9 research outputs found

    Neural Machine Translation by Generating Multiple Linguistic Factors

    Full text link
    Factored neural machine translation (FNMT) is founded on the idea of using the morphological and grammatical decomposition of the words (factors) at the output side of the neural network. This architecture addresses two well-known problems occurring in MT, namely the size of target language vocabulary and the number of unknown tokens produced in the translation. FNMT system is designed to manage larger vocabulary and reduce the training time (for systems with equivalent target language vocabulary size). Moreover, we can produce grammatically correct words that are not part of the vocabulary. FNMT model is evaluated on IWSLT'15 English to French task and compared to the baseline word-based and BPE-based NMT systems. Promising qualitative and quantitative results (in terms of BLEU and METEOR) are reported.Comment: 11 pages, 3 figues, SLSP conferenc

    Representation and parsing of multiword expressions

    Get PDF
    This book consists of contributions related to the definition, representation and parsing of MWEs. These reflect current trends in the representation and processing of MWEs. They cover various categories of MWEs such as verbal, adverbial and nominal MWEs, various linguistic frameworks (e.g. tree-based and unification-based grammars), various languages including English, French, Modern Greek, Hebrew, Norwegian), and various applications (namely MWE detection, parsing, automatic translation) using both symbolic and statistical approaches

    Current trends

    Get PDF
    Deep parsing is the fundamental process aiming at the representation of the syntactic structure of phrases and sentences. In the traditional methodology this process is based on lexicons and grammars representing roughly properties of words and interactions of words and structures in sentences. Several linguistic frameworks, such as Headdriven Phrase Structure Grammar (HPSG), Lexical Functional Grammar (LFG), Tree Adjoining Grammar (TAG), Combinatory Categorial Grammar (CCG), etc., offer different structures and combining operations for building grammar rules. These already contain mechanisms for expressing properties of Multiword Expressions (MWE), which, however, need improvement in how they account for idiosyncrasies of MWEs on the one hand and their similarities to regular structures on the other hand. This collaborative book constitutes a survey on various attempts at representing and parsing MWEs in the context of linguistic theories and applications
    corecore