336 research outputs found

    Internet protocol MANET vs named data MANET: A critical evaluation

    Get PDF
    Many researches have been done in the field of mobile networking, specifically in the field of ad-hoc networks.The major aim of these networks is the delivery of data to a given node at the destination, irrespective of its location.Mobile Ad-hoc Network (MANET) employs the traditional TCP/IP structure to provide end-to-end communication between nodes (we named this type of architecture is IP-MANET).However, due to their mobility and the limited resource in wireless networks, each layer in the TCP/IP model requires redefinition or modifications to function efficiently in MANET. Named Data MANET (NDMANET) architecture is a recently emerging research area. The in-network chunk-based caching feature of NDN is beneficial in coping with the mobility and intermittent connectivity challenges in MANETs.In the natural disaster field, MANET is considered a challenging task because of the unpredictable changes in the network topology due to the absence of any centralized control.The goals of this paper have two ways: first, this study provides a performance comparison of IP-MANET to ND-MANET in terms of throughput, delay, and packet loss.While the second contribution is to identify which architecture has an impact on the natural disaster (i.e., Flooding disaster) in rural areas and suggests which one may perform better.For experimental purposes, our analyses IP-MANET and ND-MANET by extensive simulations in the NS 3 simulator under a number of different network scenarios, and show that how number of nodes and variety packets size affect their performance

    A Survey on Multihop Ad Hoc Networks for Disaster Response Scenarios

    Get PDF
    Disastrous events are one of the most challenging applications of multihop ad hoc networks due to possible damages of existing telecommunication infrastructure.The deployed cellular communication infrastructure might be partially or completely destroyed after a natural disaster. Multihop ad hoc communication is an interesting alternative to deal with the lack of communications in disaster scenarios. They have evolved since their origin, leading to differentad hoc paradigms such as MANETs, VANETs, DTNs, or WSNs.This paper presents a survey on multihop ad hoc network paradigms for disaster scenarios.It highlights their applicability to important tasks in disaster relief operations. More specifically, the paper reviews the main work found in the literature, which employed ad hoc networks in disaster scenarios.In addition, it discusses the open challenges and the future research directions for each different ad hoc paradigm

    Mission-based mobility models for UAV networks

    Get PDF
    Las redes UAV han atraído la atención de los investigadores durante la última década. Las numerosas posibilidades que ofrecen los sistemas single-UAV aumentan considerablemente al usar múltiples UAV. Sin embargo, el gran potencial del sistema multi-UAV viene con un precio: la complejidad de controlar todos los aspectos necesarios para garantizar que los UAVs cumplen la misión que se les ha asignado. Ha habido numerosas investigaciones dedicadas a los sistemas multi-UAV en el campo de la robótica en las cuales se han utilizado grupos de UAVs para diferentes aplicaciones. Sin embargo, los aspectos relacionados con la red que forman estos sistemas han comenzado a reclamar un lugar entre la comunidad de investigación y han hecho que las redes de UAVs se consideren como un nuevo paradigma entre las redes multi-salto. La investigación de redes de UAVs, de manera similar a otras redes multi-salto, se divide principalmente en dos categorías: i) modelos de movilidad que capturan la movilidad de la red, y ii) algoritmos de enrutamiento. Ambas categorías han heredado muchos algoritmos que pertenecían a las redes MANET, que fueron el primer paradigma de redes multi-salto que atrajo la atención de los investigadores. Aunque hay esfuerzos de investigación en curso que proponen soluciones para ambas categorías, el número de modelos de movilidad y algoritmos de enrutamiento específicos para redes UAV es limitado. Además, en el caso de los modelos de movilidad, las soluciones existentes propuestas son simplistas y apenas representan la movilidad real de un equipo de UAVs, los cuales se utilizan principalmente en operaciones orientadas a misiones, en la que cada UAV tiene asignados movimientos específicos. Esta tesis propone dos modelos de movilidad basados en misiones para una red de UAVs que realiza dos operaciones diferentes. El escenario elegido en el que se desarrollan las misiones corresponde con una región en la que ha ocurrido, por ejemplo, un desastre natural. La elección de este tipo de escenario se debe a que en zonas de desastre, la infraestructura de comunicaciones comúnmente está dañada o totalmente destruida. En este tipo de situaciones, una red de UAVs ofrece la posibilidad de desplegar rápidamente una red de comunicaciones. El primer modelo de movilidad, llamado dPSO-U, ha sido diseñado para capturar la movilidad de una red UAV en una misión con dos objetivos principales: i) explorar el área del escenario para descubrir las ubicaciones de los nodos terrestres, y ii) hacer que los UAVs converjan de manera autónoma a los grupos en los que se organizan los nodos terrestres (también conocidos como clusters). El modelo de movilidad dPSO-U se basa en el conocido algoritmo particle swarm optimization (PSO), considerando los UAV como las partículas del algoritmo, y también utilizando el concepto de valores dinámicos para la inercia, el local best y el neighbour best de manera que el modelo de movilidad tenga ambas capacidades: la de exploración y la de convergencia. El segundo modelo, denominado modelo de movilidad Jaccard-based, captura la movilidad de una red UAV que tiene asignada la misión de proporcionar servicios de comunicación inalámbrica en un escenario de mediano tamaño. En este modelo de movilidad se ha utilizado una combinación del virtual forces algorithm (VFA), de la distancia Jaccard entre cada par de UAVs y metaheurísticas como hill climbing y simulated annealing, para cumplir los dos objetivos de la misión: i) maximizar el número de nodos terrestres (víctimas) que se encuentran bajo el área de cobertura inalámbrica de la red UAV, y ii) mantener la red UAV como una red conectada, es decir, evitando las desconexiones entre UAV. Se han realizado simulaciones exhaustivas con herramientas software específicamente desarrolladas para los modelos de movilidad propuestos. También se ha definido un conjunto de métricas para cada modelo de movilidad. Estas métricas se han utilizado para validar la capacidad de los modelos de movilidad propuestos de emular los movimientos de una red UAV en cada misión.UAV networks have attracted the attention of the research community in the last decade. The numerous capabilities of single-UAV systems increase considerably by using multiple UAVs. The great potential of a multi-UAV system comes with a price though: the complexity of controlling all the aspects required to guarantee that the UAV team accomplish the mission that it has been assigned. There have been numerous research works devoted to multi-UAV systems in the field of robotics using UAV teams for different applications. However, the networking aspects of multi-UAV systems started to claim a place among the research community and have made UAV networks to be considered as a new paradigm among the multihop ad hoc networks. UAV networks research, in a similar manner to other multihop ad hoc networks, is mainly divided into two categories: i) mobility models that capture the network mobility, and ii) routing algorithms. Both categories have inherited previous algorithms mechanisms that originally belong to MANETs, being these the first multihop networking paradigm attracting the attention of researchers. Although there are ongoing research efforts proposing solutions for the aforementioned categories, the number of UAV networks-specific mobility models and routing algorithms is limited. In addition, in the case of the mobility models, the existing solutions proposed are simplistic and barely represent the real mobility of a UAV team, which are mainly used in missions-oriented operations. This thesis proposes two mission-based mobility models for a UAV network carrying out two different operations over a disaster-like scenario. The reason for selecting a disaster scenario is because, usually, the common communication infrastructure is malfunctioning or completely destroyed. In these cases, a UAV network allows building a support communication network which is rapidly deployed. The first mobility model, called dPSO-U, has been designed for capturing the mobility of a UAV network in a mission with two main objectives: i) exploring the scenario area for discovering the location of ground nodes, and ii) making the UAVs to autonomously converge to the groups in which the nodes are organized (also referred to as clusters). The dPSO-U mobility model is based on the well-known particle swarm optimization algorithm (PSO), considering the UAVs as the particles of the algorithm, and also using the concept of dynamic inertia, local best and neighbour best weights so the mobility model can have both abilities: exploration and convergence. The second one, called Jaccard-based mobility model, captures the mobility of a UAV network that has been assigned with the mission of providing wireless communication services in a medium-scale scenario. A combination of the virtual forces algorithm (VFA), the Jaccard distance between each pair of UAVs and metaheuristics such as hill climbing or simulated annealing have been used in this mobility model in order to meet the two mission objectives: i) to maximize the number of ground nodes (i.e. victims) under the UAV network wireless coverage area, and ii) to maintain the UAV network as a connected network, i.e. avoiding UAV disconnections. Extensive simulations have been performed with software tools that have been specifically developed for the proposed mobility models. Also, a set of metrics have been defined and measured for each mobility model. These metrics have been used for validating the ability of the proposed mobility models to emulate the movements of a UAV network in each mission

    Integration of a Canine Agent in a Wireless Sensor Network for Information Gathering in Search and Rescue Missions

    Get PDF
    Search and rescue operations in the context of emergency response to human or natural disasters have the major goal of finding potential victims in the shortest possible time. Multi-agent teams, which can include specialized human respondents, robots and canine units, complement the strengths and weaknesses of each agent, like all-terrain mobility or capability to locate human beings. However, efficient coordination of heterogeneous agents requires specific means to locate the agents, and to provide them with the information they require to complete their mission. The major contribution of this work is an application of Wireless Sensor Networks (WSN) to gather information from a multi-agent team and to make it available to the rest of the agents while keeping coverage. In particular, a canine agent has been equipped with a mobile node installed on a harness, providing information about the dog’s location as well as gas levels. The configuration of the mobile node allows for flexible arrangement of the system, being able to integrate static as well as mobile nodes. The gathered information is available at an external database, so that the rest of the agents and the control center can use it in real time. The proposed scheme has been tested in realistic scenarios during search and rescue exercises

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    A New Approach for DDoS attacks to discriminate the attack level and provide security for DDoS nodes in MANET

    Get PDF
    Mobile Ad Hoc Networks (MANETs) enable versatile hosts to frame a correspondence arrange without a prefixed framework. In military applications portable specially appointed system assumes essential part since it is particularly planned network for on request necessity and in circumstances where set up of physical network isn't conceivable. Despite the fact that it gives high adaptability, it likewise conveys more difficulties for MANETs to battle against malicious assaults. In any case, the property of mobility and excess additionally motivates new plans to outline safeguard procedure. In this paper, we propose a procedure to relieve DDoS assaults in MANETs. Expect that a malicious attacker ordinarily targets particular victims. The attacker will surrender if the assault neglected to accomplish the coveted objectives after a specific length of assaulting time. In our assurance system, we exploit high excess and select a protection node. Once a DDoS attack has been identified, the suspicious movement will be diverted to the protection node. The victim will work typically, and it is sensible to expect that the attacker will stop the trivial endeavors. Through escalated recreation test utilizing NS-2, we have confirmed the viability of our approach and assessed the cost and overhead of the framework

    A review of forest fire surveillance technologies: Mobile ad-hoc network routing protocols perspective

    Get PDF
    Mobile Ad-Hoc Network (MANET) is a type of structure-less wireless mobile network, in which each node plays the role of the router and host at the same time. MANET has gained increased interest from researchers and developers for various applications such as forest fire detection. Forest fires require continuous monitoring and effective communication, technology, due to the big losses are brought about by this event. As such, disaster response and rescue applications are considered to be a key application of the MANET. This paper gives an extensive review of the modern techniques used in the forest fire detection based on recent MANET routing protocols such as reactive Location-Aided Routing (LAR), proactive Optimized Link State Routing (OLSR) and LAR-Based Reliable Routing Protocol (LARRR)

    Rohc-Mpls Tunnel Architecture For Wireless Mesh

    Get PDF
    Natural or human-made disasters are sudden events that can cause significant damage, especially to the network communication infrastructure. In these events, a rapid deployment of network communication systems is required in order to relay or receive the communication among the people in the disaster areas to conduct relief and rescue efforts. Wireless mesh networks have emerged and has been recognised for its potential for rapid deployment and last mile coverage of network infrastructure, which is highly suitable for emergency response management. While wireless mesh networks have beneficial attributes, it also introduces some crucial problems. During data transmission, the path recovery time is significantly higher resulting in the loss of data if node and link failures occur
    corecore