e., formally,sup, . 5, PJ (Parity(p) N MeanPayoff=") =
sup, ¢ 5; P7 (Reach(Win)), whereReach(Win) is the set of paths that reaches a state in
Win at least once. Since the value function in MDPs with readitaloibjectives can
be computed in polynomial time using linear programmind [t4uffices to present a
polynomial-time algorithm to compuiin in order to obtain a polynomial-time algo-
rithm for MDPs with mean-payoff parity objectives.

Computing winning end-components. The computation of the winning end-
components is done iteratively by computing winning endiponents with smallest
priority 0, then winning end-components with smallest ptyo2, and so on. The com-
putation ofWin is as follows:

— Fori > 0, letW,; be the set of maximal end-componetitwith states with priority
at least2; and that contain at least one state with priofityi.e., U contains only
states with priority at leasti, and contains at least one state with priogity Let
Wi, C Wy, be the set of maximal end-componebtss W,; such that there is a
stateq € U such that the expected mean-payoff value in the sub-MDHat=st to
U is at least. Let Winy; = UUEWéi U.

The setWin = U}i{fJ Wino; is the union of the states of the winning end-components
(formal pseudo-code in the appendix).

Complexity of computing winning end-components.The winning end-component
algorithm runs forO(d) iterations and in each iteration requires to compute a maxi-
mal end-component decomposition and compute mean-paglois of at most end-
components, whereis the number of states of the MDP. The maximal end-component
decomposition can be achieved in polynomial time [11, 12T8F mean-payoff value
function of an MDP can also be computed in polynomial timengdinear program-
ming [14]. It follows that the value function of an MDP with me-payoff parity
objectives can be computed in polynomial time. The almasg-svinning set is ob-
tained by computing almost-sure reachabilityVitin in polynomial time [11,12, 9].
This polynomial-time complexity provides a tight upper bduor the problem, and
closes the gap left by the PSPACE upper bound of [16].

Theorem 2. The following assertions hold:

1. The set of alImost-sure winning states for mean-payoitypaiojectives can be com-
puted in polynomial time for MDPs.

2. For mean-payoff parity objectives, almost-sure winnétrgitegies require infinite
memory in general for non-strict inequality (i.e, for mepayoff parity objectives
Parity(p) N MeanPayoff=") and finite-memory almost-sure winning strategies exist
for strict inequality (i.e., foParity(p) N MeanPayoff~").

5 Conclusion

We considered MDPs with conjunction of mean-payoff pariig @anergy parity objec-
tives, and presented tight complexity bounds, algorithems, bounds for the memory
required by the strategies. The other boolean combinatibnsean-payoff parity and
energy parity objectives are straightforward and preskintéhe appendix (Section 8).
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Appendix
6 Details of Section 3

Proof (of Lemma 2)We show that player has an almost-sure winning strategyhif
if and only if playerl has a winning strategy in the garGg(for the same initial credit).

First, we show that if playet has an almost-sure winning strategy; in M, then
we can construct a winning strategy: in G. We can assume that, is pure [8].

To definesg, we assign a rank to prefixes of outcomessgf in M as follows.
Prefixesp such thap(Last(p)) = 0 get rank0. For other prefixep (with p(Last(p)) =
1), if Last(p) € Q: is a playert state, therp gets rankl + rank(p - ¢) whereq is
such that(p)(q) = 1; if Last(p) € Qp is a probabilistic state, themgets rankl +
min{rank(p’) | p’is a ranked successor pf. Prefixes without ranked successor get
no rank. We claim that all prefixgscompatible witho; get a (finite) rank. Otherwise,
there would exist a non-ranked prefix compatible wiffp (thus reachable with positive
probability) such that all its extensions are unrankedsTwould imply that only states
with priority 1 are visited from that point on, hence the co-Biichi objeckias positive
probability, in contradiction with the fact thaty, is almost-sure winning for energy
Buchi.

We construct the pure strategy: as follows. Given a play¢ in G, let h(pg) be
the sequence obtained fropa; by deleting all states of the forify, d) for ¢ € Qp
andd € {L,R}. Note thath(pc) is a play inM. Letgqc = Last(pg) € QY, we define
oa(pa) as follows:

— if g € Q1, thenag(pg) = UM(h(pg));
- if g¢ = (¢, L) (for ¢ € Qp), thenoc(pc) = ¢’ whererank(pg - ¢') < rank(pc).

Note that for every outcomg; of o, the playh(pe) is an outcome ofj in M. To-
wards contradiction, assume thwaf is not winning inG. Then, there exists an outcome
pa of og that violates either:

— the energy condition; then, the energy level drops bélaifter finitely many steps
in pe, and this occurs as well ih(p¢) with positive probability in)M, a contradic-
tion with the fact that y, is almost-sure winning for energy Buichi iv1.

— or the Bichi condition; then, from some point ongg only priority 1 is visited.
This implies that in the gadgets, eventually ofjyL) states are visited. Then, ac-
cording to the definition of ¢, the rank in prefixes gf; decreases and eventually
reaches rank, that is a state with priority is visited, and we have again a contra-
diction.

Thereforegg is a winning strategy in the gante.

Second, we show that if playérhas a winning strategy¢ in G, then we can
construct an almost-sure winning strategy in M. We can assume that; is energy-
based memorylesthat isoc(p) = oa(p’) for all p, p’ such thatLast(p) = Last(p’)
andEL(p) = EL(p’) [7]. In particular, ifh(p) = h(p’), thenog(p) = oc(p’).

We define the strategy,, as follows: for each prefiy,s in M, let o (py) =
oc(p) wherep is such thath(p) = pas. By the above remark, the strategy; is
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uniquely and well defined. We also know tlwaf uses finite memory. Therefore, @,

all cycles are have nonnegative energy and visit a prioritate. Therefore, all cycles

in M,,, have nonnegative energy; and if there is a reachable clesedrent set in
M,,, that contains only priorityl states, then irG,, player2 can fix a strategy to
reach the closed recurrent $é(by choosing the successor of probabilistic states using
(+,R) states) and in the states Gf player2 always choose§, L) states. The (unique)
outcome is a play that eventually remains in the closed rentiset and therefore visits
priority 1 states only from some point on, spoiling strategy, a contradiction. Hence,

all closed recurrent sets i, contain a priority0 state and the Buchi objective is
satisfied with probability under strategy ;. a

Proof (of Lemma 3)Consider the construction ¢3/’, p’, w') defined before Lemma 3.
Let Win' C Q x {0,2,...,2r} be the set of almost-sure winning states in the copies of
M’ for the energy Biichi objective and I1&in = {q € Q | 32i.(q, 2¢) € Win} be the
projection of Win' on Q. We then convert all states iV to absorbing (or sink) states
with weight 0, and then consider almost-sure energy Budahning set”Z with Win as
the Buchi set (this is almost-sure energy and reachalbdifyin).

We claim Z is the almost-sure winning set for energy paritydih The proof is as
follows. LetZ = @\ Z. Consider an arbitrary strategyfor player 1 and a starting state
q € Z. Assume towards contradiction thatis almost-sure winning for energy parity
objective. Suppose there is an end-compoiéstich that/ N Z # (), that is visited
infinitely often with positive probability. Since is almost-sure winning, we must have
thatmin(p(U)) is even (sayi:) and the energy objective is satisfied. Hence in the copy
2iin M’ we have that/ is almost-sure winning. This meafis< {2i} C Win' and since
U C Qwe havel/ C Win. Butthis contradicts thdfnZ # () and Win C Z. It follows
that there is no end-component that intersects Withat is visited infinitely often with
positive probability. Hence, given, the setZ must be reached with probability 1. If
the energy objective is also ensured with probability bthen the strategy is almost-
sure winning for energy and reachability #@in (since fromZ almost-sure winning
for energy and reachability té#/in can be ensured). This shows thatiould belong to
Z. This is a contradiction and completes the proof. a

Bound for strategies.We construct an almost-sure winning strategy of size at most
2-(|Z]+1)-W as follows. We first partition the sé¥in as follows: Win is the set of
states that is winning in copy 0¥in is the set of states that is winning in copy 2 and
not in copy 0; and so on. For a statec Win, letq € Winy,, then for the statg we

play the almost-sure winning strategy for in capy Since the copies are disjoint, the
total memory required for the almost-sure winning straegs) . 2 - | Wing;| - W =

2 - |Win| - W. For stateg; € Z \ Win, we play the almost-sure winning strategy to
reach Win ensuring the energy objective. Since for the reachabitityitin we can
consider states iWWin as a single absorbing state, the memory required is at most
2. (]Z \ Win| + 1) - W. After reachingWin the strategy switches to the almost-
sure winning strategy froniin. Hence the total memory required by the almost-sure
winning strategy is at mo&t- (|Z| + 1) - W.

Algorithm. If we simply apply the algorithm for energy Biichi MDPs on tiegluction,
then we obtain @ (|E|-d- (d-|Q|)® - W) algorithm. The improved version is obtain by
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simply following the steps of the proof. First, for each cepy compute the almost-sure
winning set for the energy Biichi objective Since each cemisjoint and in each copy
we requireO(|E| - |Q|° - W), the total time required to compute th&in is at most
O(|E|-d-|Q|>-W). Finally the almost-sure energy reachabilityitén can be achieved
in an additionaD(|E| - |Q|° - W) time. Hence we obtain ad(|E| - d - |Q| - W) time
algorithm.

7 Details of Section 4

Proof (of Lemma 5)The strategy™* for the mean-payoff parity objective is produced
by combining two pure memoryless strategies, for the expected mean-payoff ob-
jective ando for the objective of reaching the smallest priority. We gresa few
properties that we use in the correctness proof of the akswst winning strategy.

1. Property 1. Finite-time reach to smallest priorit@bserve that under the strategy
oo we obtain a Markov chain such that every closed recurrerinsitie Markov
chain contains states with the smallest priority, and hédrma all states; a state
with the smallest priority (which is even) is reached in firtime with probability 1.

2. Property 2. Uniform valueThe expected mean-payoff value for all stajes Q
is the same: if we fix the memoryless strategythat chooses all successors uni-
formly at random, then we get a Markov chain as the whole(sets a closed
recurrent set, and hence from all stages @ any state;’ € Q is reached in fi-
nite time with probability 1, and hence the expected meamfiaalue atq is at
least the expected mean-payoff valug/atit follows that for allq, ¢’ € Q the ex-
pected mean-payoff value @andq’ coincide. Let us denote the uniform expected
mean-payoff value by*.

3. Property 3. Property of optimal mean-payoff strategiie strategy,, is a pure
memoryless strategy and once it is fixed we obtain a Markoincfde limit of
the average frequency (or Cesaro limit) exists for all stated since,, is optimal
it follows that for all stateg € Q we have

% ZEgm [w((0;,0i+1))] =v",

i=1

lim
n—oo

wheref; is the random variable for thieth state of a path. In the resulting Markov
chain obtained by fixing,,,, the expected mean-payoff value for every closed re-
current set must be*; otherwise, if there is a closed recurrent set with expected
mean-payoff value less thari, then there must be a closed recurrent set with ex-
pected mean-payoff value greater thanas all states have the uniform valug

but then we obtain a state with expected mean-payoff valeatgr than* which
contradicts Property 2. Hence from the theory of finite st#rkov chains (the
almost-sure convergence to the Cesaro limit [18]) we olitah

P7({p | Jim 7 -EL(w,p(6)) > v*}) = lim B ({p] 7 EL(w, p(0) > v'}) =1.

In the above equality the limit and the probability operatare exchanged using
Lesbegue’s Dominated Convergence Theorem [20] (as thehigesge bounded).

15



Hence for ale > 0, there existg(e) € N such that ifo,,, is played for any > j(e)
steps then the average of the weights fateps is at least within the expected
mean-payoff value of the MDP with probability at ledst ¢, i.e., forallg € Q,
forall £ > j(e) we have

Po({p | EL(w p(0) > v~ ) > 1 ¢

Let W be the maximum absolute value of the weights. The almost-suategys*
for mean-payoff parity objective is played in rounds, anel strategy for round is as
follows:

1. Stage 1First play the strategy, till the smallest priority is reached.

2. Stage 2Lete¢; = 1/i. If the game was in the first stage in thistll round) fork;
steps, then play the strategy, for ¢; steps such that > max{j(e;),i - k; - W}.
This ensures that the with probability at ledst ¢; the average of the weights in
round: is at least

EZ(v*—ez)szW7(€Z+kz)v*f&el—klv*—klW

ki+ 4 ki +¢;
>t —
- b + k;
2-ki-W
>t —g— ——— incev* <
>V — € s (sincev* < W)
Syt 2 ki W
=z 2

2 .
>v*—¢—— (sincel; >i-k-W)
1

:v*—é.
i

Then the strategy proceeds to round 1.

The strategy ensures that there are infinitely many rouhdsf@llows by Property 1 of
finite-time reachability to min even priority state). Heneith probability 1 the smallest
priority that is visited infinitely often is the smallest prity of the end-component
(which is even). This ensures that the parity objective tsfad with probability 1.
We now argue that the mean-payoff objective is also satisfidd probability 1. Fix
arbitrarye > 0 and considei such that% < e. Forallj > 4, in roundy, the average
weights is at least* — ¢ with probability at least — . Since mean-payoff objective is
independent of finite prefixes, for ajle @ we have

1
Py({p| lim —-EL(w,p(f)) >v" —€}) > 1 —e.
=00 ¥
Sincee > ( is arbitrary, lettinge — 0, we obtain that for aly € @ we have

P5({p | Jim 7 EL(w,p(0) > v*}) > 1

Hence depending on wheth&r > v or v* > v we obtain the desired result. O

16



Algorithm 1: AlgoWinEndComponent

Input: An MDP M with parity functionp, weight functionw and threshold .
Output: The sefi of union of winning end-components.
1.¢:=0;
2. My := M,
3.Fori:=0to|d/2] do
3.1 Compute the maximal end-component decompositial of
3.2 LetWy; be the maximal end-componerits
such thal/ C J;-,,p~"(j) andU Nnp~*(2i) # 0;
3.3 LetW), C W»; be the set of maximal end-componebtsc Ws; such that
in the sub-MDP induced by t& there existg with Val(MeanPayoff (w)) > v.
3.4W2i = UUEWéi U;
3.575; := Random attractor ofl’z; in M;;
3.6 M;4+1 := sub-MDP induced by removing>; in M;;
37i:=1i+1;
4.return W = J'Y W,

Further details about computing winning end-components fo MDPs with mean-
payoff parity objectives. We now present some further details about computing the
winning end-components with mean-payoff parity objectivEhe computation of the
winning end-components is done iteratively by computingning end-components
with smallest priority O, then winning end-components wsthallest priority 2, and

so on. We start with the initial MDR/, := M. In iteration: the remaining MDP is
M;. We compute the maximal end-component decompositia gthen consider the
maximal-end component$ that contains only states with priorié and at least one
state with priority2i. If there is such an end compondhtwhere the expected mean-
payoff value is at least at some state, thdii is included ini,;. The we consider the
random attractof(i.e., alternating reachability i@/>; by the random player) td/5; and

the set of random attractor is removed from the MDP for the itesation. The random
attractor to a sef’ is as followsTy := T and fori > 0 we havel; 1 := T;U{q € Q1 |

V¢ €Q.(q,d) e E—q €eT;}U{qeQp |3 €Q.(q,d) € ENg €T;}andthe
random attractor i$ ;.. , 7;. It follows from the results of [9] (see Lemma 2.1 of [9])
that if we consider a set of end-components, and take randtoactar to the set, then
the maximal end-component decomposition of the remainiBiPMemains unaffected.
Moreover, the complement of a random attractor in an MDPvisig$ a sub-MDP. The
setW = Uii/ozJ Wa; is the union of the states of the winning end-components. The
formal pseudocode is given as Algorithm 1.

8 Other Combinations

We discuss the other boolean combinations of mean-payafypend energy parity
objectives. Results for all the combinations are quite & obtain, given the results
of the paper and other known results.
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8.1 Combination of mean-payoff parity objectives

The complement of a mean-payoff objective is a mean-paymjéfative and hence to
complete the picture we need to only consider the disjunafonean-payoff and parity
objectives.

Disjunction of mean-payoff and parity objectives. For the disjunction of mean-
payoff and parity objectives in MDPs we consider end-congmt® analysis. An end-
component is winning if either the parity objective can bswrd almost-surely, or
the mean-payoff objective can be ensured almost-sureigeSietermining almost-sure
winning for parity objective and mean-payoff objectivesidae done in polynomial

time, we can use the algorithm of Section 4 for computing wigrend-components
and then reachability to winning end-components. Hendertision of mean-payoff

parity objectives can be solved in polynomial time, and g@isoe memoryless optimal
strategies exist.

8.2 Combination of energy parity objectives

The complement of an energy objective is the co-energy tbgend energy objec-
tives are not closed under complement). Hence to completeitture we need to
consider (1) disjunction of energy and parity objectives] &) both conjunction and
disjunction of co-energy and parity objectives.

Disjunction of energy and parity objectives.The solution of disjunction of energy and
parity objectives is achieved using the end-componenyaisalan end-component is
winning if either the parity objective can be ensured alrssely or the energy objec-
tive can be ensured almost-surely. Whether an end-comp@nalmost-sure winning
for parity can be decided in polynomial time, and for energjeotives it is in NP
coNP. Hence the winning end-components can be determirié¢d imcoNP. LetiV; be
the union of the set of winning end-components for almosg-parity, and let?, be the
union of the set of remaining winning end-components (@ely almost-sure winning
for energy). Finally we need to ensure almost-sure reatityatn 17/, or almost-sure
energy reachability td¥5. Again this can be achieved in NPPcoNP.

Boolean combination of co-energy and parity.The solution of conjunction of co-
energy and parity objectives is achieved as follows: an@rdponentis winning if the
co-energy objective can be ensured and parity objectivdbeamsured almost-surely.
For an winning end-component (i) we first ensure the co-gnelgective (which is
achieved along a finite prefix) and (ii) then ensure the paniitiective almost-surely.
Determining whether the co-energy objective can be enssidteckable in polynomial
time (a graph problem). It follows that conjunction of coeegy parity objectives can
be solved in polynomial time. The disjunction of co-energyg arity objectives is also
simple: an end-component is winning if either the co-en@ifgjgctive can be satisfied
or the parity objective can be satisfied almost-surely. ld¢he disjunction of co-energy
and parity objectives can be solved in polynomial time.
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