6,695 research outputs found

    Effects of temperature and microbial disruption on juvenile kelp Ecklonia radiata and its associated bacterial community

    Get PDF
    Ocean warming can affect the development and physiological responses of kelps, and under future climate change scenarios, increasing seawater temperatures pose a major threat to these habitat-forming species. However, little is known about the effects of warming on epiphytic bacterial communities and how an altered microbiome may interact with temperature stress, affecting the condition and survival of kelp, particularly of the potentially more vulnerable early life stages. Here, we tested the effects of thermal stress on the growth and physiological responses of juvenile kelp Ecklonia radiata in which their epiphytic bacterial community was experimentally disrupted using antimicrobials, simulating dysbiosis. We hypothesized that, under thermal stress (23°C, simulating a extreme scenario of ocean warming in Tasmania), kelp with a disrupted bacterial community would be more strongly affected than kelp with an undisrupted microbiome or kelp under ambient temperature (14°C) but with a disrupted microbiota. Thermal stress reduced growth, increased tissue bleaching and negatively affected net photosynthesis of kelp. In addition, a substantial change in the epiphytic bacterial community structure was also found under thermal stress conditions, with an increase in the abundance of potentially pathogenic bacterial groups. However, microbial disruption did not act synergistically with thermal stress to affect kelp juveniles. These results suggest that effects of elevated temperature on juvenile kelps is not microbially-mediated and that juveniles may be less susceptible to disruptions of their microbiome

    Livestock diversification mitigates the impact of farmer-herder conflicts on animal-source foods consumption in Nigeria

    Get PDF
    The escalation of farmer-herder conflicts poses a threat to agricultural production and livelihood outcomes in Nigeria. However, households with adaptive capacity may mitigate the negative impact of these conflicts on nutritious food consumption. In this study, we examine the impact of farmer-herder conflicts on animal-source foods (ASF) consumption and investigate the extent to which livestock diversification can serve as a mitigating factor. Using panel household data from Nigeria with a global georeferenced conflict dataset, we employ fixed-effects regression models to understand a causal relationship. Our findings reveal that exposure to farmer-herder conflicts reduces the quantity of ASF consumed and increases the number of days households exclude ASF from their diets. Additionally, we establish the role livestock diversification plays in mitigating the impacts of farmer-herder conflicts on ASF consumption. This evidence provides policymakers and practitioners with potential strategies for building nutrition resilience in locations that are exposed to farmer-herder conflicts. Promoting conflict-sensitive livestock production systems, such as cattle ranching, can be a strategy for sustaining nutrition and peacebuilding in Nigeria and countries in similar conflict situations

    Edge-emitting mode-locked quantum dot lasers

    Get PDF
    Edge-emitting mode-locked quantum-dot (QD) lasers are compact, highly efficient sources for the generation of picosecond and femtosecond pulses and/or broad frequency combs. They provide direct electrical control and footprints down to few millimeters. Their broad gain bandwidths (up to 50 nm) for ground to ground state transitions as discussed below, with potential for increase to more than 200 nm by overlapping ground and excited state band transitions) allow for wavelength-tuning and generation of pico- and femtosecond laser pulses over a broad wavelength range. In the last two decades, mode-locked QD laser have become promising tools for low-power applications in ultrafast photonics. In this article, we review the development and the state-of-the-art of edge-emitting mode-locked QD lasers. We start with a brief introduction on QD active media and their uses in lasers, amplifiers, and saturable absorbers. We further discuss the basic principles of mode-locking in QD lasers, including theory of nonlinear phenomena in QD waveguides, ultrafast carrier dynamics, and mode-locking methods. Different types of mode-locked QD laser systems, such as monolithic one- and two-section devices, external-cavity setups, two-wavelength operation, and master-oscillator power-amplifier systems, are discussed and compared. After presenting the recent trends and results in the field of mode-locked QD lasers, we briefly discuss the application areas

    A Practical Introduction to Regression Discontinuity Designs: Extensions

    Full text link
    This monograph, together with its accompanying first part Cattaneo, Idrobo and Titiunik (2020), collects and expands the instructional materials we prepared for more than 4040 short courses and workshops on Regression Discontinuity (RD) methodology that we taught between 2014 and 2022. In this second monograph, we discuss several topics in RD methodology that build on and extend the analysis of RD designs introduced in Cattaneo, Idrobo and Titiunik (2020). Our first goal is to present an alternative RD conceptual framework based on local randomization ideas. This methodological approach can be useful in RD designs with discretely-valued scores, and can also be used more broadly as a complement to the continuity-based approach in other settings. Then, employing both continuity-based and local randomization approaches, we extend the canonical Sharp RD design in multiple directions: fuzzy RD designs, RD designs with discrete scores, and multi-dimensional RD designs. The goal of our two-part monograph is purposely practical and hence we focus on the empirical analysis of RD designs

    Evaluating the sustainability and resiliency of local food systems

    Get PDF
    With an ever-rising global population and looming environmental challenges such as climate change and soil degradation, it is imperative to increase the sustainability of food production. The drastic rise in food insecurity during the COVID-19 pandemic has further shown a pressing need to increase the resiliency of food systems. One strategy to reduce the dependence on complex, vulnerable global supply chains is to strengthen local food systems, such as by producing more food in cities. This thesis uses an interdisciplinary, food systems approach to explore aspects of sustainability and resiliency within local food systems. Lifecycle assessment (LCA) was used to evaluate how farm scale, distance to consumer, and management practices influence environmental impacts for different local agriculture models in two case study locations: Georgia, USA and England, UK. Farms were grouped based on urbanisation level and management practices, including: urban organic, peri-urban organic, rural organic, and rural conventional. A total of 25 farms and 40 crop lifecycles were evaluated, focusing on two crops (kale and tomatoes) and including impacts from seedling production through final distribution to the point of sale. Results were extremely sensitive to the allocation of composting burdens (decomposition emissions), with impact variation between organic farms driven mainly by levels of compost use. When composting burdens were attributed to compost inputs, the rural conventional category in the U.S. and the rural organic category in the UK had the lowest average impacts per kg sellable crop produced, including the lowest global warming potential (GWP). However, when subtracting avoided burdens from the municipal waste stream from compost inputs, trends reversed entirely, with urban or peri-urban farm categories having the lowest impacts (often negative) for GWP and marine eutrophication. Overall, farm management practices were the most important factor driving environmental impacts from local food supply chains. A soil health assessment was then performed on a subset of the UK farms to provide insight to ecosystem services that are not captured within LCA frameworks. Better soil health was observed in organically-farmed and uncultivated soils compared to conventionally farmed soils, suggesting higher ecosystem service provisioning as related to improved soil structure, flood mitigation, erosion control, and carbon storage. However, relatively high heavy metal concentrations were seen on urban and peri-urban farms, as well as those located in areas with previous mining activity. This implies that there are important services and disservices on farms that are not captured by LCAs. Zooming out from a focus on food production, a qualitative methodology was used to explore experiences of food insecurity and related health and social challenges during the COVID-19 pandemic. Fourteen individuals receiving emergency food parcels from a community food project in Sheffield, UK were interviewed. Results showed that maintaining food security in times of crisis requires a diverse set of individual, household, social, and place-based resources, which were largely diminished or strained during the pandemic. Drawing upon social capital and community support was essential to cope with a multiplicity of hardship, highlighting a need to develop community food infrastructure that supports ideals of mutual aid and builds connections throughout the food supply chain. Overall, this thesis shows that a range of context-specific solutions are required to build sustainable and resilient food systems. This can be supported by increasing local control of food systems and designing strategies to meet specific community needs, whilst still acknowledging a shared global responsibility to protect ecosystem, human, and planetary health

    The Influence Of Sex And Body Size On The Validity Of The Microsoft Kinect For Measuring Knee Motion During Landing

    Get PDF
    Measuring knee motion during landing is a method to evaluate knee injury risk. Three-dimensional (3D) motion capture is inaccessible, and the Microsoft Kinect is an alternative to measure knee motion. The primary objective was to evaluate the influence of sex and body size on the validity of the Kinect to measure knee motion during landing. A secondary objective was to compare knee motion between females and males with high and low body mass index (BMI). We assessed frontal plane knee kinematics of 40 (10 per group of females and males with high and low BMI) participants during landing with the Kinect and 3D motion capture. Good agreement between methods was found for the knee ankle separation ratio across groups, but there was low agreement between methods for measuring knee abduction. The high BMI group regardless of sex had more knee abduction than the low BMI group when measured with motion capture
    • …
    corecore