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91191 Gif-sur-Yvette, France
3Instituto per le Applicazioni del Calcolo “Mauro Picone” (IAC), CNR, Via dei Taurini 19, I-00185 Rome, Italy;
Sapienza University of Rome, P.le Aldo Moro 5, I-00185 Rome, Italy; and University College Dublin (UCD),
Belfield Dublin 4, Ireland
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In various cellular processes, bio-filaments like F-actin and F-tubulin are able to exploit chemical
energy associated with polymerization to perform mechanical work against an obstacle loaded with an
external force. The force–velocity relationship quantitatively summarizes the nature of this process.
By a stochastic dynamical model, we give, together with the evolution of a staggered bundle of
N f rigid living filaments facing a loaded wall, the corresponding force–velocity relationship. We
compute the evolution of the model in the infinite wall diffusion limit and in supercritical conditions
(monomer density reduced by critical density ρ̂1 > 1), and we show that this solution remains
valid for moderate non-zero values of the ratio between the wall diffusion and the chemical time
scales. We consider two classical protocols: the bundle is opposed either to a constant load or to
an optical trap setup, characterized by a harmonic restoring force. The constant load case leads,
for each F value, to a stationary velocity V stat(F; Nf , ρ̂1) after a relaxation with characteristic time
τmicro(F). When the bundle (initially taken as an assembly of filament seeds) is subjected to a harmonic
restoring force (optical trap load), the bundle elongates and the load increases up to stalling over a
characteristic time τOT . Extracted from this single experiment, the force–velocity VOT (F; Nf , ρ̂1)
curve is found to coincide with V stat(F; Nf , ρ̂1), except at low loads. We show that this result follows
from the adiabatic separation between τmicro and τOT , i.e., τmicro� τOT . Published by AIP Publishing.
https://doi.org/10.1063/1.5001124

I. INTRODUCTION

Cell motility in vivo is a large-scale manifestation of the
living character of the cytoskeleton bio-filament network.1 In
particular, F-actin filaments produce growing lamellipodium
or filopodium structures where G-actin monomers polymerize
at the barbed end of the filaments, directly in contact with the
cytoplasmic membrane. The speed of the membrane deforma-
tion/displacement at the leading edge of the cell adjusts itself
so that the force generated by the growing filaments compen-
sates the resisting load coming from the membrane tension.
For living filaments opposing a loaded mobile obstacle, the
macroscopic force–velocity relationship, V (F), linking the
obstacle velocity V to the instantaneous applied load F only,
quantitatively summarizes the combined action of the elemen-
tary self-assembling processes. In such adiabatic conditions,
implying a time scale separation between the self-assembling
process and the response of the obstacle, the V (F) dependence
could be probed equivalently by different protocols like, to cite
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the two most frequently used, the constant force load (e.g.,
clamped force setup), where one directly observes the steady
state velocity, and the harmonic load (the sample grows against
an AFM cantilever or an optical trap), where the obstacle veloc-
ity can be followed as the load increases continuously up to
stalling.

Adiabatic conditions cannot be in general guaranteed and
indeed careful investigations on a branched actin network
growing against an AFM tip have shown that the recorded
V (F) relationship can be a function of the load history.2 The
direct force–velocity relationship, V (F), is in any event widely
used as a characteristic of network dynamics to compare exper-
imental measurements and modeling approaches for in vitro3

and in vivo systems.4

To make progress on the rationalization of the condi-
tions of validity of the widely used concept of force–velocity
relationship, V (F), we will restrict our considerations to a
simple network where a bundle of parallel filaments (actin
or tubulin) grows normally against a loaded obstacle. More-
over, in order to keep the model as simple as possible, we
will refer to experimental situations (in vitro experiments5,6)
where flexibility of filaments or wall ATP (Adenosine Triphos-
phate) or GTP (Guanosine Triphosphate) hydrolysis, lateral
interactions between filaments, and membrane attachment
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of filaments have negligible effects. In this way, we will
concentrate on cases where the dynamic coupling between
(de)polymerizing steps dominates the form of the force–
velocity relationship.

The general mechanism linking work production and
(de)polymerization kinetics of living bio-filaments has been
originally formulated by Hill for an incompressible bundle
of N f parallel filaments pressing against a mobile obstacle.7

Successively, when the filaments of the bundle are treated as
independent and equivalent and when it is assumed that the
depolymerization rate is unaffected by the external load, the
wall velocity VMF (MF indicates the mean field character of
this treatment) has been written as8,9

VMF(F; ρ1, Nf ) = d

[
U0exp

(
−

Fd
Nf kBT

)
−W0

]
, (1)

where U0 = konρ1 and W0 = koff are the single filament bulk
rate constants, related to bulk chemical rate constants kon and
koff , for single monomer polymerization and depolymerization
steps, ρ1 is the free monomer density, d is the single filament
increment of contour length per incorporated monomer, and F
is the external force exerted on the wall. Supercritical condi-
tions, where filament polymerization dominates over depoly-

merization, require ρ̂1 =
ρ1
ρ1c
=

U0
W0

> 1, where ρ1c =
koff

kon
is

the critical value of the monomer density at which the bun-
dle has no tendency to grow nor to shrink in the absence of
load.

Equation (1) predicts, for F = 0, a growth velocity of the
free bundle VMF = d (U0 −W0) > 0, while the stalling force
Fs, at which the velocity vanishes, is given by

FH
s = Nf

kBT
d

ln ρ̂1. (2)

The notation FH
s reminds that this expression was originally

established by Hill using thermodynamic arguments.10 Equa-
tion (2) has been recently derived, in the limit d/LEQ → 0,
by equilibrium statistical mechanics for a bundle of rigid
filaments.11

Experimental measurements of the force–velocity rela-
tionship for multi-filament bundles (tubulin or actin)5,6,9,12 are
not many, reflecting the difficulty to prepare in vitro the grafted
bundle seed needed to follow its subsequent loaded growth.
However, it is interesting to note the diversity in these few
approaches. The growth of single grafted tubulin filaments,
which are bundles of 13 proto-filaments, was followed by
imaging techniques.9,12 Regrouping (F, V ) data for different
observation times and for different samples, a master force–
velocity relation could be established. In another experiment
using an acrosome bead complex of N f = 8/10 F-actin fila-
ments held in an optical trap device, the growth of a bundle
was followed in time against a harmonic load.6 A rising signal
finishing with a plateau was observed, but the final stationary
force was surprisingly much lower than the expected stalling
force, Eq. (2), its value being close to the stalling force pre-
dicted for a single filament. The analysis in this experiment
considers many relaxation curves, but in many cases data had
to be eliminated due to interferences during the relaxation
process with the onset of escaping filaments. This happens
because growing filaments undergo a large bending fluctuation

which allows them to start growing freely along the obstacle.
The transient behavior, which can be converted into a V (F) law
by estimating the time derivative of the wall position from the
data, was not exploited. Finally, in a recent study,5 by recording
the rate of the radial distance between two colloidal particles
separated by a growing grafted actin bundle, the force–velocity
relationship of actin bundles was established in constant load
conditions.

The outcome of the earliest experiment,9,12 confirmed by
the more recent experimental work,5 is that the velocity, and
hence the power of transduction of multi-filament bundles,
is much lower than that predicted by Eq. (1). The discrep-
ancy highlights the correlation among elementary chemical
steps at the tip of different filaments in the bundle, with the
effect of reducing the additivity of the action of each filament.
The bundle model needs to be specified and the dependence
between chemical events and the wall position for a given lon-
gitudinal seed disposition has to be quantitatively taken into
account. This aspect is present in the multi-filament Brownian
Ratchet (BR) models5,9,13,14 which generalize the single fila-
ment Brownian ratchet model introduced by Peskin et al.,15 for
which one finds that the velocity vanishes for a load equal to
Hill’s expression, Eq. (2).9 For these bundle models, the impor-
tant characteristics that distinguish the dynamical behavior
of the bundle are the number of filaments N f , the longitu-
dinal disposition of the seeds of the filaments, and the wall
diffusion coefficient D that introduces a second characteris-
tic time τD = d2/D next to the chemical events’ time scale
τchem = W−1

0 . This fact suggests us to introduce the param-
eter ε = τD/τchem to be able to discuss the condition of this
second adiabatic separation [not to be confused with the one
associated with the existence of V (F)]. For both experiments
having probed the V (F) relationship, it was found that data
could be interpreted successfully with the model of a staggered
bundle (=staggered longitudinal seed disposition11) of rigid fil-
aments in infinite wall diffusion conditions (ε = 0), a model
we will denote as SRBR (Staggered Rigid Brownian Ratchet).
On the contrary, for a similar model with an in registry bundle
(unstaggered longitudinal seed disposition),14 the predicted
velocity was much too low with respect to the experimental
data.5,9,12

In the stochastic dynamical models considered here, the
force–velocity relationship depends parametrically, for a given
seed arrangement, on the number of filaments, the reduced
free monomer concentration, and the time scale ratio ε . In
the case of constant load, the explicit form for the asymptotic
force–velocity relationship, V stat(F; Nf , ρ̂1, ε), for our models
has been established by stochastic dynamics studies at finite
ε16 and at ε = 0.5,9 In the latter case, a simplified algorithm,
exploiting the time scale separation, has been used for the
staggered bundle case. Indeed, at ε = 0, the wall position
distribution at a given filament configuration, is found to be
time-independent and equal to the equilibrium distribution of
the wall position resulting from the 1D Brownian motion of a
wall in the external load field, with the wall positions restricted
to be greater than the position of the most advanced filament
tip.

Interestingly, a good approximation for the velocity
V stat(F; Nf , ρ̂1) and the distribution of filament relative sizes
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(see Sec. III) in the stationary state have been derived from the
SRBR model.

In this work, we consider the stochastic staggered bundle
model of rigid filaments in supercritical conditions and per-
form a series of dynamical runs for different load conditions.
We first look at the constant force case, treating both the sta-
tionary state itself and the asymptotic transient evolution to
reach it. We next envisage the bundle, in similar thermody-
namic conditions, subject to a harmonic load �κT L, where L
is the wall position and where κT is the trap strength (opti-
cal trap setup). Mimicking the optical trap experiment,6 the
bundle, initially taken with very short filaments, and the aver-
age wall position grow and reach stalling. We compare our
computed longest relaxation time with a theoretical approxi-
mate expression derived along the lines of Démoulin et al.’s
theory. We derive and compare the force–velocity relation-
ship extracted from this optical trap relaxation with the one
obtained in stationary conditions. As expected, we found that
the two coincide in adiabatic conditions, i.e., when the charac-
teristic time of the optical trap relaxation is much larger than
the characteristic time of the relaxation in the constant force
case.

Our algorithms follow the same lines of those used
in previous studies. However, in our study, we deal with
an optical trap load, while most studies (with an excep-
tion restricted to the ε = 0 case17) assume a constant load.
Moreover, while algorithms for finite ε or ε = 0 are usu-
ally just assumed, we establish an explicit link showing
how the ε = 0 model is derived from the general finite ε
case.

In Sec. II, we present the general Fokker–Planck (FP)
model for a bundle of rigid filaments with an arbitrary seed
disposition, facing either a constant or a harmonic load, and we
derive the explicit wall algorithm (EWA) giving the sampling
rules to generate stochastic trajectories for any finite ε case. We
then use a perturbation expansion to derive the ε = 0 model, still
for the constant load or the harmonic load, and we derive the
simplified implicit wall algorithm (IWA) giving the sampling
rules in the ε = 0 case. Section III reports and discusses our
results for constant force and optical trap loads for the same
bundle system generally using the ε = 0 approach since the
wall diffusion takes place very quickly with respect to the
mean time between (de)polymerization events. However, we
also verify that the simplified algorithm is robust since we find
identical results in a reasonable range of ε non-zero values.
Section IV concludes with a summary of the main results and
with some perspectives.

II. MODEL AND IMPLEMENTATION

We consider a bundle of Nf > 1 living filaments, grafted
normally (say along the x axis) to a fixed planar substrate
wall (along y and z directions). The filaments are modeled
as discrete rigid linear chains with monomer contour incre-
mental size d and length related to the number of attached
monomers, j ≥ 2, as Lcj = (j � 1)d. Let hn be the location
along the x axis of the seed (first monomer) of the filament n
close to the grafting plane (�d/2 < hn < d/2). For a bundle of
many filaments, two seed dispositions are usually considered:

in-registry (or unstaggered), where hn = 0, n = 1, 2, . . ., N f ,
and homogeneous (or staggered), where seeds are regularly
spaced as

hn =

[
n − 0.5

Nf
− 0.5

]
d, n = 1, 2, . . . , Nf , (3)

as illustrated for the N f = 8 case in Fig. 1.
A moving obstacle, a hard wall located at distance L from

the parallel substrate wall, is loaded with a compressional
external force F bringing it into contact with the living fil-
aments (see Fig. 1). We will consider two types of load, the
constant force F and the optical trap setting, with F = �κT L,
where κT is the trap stiffness and L is the distance between the
walls.

The bundle force for rigid filaments is impulsive. Its effect
is taken into account by imposing a confining boundary to the
wall motion at the tip location of the longest filament.

Filaments either grow by a single monomer polymeriza-
tion step with bulk rate U0, proportional to the free monomer
density ρ1, or shrink by a single monomer depolymerization
step with bulk rate W0. The ratio U0/W0 = ρ̂1 is the free
monomer density divided by its critical value, i.e., the value
at which the two bulk rates are equal. We will be interested
to supercritical conditions only ( ρ̂1 > 1), where the filaments
tend to grow against the loaded wall. When a filament tip gets
closer than d to the wall, the polymerization rate becomes
zero, while the depolymerization one is assumed to remain
unchanged.

The dynamics of this simple model for a bundle of grow-
ing filaments against the loaded mobile wall present two main
time scales: the chemical one, τchem = 1/W0 ∼ 1/U0, and
the diffusive one, related to the diffusive motion of the wall
and estimated by τD = d2/D where D is the wall diffusion
coefficient. The ratio of time scales, ε = τD/τchem, in typi-
cal in vitro experiments is ε � 1 but might sometimes go
close to 1 for a very large colloidal particle in a crowded
environment.

In the following, we establish a Fokker–Planck equation
to describe the dynamics of an arbitrary bundle of independent

FIG. 1. Sketch of a homogeneous bundle of N f = 8 rigid filaments with
monomer incremental contour length d facing a rigid mobile wall located
at L, subject to a harmonic force F = �κT L. The gray zone on the left high-
lights the thickness of the fixed wall at x = 0 in which filaments are grafted, i.e.,
with their first monomer at hn [see Eq. (3)]. Given the filament tip positions
Xn for n = 1, 2, . . ., N f [see Eqs. (4) and (5)], the most advanced filament
with the tip located at X∗ corresponds to n = 2 for the configuration shown.
The loaded wall Brownian motion is thus restricted to a semi-infinite axis
L ≥ X∗ until a filament (de)polymerization step modifies the most advanced
tip position.
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rigid filaments subjected to a constant or harmonic load, for
an arbitrary value of ε .

A. General Fokker–Plank equation for a bundle of rigid
filaments against a constant or harmonic load

We describe the time evolution of N f filaments against
a load in terms of the filament sizes and the wall position,
{j1, . . . , jNf , L}. The wall position must always lie beyond the
tip of any filament—and so beyond the tip of the most advanced
one, n∗ with size jn∗ . We denote Xn(jn) the position of the tip
of filament n (composed by jn monomers) and X∗ the position
of the most advanced tip:

Xn(jn) = (jn − 1)d + hn, (4)

X∗ ≡ X∗(j1, . . . , jNf ) = max
n=1,2,...,Nf

{Xn(jn)} = Xn∗ (jn∗ ). (5)

Since the filaments’ tips can’t cross the wall, we have the
condition

L > X∗. (6)

We assume that the joint probability distribution function
Pj1,...,jNf

(L, t) satisfies a Fokker–Planck equation in time mix-
ing a continuous process in space for the wall position with a
discrete process for the filament sizes. For the model described
above, we have

∂Pj1,...,jNf
(L, t)

∂t
+
∂

∂L
Jj1,...,jNf

(L, t)

= U0



Nf∑
n=1

(1 − δ2,jn )Θ (L − Xn(jn)) Pj1,...,jn−1,...,jNf
(L, t) −

Nf∑
n=1

Θ (L − Xn(jn + 1)) Pj1,...,jn,...,jNf
(L, t)



+ W0



Nf∑
n=1

Pj1,...,jn+1,...,jNf
(L, t) −

Nf∑
n=1

(1 − δ2,jn )Pj1,...,jn,...,jNf
(L, t)


, (7)

where Θ(x) is the Heaviside step function and the probability
current density is

Jj1,...,jNf
(L, t) = −D



∂Pj1,...,jNf
(L, t)

∂L
−

F(L)
kBT

Pj1,...,jNf
(L, t)


.

(8)

In Eq. (8), the compressive force can be either a constant
F < 0 or an elastic force F(L) = �κT L modeling the opti-
cal trap. The right-hand side of Eq. (7) represents the sink
and source terms affecting the dynamics due to polymeriza-
tion and depolymerization events. Their explicit expression
indicates that, in one step at fixed L, transitions are only pos-
sible between adjacent microscopic states, where (N f � 1)
filaments have the same size while the size of the remaining
filament differs by ±1 unit, taking into account the restriction
L > X∗(t), and that the filament size cannot be smaller than
two, (1 − δ2,jn ).

The general normalization condition for the distribution
Pj1,...,jNf

(L, t) is

∞∑
j1=2

· · ·

∞∑
jNf =2

∫ ∞
X∗(t)

dL Pj1,...,jNf
(L, t) = 1, (9)

while the boundary conditions on the probabilities are

Pj1,...,jNf
(L, t)��L<X∗(t) = 0, Pj1,...,jNf

(L, t)��L=∞ = 0, (10)

Jj1,...,jNf
(L, t)��L=X∗(t) = 0, Jj1,...,jNf

(L, t)��L=∞ = 0. (11)

To simplify the treatment of the continuous–discrete struc-
ture of Eq. (7), we discretize the wall position with a grid step

δ = d/M, with M integer and M � 1, following Ref. 18. We
then substitute to the wall position L the discrete variable

k = int

[
L
δ

]
≡ int [l] . (12)

In this way, Eq. (7) will become a finite difference equa-
tion in k representing a discrete Markov chain in continuous
time,

dP
dt
= PQ (13)

withP(t) = {Pj1,...,jNf ,k(t)}
jn∈[2,∞) n=1,2,...,Nf ,k∈

[
int

[
(d+hNf )/δ

]
,∞

)
being a vector field and Q being the generator matrix of
the Markov chain. The elements of the matrix Q contain the
(de)polymerization rates for the filaments,

Ujn (L) = U0Θ (L − Xn(jn + 1)) , (14)

Wjn (L) = W0, (15)

and the forward/backward jump rates for the wall; the expres-
sions of these matrix elements are given in Appendix A.

To circumvent the difficulty of solving analytically
Eq. (13), one can produce a number of realizations of the dis-
crete Markov chain using any appropriate algorithm, in our
case the Gillespie algorithm:19,20 given an initial condition at
time t0, the state of the system is estimated in terms of the
set of random variables {j1, . . . , jNf , k} at time t producing sta-
tistically correct trajectories, from which the probability dis-
tribution function Pj1,...,jNf ,k(t) can be inferred by histograms.
Starting from the initial state, the system is allowed to evolve
by random steps involving only one event per time: one fila-
ment depolymerization or polymerization, or the wall forward
or backward jump. Denoting by i0 the current state of the sys-
tem, the reachable states im are those differing from i0 for
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only one variable by ±1, namely, {j1, . . . , jn ± 1, . . . , jNf , k} or
{j1, . . . , jn, . . . , jNf , k ± 1}. It is straightforward to see that the
number of these possible final states is 2N f + 2. The transi-
tions i0 → im, m ∈

[
1, 2Nf + 2

]
, are described in Eq. (13)

by the generator matrix elements Qimi0 , the rates of going
from i0 to im. The corresponding diagonal element is Qi0i0
= −

∑
im,i0 Qimi0 .21 The evolution of the system is determined

by two random variables: the time to the next reaction, τ, and
the final state im, or equivalently the index of the reaction,
m ∈

[
1, 2Nf + 2

]
. From general Markov chain theory, τ is

known to be an exponentially distributed random variable:
given the current state i0, the parameter of the exponential
distribution is given by −Qi0i0 . Instead, the probability for the
jump m linking states i0 and im to take place is given by the ratio
between Qi0im and |Qi0i0 |.

21 The main loop of the algorithm
follows this scheme:

0. The initial state i0 is specified in terms of the state vector
{j1, . . . , jNf , k}. We take for the initial value of k a small
fixed value and, for the filament, compatible initial sizes.

1. The matrix elements Qi0im are calculated for any state im

reachable from i0.
2. The time to the next move is determined using the so-

called direct method, which follows from the standard
inversion method of the Monte Carlo theory:22 a ran-
dom number r1 ∈ [0, 1] is generated from the uniform
distribution and the time τ is taken as

τ =
1
|Qi0i0 |

ln
1
r1

. (16)

3. The index of the next move is determined using the same
method: a second random number r2 ∈ [0, 1] is generated
and the index m is taken as the smallest integer satisfying

m−1∑
n=1

Qi0in

|Qi0i0 |
< r2 6

m∑
n=1

Qi0in

|Qi0i0 |
. (17)

4. The sampled move is taken by updating the state vector
i0 → im and the time is incremented by τ.

5. Go back to 1, until a maximum time tmax is reached.
6. End the simulation.

The state vector {j1, . . . , jNf , k} is stored for the calculation of
histograms and averages.

This algorithm,18,19 solving the Fokker–Planck equations
(7) and (8), works for any seed disposition (staggered and
unstaggered), for any finite value of the dimensionless param-

eter ε ≡ d2W0
D , and for both the two cases of constant force and

optical trap load. We will call it the explicit wall algorithm
(EWA).

In Subsection II B, we treat the specific, important ref-
erence case of loaded bundles of rigid filaments in the limit
ε → 0. In this limit, the wall re-equilibrates instantaneously
after any change of the position of the most advanced tip
of the bundle. The interest of this limit is justified since in
in vitro experiment with actin bundles/colloidal particles (e.g.,
the optical trap experiment6), the typical value of the ratio of
time scales is ε � 1. We will see that the dynamics of the bun-
dle simplify for two reasons: the elimination of the fast motion
of the wall permits to go to longer times and the dimension-
ality of the problem is reduced. The new algorithm, called the
implicit wall algorithm (IWA), then becomes decidedly more
efficient.

B. Treatment of the Fokker–Planck equation
in the ε = 0 limit

Given the separation of time scales between the chemi-
cal events and the wall diffusion, it is convenient to rewrite23

Eq. (7) in terms of dimensionless variables in order to put in

evidence the ratio ε = τD
τchem
=

W0d2

D . Defining t̃ = W0t, x = L
d ,

and f = Fd
kBT , multiplying Eq. (7) by d2

D , and redefining the
probability distribution functions, we get

ε
∂P̃j1,...,jNf

(x, t̃)

∂ t̃
+
∂

∂x
J̃j1,...,jNf

(x, t̃)

= ε


ρ̂1



Nf∑
n=1

(1 − δ2,jn )Θ

(
x −

Xn(jn)
d

)
P̃j1,...,jn−1,...,jNf

(x, t̃) −
Nf∑

n=1

Θ

(
x −

Xn(jn + 1)
d

)
P̃j1,...,jn,...,jNf

(x, t̃)



+
Nf∑

n=1

P̃j1,...,jn+1,...,jNf
(x, t̃) −

Nf∑
n=1

(1 − δ2,jn )P̃j1,...,jn,...,jNf
(x, t̃)




(18)

with

J̃j1,...,jNf
(x, t̃) = −

∂

∂x
P̃j1,...,jNf

(x, t̃) − f (x)P̃j1,...,jNf
(x, t̃) (19)

being the probability current density in the reduced units. In
the ε→ 0 limit, it is legitimate to replace Eq. (18) by its simpler
ε zero-th order approximation

∂2P̃(0)
j1,...,jNf

(x, t̃)

∂x2
−

∂

∂x

[
−f (x)P̃(0)

j1,...,jNf
(x, t̃)

]
= 0. (20)

By integrating in dx from X∗ to ∞ and using the boundary

conditions for the probability, one gets ∂P̃(0)

∂x = −f (x)P̃(0) so
that the general solution is

P̃(0)
j1,...,jNf

(x, t̃) = a(j1, . . . , jNf , t̃)exp

(
−

∫ ∞
x

dxf (x)

)
. (21)
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On the other hand, it is always possible to write the joint prob-
ability as the product of the marginal distribution for the sub-
set {j1, . . . , jNf } times the conditional probability distribution
for x,

P̃(0)
j1,...,jNf

(x, t̃) = P̃0(j1, . . . , jNf , t̃)P̃0(x | j1, . . . , jNf , t̃). (22)

Therefore, given the general solution (21), we can write it as

P̃(0)
j1,...,jNf

(x, t̃) = P̃0(j1, . . . , jNf , t̃)P̃EQ(x | j1, . . . , jNf ) (23)

as the x dependence, Eq. (21), is explicit and time-independent.
The wall distribution P̃EQ(x | j1, . . . , jNf ) is an explicit, time-
independent, and normalized distribution for the wall position
conditional to the set of filament sizes. Explicit expression
for the two normalized cases of constant load and optical trap
is

P̃EQ(x | j1, . . . , jNf ) =




f exp(−fx)

exp(−f X∗
d )

constant load,

√
2κ̃T

π

exp
(
− 1

2 κ̃T x2
)

erfc
(√

1
2 κ̃T

X∗
d

) optical trap

(24)
with κ̃T =

κT d2

kBT . From Eq. (24), we get the average wall position
conditional to the bundle sizes {j1, . . . , jNf } as

E(x | j1, . . . , jNf ) =
∫ ∞

X∗
xP̃EQ(x | j1, . . . , jNf )dx,

=




X∗

d
+

1
f

constant load,

√
2
κ̃Tπ

exp
[
− 1

2 κ̃T

(
X∗

d

)2
]

erfc
(√

1
2 κ̃T

X∗
d

) optical trap.

(25)

Note that the full distribution at ε = 0, given by Eq. (23),
is still a time-dependent function since filament sizes change
by single monomer polymerization/depolymerization events;
the infinite separation of the time scales (ε = 0) implies that
after any chemical event, the wall immediately re-equilibrates
according to the time-independent distribution, Eq. (24), given
the new set of filament sizes. To get the full distribution, we
write P̃j1,...,jNf

(x, t̃) as an asymptotic expansion in terms of the
small parameter ε ,

P̃j1,...,jNf
(x, t̃) = P̃(0)

j1,...,jNf
(x, t̃) + εP̃(1)

j1,...,jNf
(x, t̃) + · · · , (26)

where P̃(0)
j1,...,jNf

(x, t̃) is given by Eq. (23). If we substitute this

expansion, truncated to the first order, into Eq. (18), to the
order ε , we find the following equation:

∂P̃(0)
j1,...,jNf

(x, t̃)

∂ t̃
+
∂

∂x
J̃ (1)

j1,...,jNf
(x, t̃)

= ρ̂1



Nf∑
n=1

(1 − δ2,jn )Θ

(
x −

Xn(jn)
d

)
P̃(0)

j1,...,jn−1,...,jNf
(x, t̃) −

Nf∑
n=1

Θ

(
x −

Xn(jn + 1)
d

)
P̃(0)

j1,...,jn,...,jNf
(x, t̃)



+
Nf∑

n=1

P̃(0)
j1,...,jn+1,...,jNf

(x, t̃) −
Nf∑

n=1

(1 − δ2,jn )P̃(0)
j1,...,jn,...,jNf

(x, t̃). (27)

Integrating both sides of this equation from x = X
∗

/d to∞, applying the boundary conditions Eq. (11) on J̃ (1) and the normalization
of P̃EQ, and using Eq. (23), we get

∂P̃0(j1, . . . , jNf , t̃)

∂ t̃

= ρ̂1

Nf∑
n=1

(1 − δ2,jn )
∫ ∞

X∗
d

dx Θ

(
x −

Xn(jn)
d

)
P̃EQ(x | j1, . . . , jn − 1, . . . , jNf )P̃0(j1, . . . , jn − 1, . . . , jNf , t̃)

− ρ̂1

Nf∑
n=1

∫ ∞
X∗
d

dx Θ

(
x −

Xn(jn + 1)
d

)
P̃EQ(x | j1, . . . , jn, . . . , jNf )P̃0(j1, . . . , jn, . . . , jNf , t̃)

+
Nf∑

n=1

P̃0(j1, . . . , jn + 1, . . . , jNf , t̃) −
Nf∑

n=1

(1 − δ2,jn )P̃0(j1, . . . , jn, . . . , jNf , t̃). (28)

This equation describes a discrete process for the filament sizes
in continuous time, which can be rewritten in a vectorial form,
similar to Eq. (13),

dP0

dt
= P0Q(0) (29)

with Q(0) being the generator matrix of the process, whose
elements are given in Appendix B.

The numerical solution of the Markov chain equation
described by Eq. (29) follows exactly the same scheme
described above for the general Fokker–Planck equation for
ε > 0.
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As already mentioned, in this case, the algorithm is more
efficient since it spans longer times (we have integrated out
the fast variable) and it has to treat a reduced number of
variables.

The solution of Eq. (29) and the conditional probability
for the wall position Eq. (24) give the necessary information
needed to compute all time-dependent ensemble averages, as,
e.g., 〈L〉t . Similar model and procedures have been used (i)
for constant load option and in-registry14 or staggered5,9,13

bundles and (ii) for optical trap and staggered bundles
only.17

III. SIMULATIONS AND RESULTS
A. Units, parameters, and stochastic runs

In our simulations, length, time, and energy units are taken
as d, W−1

0 , and kBT, respectively. All quantities will be men-
tioned in reduced units based on the above three fundamental
units. For actin d = 2.7 nm; experimental information for W0

gives W0 = 1.4 s�1; and at room temperature, kBT = 4.14
× 10�21 J. We choose to perform our studies on a bundle of
N f = 32 rigid filaments with a staggered disposition of seeds
at a reduced density ρ̂1 =

U0
W0
= 2.5. With reference to a

wall constituted by a bead of micron size in water oppos-
ing the actin bundles,5,6 experimental information gives for
the adimensional parameter introduced in Sec. II, the value
ε = 5.5 × 10�5. Given the small value of ε , we performed
the major part of our simulations in the ε = 0 limit with
the IWA. However, we have considered of some interest to
compare the results of the IWA with those of the EWA corre-
sponding to a finite but small value of ε . With the very small
experimental value of ε , the EWA would be highly ineffi-
cient since the computer time would be essentially spent to
study the wall diffusion next to a bundle with quasi-fixed fil-
ament sizes. Since for the load-velocity relationship we need
to sample both wall and filament sizes, we decided to adopt
a value of epsilon thousand times bigger, ε = 5 × 10�2. This
value, in fact, still permits to give a sufficient representation
of the wall dynamics. Our EWA approach requires to dis-
cretize the space variable L with elementary steps δ = d/M.
For M, we have adopted M = 100. To compute the solu-
tion of our Fokker–Planck equation, both for ε = 0 (IWA) or
ε > 0 (EWA), we need to fix initial configurations. Our choice
for EWA has been to fix the wall location L0 [i.e., k0 = int
(L0/δ)] and to sample the initial filament sizes for each trajec-
tory of the stochastic dynamics according to the filament size
equilibrium probability Peq(j1, j2, . . . , jn, . . . , jNf ; L0), condi-
tional to the chosen wall location.11 For initiating IWA runs,
the initial filament sizes must be arbitrarily chosen and
the initial wall location then follows from its conditional
distribution.

B. Observables of interest

(1) Wall position

The wall position L is the quantity directly followed in time
in real experiments and corresponds to the expected value of
the random variable L̂ over the solution of the FP equation,
〈L̂〉t . The calculation of this quantity is direct in the EWA

case, while it has to be determined in the IWA case through
the instantaneous size distribution of jn, n = 1, 32, implying L̂
values ahead of the tip of the most advanced filament at X∗,
given by Eq. (5), using Eq. (25).

(2) Relative size (in number of monomers) of filaments with
respect to the leading one.

In terms of the tip positions Xn and X∗ defined by
Eqs. (3)–(5), let us define the relative subset index m = 1,
N f � 1 given by

m(n) = mod

(
X∗ − Xn

d/Nf
, Nf

)
= mod

(
(jn∗ − jn)Nf + n∗ − n, Nf

)
,

n = 1, 2, . . . , Nf , n , n∗. (30)

This index represents in successive order the filament of order
m, nearest neighbor of n∗, second neighbor of n∗, etc. Therefore
it gives an intrinsic order to the vector representing the relative
size of each filament. Then we can define, for each filament n,
the quantity

km = int

[
X∗ − Xn(m)

d

]

= int

[
jn∗ − jn(m) +

n∗ − n(m)
Nf

]
, m = 1, 2, . . . , Nf − 1.

(31)

Each component of this vector represents in discrete units of
monomer size d the relative distance from the most advanced
tip of the first, second, etc., neighboring index.

This vector of relative sizes is interesting because its time-
dependent probability distribution reaches a stationary value
in the case of the wall subjected to a constant load.

(3) Density of relative size of N f � 1 filaments with respect
to the leading one

This quantity is defined by the microscopic observable

ĝ(k) =
1

(Nf − 1)

∑Nf −1

m=1
δk,km (32)

and corresponding k average value k̂av =
∑∞

k=0 kĝ(k). At time
t, the microscopic distribution will be g(k, t) = 〈ĝ(k)〉t . Specif-
ically, we will characterize the internal structure of the bundle
either by g(0, t), the average probability density that the fil-
ament tips lie at a distance smaller than d from the tip of
the most advanced filament, or by the average relative size
〈k̂av〉t =

∑∞
k=0 kg(k, t). We will denote by g(k) and kav the

time-asymptotic values of 〈ĝ(k)〉t and 〈k̂av〉t for constant load
dynamics.

C. Constant load

We have computed the relaxation toward the stationary
state for a homogeneous bundle of N f = 32 rigid living fila-
ments at ρ̂1 = 2.5 pressing against a constant load F. We have
chosen various values of F in the range 0.05 < F/Fs < 1.25
with Fs being the stalling force, Eq. (2). For each load value,
we have used the IWA to produce 104 independent trajecto-
ries, starting at time 0 with all filament sizes set to the same
value [jn(0) = 500, n = 1, 32]. We have chosen this value to
avoid to fall at later times at the lower boundary jn = 2. That
could happen when F > Fs with negative average velocities.
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FIG. 2. Force–velocity relationship for a homogeneous bundle of N f = 32
rigid filaments at ρ̂1 = 2.5 (ε = 0). The V stat stationary velocity data points
(red filled circles) are obtained as the asymptotic slope of 〈L̂〉t for constant
force runs at each shown load value. Error bars are less than symbol sizes.
The dashed green line is Démoulin et al.’s theoretical estimate of V stat(F)
based on Eqs. (C1) and (C2). The blue continuous curve is the force–velocity
relationship obtained by the optical trap relaxation at κT = 0.4511 (see text).
Stalling is indicated by the vertical line at F = 29.32.

In two cases, starting with L0 = 5d, we have used the EWA,
averaging over 103 independent trajectories. To determine the
microscopic relaxation time of the bundle, we have fitted the
asymptotic time evolution of the average wall position as 〈L〉t
= C + V stat t + C ′exp(�t/τmicro). To get the diffusion coefficient
of the bundle Γ, we have also fitted the asymptotic behavior of
the mean square elongation σ2(t) = 〈L̂2〉t − 〈L̂〉2t ∼t→∞

2Γt.24

In Fig. 2, we report V stat(F) together with Démoulin
et al.’s prediction [Eqs. (C1) and (C2)] for the staggered bun-
dle of rigid filaments at ε = 0 in the same conditions.5 This
comparison shows that the theoretical prediction of V stat(F)
represents quite accurately (the difference never exceeding
2%) the exact results obtained between zero load and stalling
conditions.

In Fig. 3, we collect transient times τmicro and the dif-
fusion coefficient of the bundle, Γ. Note the consistency
within Γ values obtained from IWA or EWA runs. τmicro

results in the order of W−1
0 except at small loads where it

diverges; in Sec. IV, we will come back to this important
point.

Figures 4 and 5 show, respectively, for the stationary state,
the load-dependent averages g(0; F) and kav(F) Eqs. (31)
and (32). Démoulin’s predictions for the same quantities are
also shown in these two figures, confirming their quantitative
accuracy.

D. Optical trap

Let us start this section with an important remark: for our
model, the choice of κT appears to be completely arbitrary,
although, of course, it should satisfy at least the condition
that the final equilibrium value of the length of the bundle is
much greater than d, 〈L̂〉EQ/d � 1, in order to avoid boundary
effects. We will see below that the choice of a realistic κT value
(leading to 〈L̂〉EQ/d � 1) implies τmicro � τOT and hence it
will guarantee the equivalence of the results of the optical
trap setup against the constant load, at least for non-diverging
τmicro.

Figure 6 shows time-dependent averages, Ft = κT 〈L̂〉t ,
for optical trap relaxations computed by the EWA and IWA for
κT = 0.25 and only by the IWA for κT = 0.4511. In the EWA
case with ε = 0.05, the relaxations start from a bundle size, short
with respect to the final equilibrium value, i.e., L0 = 5d, while in
the IWA case the filament sizes all start at jn = 6. The results,
obtained by the two algorithms for κT = 0.25, are indistin-
guishable, confirming the validity of the simplified algorithm.
Note that the plateau values are in perfect agreement with the
stalling force predicted by Hill, Eq. (2), within statistical error
bars. Fluctuations of L̂ at equilibrium is given, as expected,11

by σeq
L =

√
(kBT/κT ). The vertical bars reported in the figure

represent the standard deviation, κTσL(t), associated with the
fluctuation of the force. They remain bounded along the entire
curve by the equilibrium value, indicating a limited fluctuation
of the individual trajectories L̂(t). This is a relevant fact because
experiments performed by an optical trap setup usually refer
to a single trajectory measurement,6 whose representativeness
of the ensemble average is guaranteed by the smallness of
fluctuations.

FIG. 3. (a) Load dependence of the relaxation time
τmicro for a homogeneous bundle of N f = 32 rigid fil-
aments countering a constant load F at ρ̂1 = 2.5. (b)
Diffusion coefficient Γ of the bundle. Blue symbols
(IWA) and red symbols (EWA) refer to the stationary
part of the constant load stochastic dynamics experiment
mentioned in (a).
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FIG. 4. Values at k = 0 of the relative size distribution, g(0), as a function
of the external load with N f = 32, ρ̂1 = 2.5, and ε = 0. The red filled cir-
cles are obtained in the stationary regime of constant load runs at the shown
values of F. Error bars are less than symbol sizes. The dashed green line is
Démoulin et al.’s estimate of g(0; F) based on Eq. (C2). The blue continuous
curve is obtained for the optical trap by eliminating from g(0, t) = 〈ĝ(0)〉t and
〈F〉t = κT 〈L〉t at κT = 0.4511, the time parameter t.

As Eq. (13) refers to a Markov process, one expects an
asymptotic relaxation of 〈L〉t as

〈L〉t = 〈L〉EQ + A1exp(λ1t) + . . .

= 〈L〉EQ + A1exp
(
−

t

τOT

)
+ · · · , (33)

where A1 is the amplitude (dependent on initial conditions) of
the slowest, non-zero mode with eigenvalue λ1 = −

1
τOT of the

generator matrix governing the dynamics of the system. In the
same long time limit, one has

〈F〉t = κT 〈L〉t = Fs + A1κT exp(λ1t) + · · · , (34)

〈V〉t = A1λ1exp(λ1t) + · · · , (35)

FIG. 5. Average filament relative size for N f = 32 at ρ̂1 = 2.5 and ε = 0.
The red filled circles, denoting kav, are obtained in the stationary regime of
constant load runs at each shown load value F. Error bars are less than symbol
sizes. The dashed green line is Démoulin et al.’s theoretical estimate of kav(F)
based on Eq. (C4). The blue continuous curve is obtained for the optical
trap setup by eliminating from 〈k̂av 〉t = 〈

∑∞
k=0 kĝ(k)〉t and 〈F〉t = κT 〈L〉t at

κT = 0.4511, the time parameter t.

FIG. 6. Non-equilibrium relaxations of staggered bundles of N f = 32 rigid
filaments growing in an optical trap at reduced density ρ̂1 = 2.5, all of
them starting from initial conditions with the wall set to a value L0 ≈ 5d
� 〈L〉EQ. The wall position 〈L〉t and the associated Root Mean Square Devi-
ation (RMSD) σL(t) are found as a function of time in the figure where what
is effectively shown is the load evolution κT 〈L〉t and corresponding RMSD
κTσL(t). The final plateau value of the relaxations is compatible with the value
Fs = FH

s given by Eq. (2) indicated by a horizontal thin black line. The dashed
lines represent the best fit of an exponential asymptotic behavior Eq. (34),
providing estimates of τOT and hence of the chemical friction γ defined by
Eq. (37). We findγ = 291± 4 (IWA with κT = 0.25) andγ = 295± 5 (IWA with
κT = 0.4511) on the basis of the τOT values obtained.

and, thus, formally one can express the longest relaxation time
of the optical trap relaxation as

τOT = −λ−1
1 = κT

−1 lim
t→∞

Fs − 〈F〉t
〈V〉t

. (36)

From the data in Fig. 6 at κT = 0.25, one gets τOT = 1185
± 50 for the EWA sampling, while the IWA sampling pro-
vides τOT = 1164 ± 10. At κT = 0.4511 for the IWA sampling,
τOT = 654 ± 10. By numerical differentiation, we have calcu-
lated the slopes of 〈L〉t ≡ l(t; κT ), 〈V〉t =

d〈L〉t
dt ≡ v(t; κT ).

Eliminating t from the pair of parametric equations [〈F〉t
= κT l(t; κT ), v(t; κT )], we can get the velocity as a function of
the force, which is still a function of κT . The force–velocity
relationship for κT = 0.4511, shown in Fig. 2, turns out to
be equivalent, except at small loads, to V stat(F) previously
established for the constant force load stationary state. Iden-
tical results are obtained from the relaxation with κT = 0.25
(not shown), indicating a negligible dependence, if any, of
the force–velocity relationship on κT . The same agreement
for g(0) and kav between the constant load results and the
results obtained in optical trap is shown in Figs. 4 and 5,
supporting the validity of the optical trap to extract the bun-
dle behavior. Again for the present rigid model, the long
time behavior is independent of the specific value of κT

adopted.

E. Adiabaticity

Figure 2 shows that, except at low forces (short time
part of the relaxation behavior), V stat(F) superposes well the
velocity–force relationship extracted from the optical trap
relaxation. The identity between the stationary force–velocity
relationship with the one obtained by the relaxation process
in the optical trap setup is a clear indication of the fact that
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the optical trap setup is working in adiabatic conditions, i.e.,
we have a relaxation process happening in between stationary
states. We can derive from this apparent adiabaticity, espe-
cially valid at long times in the optical trap relaxation when
the load changes slowly in time, that

τOT ≡ κT
−1 lim

t→∞

Fs − 〈F〉t
〈V〉t

= −


κT

(
∂V stat

∂F

)
Fs



−1

≡
γ

κT
,

(37)

where V stat(F) is the constant load force–velocity relation-
ship and where γ, defined as minus the inverse of the slope

of V stat(F) at stalling in Eq. (37), γ = −
[(
∂V stat

∂F

)
Fs

]−1
, is a

friction coefficient having a chemical (and not hydrodynamic)
origin. The structure of the relaxation time expression Eq. (37)
resembles that of an overdamped Brownian oscillator.

Equation (37) can be tested with our data. Using τOT

estimates mentioned earlier for the two values of κT , we get
three compatible γ estimates (291 ± 4 for the IWA run at
κT = 0.25, 296± 12 for EWA at κT = 0.25, and 295± 5 for IWA
at κT = 0.4511). These values provide an overall estimate of
γ = 293 ± 3 which has to be compared to the value of the
slope of V stat(F) at stalling. The numerical derivative esti-
mated with our wide spread data gives γ = 272; unfortunately,
this value is not sufficiently precise to be completely reliable.
The uncertainty provided by computing the left and right incre-
mental ratios giving, respectively, γ = 202 and γ = 414 tells
us that we are within the numerical uncertainty. As for the
Démoulin result, its approximate estimate of the slope leads to
γDem = 281.6 (see Appendix C).

By referring the chemical friction coefficient γ to the
value characteristic of the mean field force–velocity relation-

ship Eq. (2), γMF =
Nf kBT
d2W0

, we can define a new adimensional
coefficient, C(Nf , ρ̂1), as

C(Nf , ρ̂1) =
γ

γMF
=

d2W0

Nf kBT
γ = 9.2 ± 0.1, (38)

giving a measure of the dynamic correlations between fila-
ments. Note that C = 1 not only in the MF model but also in
the single filament Brownian ratchet in the ε = 0 limit because
the force–velocity relationship is identical to the MF expres-
sion for N f = 1. The Démoulin estimate of C gives in our case
(Nf = 32, ρ̂1 = 2.5) CDem = 8.8.

On an intuitive basis, adiabaticity is related to a very fast
equilibration of filament sizes during the slow (long time) non-
equilibrium evolution of the optical trap, with respect to the
microscopic relaxation time of the filaments under constant
load, τmicro. The characteristic time of the optical trap equili-
bration is τOT . We have seen, in Fig. 3, that, for F/Fs > 0.15,
the typical microscopic relaxation time τmicro lies in the range
≈(1-3)W−1

0 . Now we can explain what we have anticipated at
the beginning of this section: with the values we have chosen
for κT , corresponding to equilibrium sizes of the bundle well
satisfying the condition LEQ/d � 1 (to avoid boundary prob-
lems associated to the short size of the bundle), the values of
τOT result automatically to be two to three orders of magnitude
larger (see the values given in Fig. 6). It is important to stress,

however, that τmicro values diverge as F/Fs → 0, a property
paralleled by the divergence in the same limit of kav .

IV. CONCLUDING REMARKS

In this work, we have considered, in a Markovian approxi-
mation, a stochastic dynamical model to compute the evolution
and the statistical properties of a staggered bundle of N f rigid
living filaments growing against a loaded wall. In the Fokker–
Planck equations, we have written down to give an explicit
dynamics to our system, a parameter, ε = τD/τchem, which
plays a special role. Generally, the model has to be solved for
the values of ε relatively small. It is found that if we take the ε
= 0 limit, the dynamics simplify and the overall computations
become much lighter. We have shown numerically that the
results obtained in a reasonable range of non-zero values of ε
in the neighborhood of zero coincide with the results obtained
using the limiting model and the simplified algorithm. This
indicates the robustness of the ε = 0 limit. As a consequence,
the major part of the computational work of the present paper
has been performed in this limit. For the loading of the wall,
we considered two classical protocols: a constant load or an
optical trap setup, characterized by a harmonic restoring force.
By a series of computer experiments at constant load and by a
single calculation in the optical trap, we have obtained for the
two protocols the classical force–velocity relationship. With
the exception of the region of very weak loads, we have found
the perfect coincidence of the results. We have been able to
explain this universality of the response as a result of the time
scale separation between the relaxation time needed by the
wall to adjust to a change of the external force in the opti-
cal trap and the characteristic time needed by the chemistry
to change the conformation of the bundle. This condition is
violated when the load is very small (i.e., the trap expands
rather fast) and the optical trap and constant load results dif-
fer, even dramatically, in that region. Our results suggest that
experiments measuring the force–velocity relationship with a
harmonic load offer, in principle, many advantages over the
approach where constant force setups are used. Indeed, only
a single sample is needed to get a V (F) estimate over a large
F window in the first case, while a separate experiment and
in general a specific sample are needed for each steady state
at constant load F investigated. Alternative protocols are pos-
sible, like imaging techniques used in Ref. 12, but the rules
needed to get adiabaticity are easily transposed. We have been
also able to confirm the validity of the approximate theory
developed by Démoulin et al.5 to compute the properties of our
system.

In this work, we have considered non-interacting rigid
filaments subject to one polymerization rate and one depoly-
merization rate facing a hard mobile wall. Rigid filament
models incorporating in addition lateral interactions (between
protofilaments)25 and hydrolysis effects26 or both27 have been
studied for actin and microtubules. For multi-filament bun-
dles, they give rise to new collective effects affecting the
load–velocity relationship and the stalling force. It would be
interesting to test whether the adiabatic character of the opti-
cal trap response remains verified when these more realistic
features of filaments are incorporated in the bundle model.
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Interpreting experimental data with rigid models implies that
the semi-flexible character of living bio-filaments has limited
influence on the results. How the bundle dynamics is affected
by the flexibility is a delicate point, which is largely unknown,
and this, to some extent, hampers the confidence in inter-
preting data with rigid filament models. Work is in progress
to clarify the influence of flexibility on the force–velocity
relation.28
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APPENDIX A: DISCRETIZED FOKKER-PLANCK
EQUATION FOR THE WALL–BUNDLE SYSTEM
IN AN OPTICAL TRAP OR CONSTANT FORCE SETUP

In this appendix, we derive a proper discretization of
the Fokker–Planck equation together with the elements of the
generator matrix Q of the Markov process given by Eq. (13).

To get the matrix elements that account for the discretiza-
tion of the variable L, following the procedure introduced
in Ref. 18, we concentrate only on the diffusive part of
Eq. (7) for the wall position probability at given chemical state,
Pj1,...,jNf

(L, t) ≡ Pj(L, t),

∂Pj(L, t)

∂t
= −

∂

∂L
Jj(L, t), (A1)

where Jj(L, t) = −D
(
∂Pj(L,t)
∂L + 1

kBT
dΦ
dL Pj(L, t)

)
is the probabil-

ity current, with dΦ
dL = κT L or �F for, respectively, the optical

trap or the constant force setup. We define the probabilities for
the wall to be in the intervals (l = L/δ) k − 1/2 6 l < k + 1/2
and k + 1/2 6 l < k + 3/2 as

pk(t) =
∫ k+1/2

k−1/2
Pj(l, t)dl, (A2)

pk+1(t) =
∫ k+3/2

k+1/2
Pj(l, t)dl. (A3)

By defining the wall forward rate Fk+1/2 of going from k to
k + 1 (Fk�1/2 from k � 1 to k) and the wall backward rate
Bk+1/2 of going from k + 1 to k (Bk�1/2 from k to k � 1), the
time evolution of the probability pk(t) can be written as18

dpk(t)
dt

= Fk−1/2pk−1 − (Fk+1/2 + Bk−1/2)pk + Bk+1/2pk+1

= −(Fk+1/2pk − Bk+1/2pk+1) + (Fk−1/2pk−1 − Bk−1/2pk)

= −(Jk+1/2 − Jk−1/2), (A4)

where the rates Fk±1/2 and Bk±1/2 have to be derived by dis-
cretizing Eq. (A1). Jk+1/2 is the net probability flux between
sites k and k + 1 (Jk�1/2 is between k � 1 and k).

If we now discretize Eq. (A1) using, e.g., the central differ-
ence method [f ′k+1/2 = (fk+1 − fk)/δ] and compare the resulting
discrete equation with Eq. (A4), the forward and backward
rates obtained will not respect the detailed balance, a sufficient
condition to reach equilibrium, while we expect the evolution
of the Markov chain to lead to it, with each process balanced
by its reverse.

To overcome this difficulty, following Ref. 18, we can
look for the stationary solution of Eq. (A1) and see if, by
integration over a proper interval of lengths, we can identify
the rates, bringing us to coefficients satisfying the detailed
balance.

Looking at the definitions Eqs. (A2) and (A3), we see that
to get pk and pk+1 from a solution of the stationary equation
(A1), we need to solve it in the interval (k � 1/2, k + 3/2). Then
we look for the solution of the probability Pj(L, t) in terms of
the stationary solution PEQ(l) of

D
d
dl

(
dPEQ(l)

dl
+
∆Φk+1/2

kBT
PEQ(l)

)
= 0 (A5)

in l ∈ (k − 1/2, k + 3/2), where we have substituted to dΦ/dl
by the constant approximation ∆Φk+1/2, with

∆Φk+1/2 = Φ(k + 1) − Φ(k). (A6)

The general solution of Eq. (A5) is PEQ(l) = ηexp
(
−
∆Φk+1/2

kBT l
)

+ θ with η and θ constants. Plugging this expression into
Eqs. (A2) and (A3), one can easily find η and θ in terms of
pk and pk+1. Then the (approximate) stationary solution of the
Fokker–Planck equation for the wall in the interval (k � 1/2,
k + 3/2) is

PEQ(l) =
∆Φk+1/2 (pk − pk+1)

kBT
(
exp

(
−
∆Φk+1/2

kBT

)
− 1

)2
exp

(
∆Φk+1/2

kBT
(k − 1/2)

)

× exp

(
−
∆Φk+1/2

kBT
l

)
+

pkexp
(
−
∆Φk+1/2

kBT

)
− pk+1(

exp
(
−
∆Φk+1/2

kBT

)
− 1

)
× l ∈ (k − 1/2, k + 3/2) . (A7)

From this equation, we get the probability flux in the same
interval

JEQ(l) = −D̃
dPEQ(l)

dl
− D̃
∆Φk+1/2

kBT
PEQ(l)

= −
D̃∆Φk+1/2

kBT

pkexp
(
−
∆Φk+1/2

kBT

)
− pk+1(

exp
(
−
∆Φk+1/2

kBT

)
− 1

) (A8)

with D̃ = D/δ2 being the diffusion constant in δ units. Com-
paring this current with the probability flux defined in Eq. (A4),
we get the following forward and backward rates:

Fk+1/2 = D̃
∆Φk+1/2/kBT

exp
(
∆Φk+1/2

kBT

)
− 1

, (A9)
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Bk+1/2 = D̃
−∆Φk+1/2/kBT

exp
(
−
∆Φk+1/2

kBT

)
− 1

. (A10)

The same approach for the interval (k � 3/2, k + 1/2) can
be used to get Fk�1/2 and Bk�1/2.

By direct substitution, we see that Eqs. (A9) and (A10)
respect the detailed balance, Fk+1/2PEQ(k) = Bk+1/2PEQ(k + 1).

Substituting the appropriate expression for Φ(Lk), we
have

∆Φk+1/2 =



Fδ constant load,
1
2 κT δ

2
(
(k + 1)2 − k2

)
optical trap.

(A11)

The non-zero elements of the generator matrix Q can now
be written as follows:

Q{j1,...,jn,...,jNf ,k } {j1,...,jn,...,jNf ,k+1} = Fk+1/2, (A12)

Q{j1,...,jn,...,jNf ,k } {j1,...,jn,...,jNf ,k−1} = Ck−1/2 =



Bk−1/2 if k − 1 > X∗/d,

0 otherwise,
(A13)

Q{j1,...,jn,...,jNf ,k } {j1,...,jn+1,...,jNf ,k } = Ujn =



U0 if k > Xn(jn + 1)/d,

0 otherwise,
(A14)

Q{j1,...,jn,...,jNf ,k } {j1,...,jn−1,...,jNf ,k } = Wjn = W0, (A15)

Q{j1,...,jn,...,jNf ,k } {j1,...,jn,...,jNf ,k } = −Fk+1/2 − Ck−1/2 −

Nf∑
n=1

(
Ujn + Wjn

)
(A16)

with Xn(jn) and X∗ given by Eqs. (4) and (5). The row sums
of this matrix are zero, as required for a generator matrix of a
Markov chain,∑

{j′1,...,j′n,...,j′Nf
,k′ }

Q{j1,...,jn,...,jNf ,k } {j′1,...,j′n,...,j′Nf
,k′ } = 0. (A17)

Equation (13) represents hence a continuous time Markov pro-
cess with discrete states; as for the variable L, the discrete
states are approximations (exact in the δ → 0 limit) to the
continuous/discrete process defined in Eq. (7).

APPENDIX B: ELEMENTS OF THE ε = 0 GENERATOR
MATRIX

In this appendix, we write explicitly the matrix elements
of Q(0), generator of the Markov process in the ε = 0 limit
Eq. (29). Since in this limit, the integration in L allowed us to
get rid of the continuous wall diffusion process, these elements
can be written immediately,

Q(0)
{j1,...,jn,...,jNf } {j1,...,jn+1,...,jNf }

= Ujn

= U0A(n)(j1, . . . , jn, . . . , jNf ),

(B1)

Q(0)
{j1,...,jn,...,jNf } {j1,...,jn−1,...,jNf }

= Wjn = W0, (B2)

Q(0)
{j1,...,jn,...,jNf } {j1,...,jn,...,jNf }

= −

Nf∑
n=1

(
Ujn + Wjn

)
, (B3)

where A(n)(j1, . . . , jn, . . . , jNf ) is given by

A(n)(j1, . . . , jn, . . . , jNf )

=

∫ ∞
X∗/d

dx Θ (x − Xn(jn + 1)/d) P̃EQ(x | j1, . . . , jn, . . . , jNf )

=




exp
[
−f

(
X∗
′

− X∗
)
/d

]
constant load,

erfc
[
(κ̃T/2)1/2 X∗

′

/d
]

erfc
[
(κ̃T/2)1/2 X∗/d

] optical trap,
(B4)

where X∗
′

is the most advanced filament’s tip for the set of
filament sizes {j1, . . . , jn + 1, . . . , jNf }. Equation (B4) has been
derived previously for constant load5,9 and for optical trap
load.17

APPENDIX C: DÉMOULIN ET AL.’S PREDICTION
FOR V (F ) AND kav

Démoulin et al.5 have proposed an approximate solution
for the force–velocity relationship of staggered rigid filaments
subjected to a constant load F in the ε = 0 limit. They found
that

V (F) =
dU0

Nf

[
Nf exp

(
−

Fd
kBT

)

+
Nf −1∑
m=1

g(0)
(
Nf − m

)
exp

(
−

Fd(Nf − m)

Nf kBT

) ]

−
dW0

Nf


g(0)

Nf −1∑
m=1

m (1 − g(0))m−1 + Nf (1 − g(0))Nf −1


(C1)

with the relative size distribution g(k) given by
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g(k) =
d(U0 −W0) − V

dU0

(
V + dW0

dU0

)k

, k = 0, 1, . . . ,∞.

(C2)
It can be verified that at stalling, F = Fs = Nf

kBT
d ln ρ̂1, one

gets V = 0 and g(0) = 1 − ρ̂−1
1 .

For comparison in the text, we need to compute kav and
V (F) explicitly as follows:

1. kav: Defining ξ = V+dW0
dU0

to simplify expressions, one
gets from Eq. (C2),

g(k) = (1 − ξ)ξk , (C3)

kav =

∞∑
k=1

kg(k) =
ξ

1 − ξ
. (C4)

2. V(F): Inserting g(0) = d(U0−W0)−V
dU0

into Eq. (C1), we find
for V (F) a polynomial equation in V to solve. Writing v
= V /dW0, we find

φ(v) =
ρ̂1

Nf


Nf exp

(
−

Fd
kBT

)
+

Nf −1∑
m=1

(
1 −

1 + v
ρ̂1

) (
Nf − m

)
× exp

(
−

Fd(Nf − m)

Nf kBT

)]
−

1
Nf

[(
1 −

1 + v
ρ̂1

)

×

Nf −1∑
m=1

m

(
1 + v
ρ̂1

)m−1

+ Nf

(
1 + v
ρ̂1

)Nf −1
− v = 0.

(C5)

Equation (C5) can be solved numerically using the
Newton–Raphson method, for which the derivative of
φ(v) with respect to v is needed,

φ′(v) = −
ρ̂1

Nf



Nf −1∑
m=1

(
Nf − m

) (
Nf − m

)

× exp

(
−

Fd(Nf −m)

Nf kBT

)
+

1
Nf ρ̂1



Nf −1∑
m=1

m

(
1 + v
ρ̂1

)m−2

×

(
1 + v
ρ̂1
−

(
1 −

1 + v
ρ̂1

)
(m − 1)

)
−Nf

(
Nf − 1

) (
−

1 + v
ρ̂1

)Nf −2
− 1. (C6)

The Newton–Raphson method requires a first guess
value, say v0, which can be taken as, e.g., Hill’s value.

The solution of Démoulin et al.’s equation for a bundle of N f

= 32 filaments and supercritical density ρ̂1 = 2.5 is reported in
Fig. 6, where it is compared with the results of our stochastic
dynamics algorithm. The same is done by substituting V (F)
in Eqs. (C3) and (C4), for g(0) and kav in Figs. 4 and 5,
respectively.

To predict within the present theory the value of τOT , we
need to compute the derivative of V (F) with respect to F at
stalling, obtaining γDem. From Eq. (C1), we get dV /dF as an
implicit function of V (F) and F. At stalling F = Fs, V (Fs)
= 0, we obtain

∂V
∂F

�����F=Fs

= −
d2W0

kBT

ρ̂
1−Nf

1

[
1 +

∑Nf −1
m=1 ρ̂m

1 (1 − ρ̂−1
1

(Nf −m)2

N2
f

)

]

1 + N−1
f

∑Nf −1
m=1 m ρ̂−m

1 + (Nf − 1) ρ̂
−(Nf −1)
1 − N−1

f

∑Nf −1
m=1 m ρ̂−m

1

[
1 − ( ρ̂1 − 1)(m − 1)

] . (C7)

For our conditions, the value is γDem = −(dV/dF)−1
s = 281.6, which is in agreement with our results (see the main text).
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