13,987 research outputs found

    Resolving sets for breaking symmetries of graphs

    Full text link
    This paper deals with the maximum value of the difference between the determining number and the metric dimension of a graph as a function of its order. Our technique requires to use locating-dominating sets, and perform an independent study on other functions related to these sets. Thus, we obtain lower and upper bounds on all these functions by means of very diverse tools. Among them are some adequate constructions of graphs, a variant of a classical result in graph domination and a polynomial time algorithm that produces both distinguishing sets and determining sets. Further, we consider specific families of graphs where the restrictions of these functions can be computed. To this end, we utilize two well-known objects in graph theory: kk-dominating sets and matchings.Comment: 24 pages, 12 figure

    The difference between the metric dimension and the determining number of a graph

    Get PDF
    We study the maximum value of the difference between the metric dimension and the determining number of a graph as a function of its order. We develop a technique that uses functions related to locating-dominating sets to obtain lower and upper bounds on that maximum, and exact computations when restricting to some specific families of graphs. Our approach requires very diverse tools and connections with well-known objects in graph theory; among them: a classical result in graph domination by Ore, a Ramsey-type result by Erdős and Szekeres, a polynomial time algorithm to compute distinguishing sets and determining sets of twin-free graphs, k-dominating sets, and matchings

    A Note on Outer-Independent 2-Rainbow Domination in Graphs

    Get PDF
    Let G be a graph with vertex set V(G) and f:V(G)→{∅,{1},{2},{1,2}} be a function. We say that f is an outer-independent 2-rainbow dominating function on G if the following two conditions hold: (i)V∅={x∈V(G):f(x)=∅} is an independent set of G. (ii)∪u∈N(v)f(u)={1,2} for every vertex v∈V∅. The outer-independent 2-rainbow domination number of G, denoted by γoir2(G), is the minimum weight ω(f)=∑x∈V(G)|f(x)| among all outer-independent 2-rainbow dominating functions f on G. In this note, we obtain new results on the previous domination parameter. Some of our results are tight bounds which improve the well-known bounds β(G)≤γoir2(G)≤2β(G), where β(G) denotes the vertex cover number of G. Finally, we study the outer-independent 2-rainbow domination number of the join, lexicographic, and corona product graphs. In particular, we show that, for these three product graphs, the parameter achieves equality in the lower bound of the previous inequality chain

    Lower bounds for protrusion replacement by counting equivalence classes

    Get PDF
    Garnero et al. [SIAM J. Discrete Math. 2015, 29(4):1864--1894] recently introduced a framework based on dynamic programming to make applications of the protrusion replacement technique constructive and to obtain explicit upper bounds on the involved constants. They show that for several graph problems, for every boundary size tt one can find an explicit set Rt\mathcal{R}_t of representatives. Any subgraph HH with a boundary of size tt can be replaced with a representative H′∈RtH' \in \mathcal{R}_t such that the effect of this replacement on the optimum can be deduced from HH and H′H' alone. Their upper bounds on the size of the graphs in Rt\mathcal{R}_t grow triple-exponentially with tt. In this paper we complement their results by lower bounds on the sizes of representatives, in terms of the boundary size tt. For example, we show that each set of planar representatives Rt\mathcal{R}_t for Independent Set or Dominating Set contains a graph with Ω(2t/4t)\Omega(2^t / \sqrt{4t}) vertices. This lower bound even holds for sets that only represent the planar subgraphs of bounded pathwidth. To obtain our results we provide a lower bound on the number of equivalence classes of the canonical equivalence relation for Independent Set on tt-boundaried graphs. We also find an elegant characterization of the number of equivalence classes in general graphs, in terms of the number of monotone functions of a certain kind. Our results show that the number of equivalence classes is at most 22t2^{2^t}, improving on earlier bounds of the form (t+1)2t(t+1)^{2^t}

    Properties of graphs with large girth

    Get PDF
    This thesis is devoted to the analysis of a class of iterative probabilistic algorithms in regular graphs, called locally greedy algorithms, which will provide bounds for graph functions in regular graphs with large girth. This class is useful because, by conveniently setting the parameters associated with it, we may derive algorithms for some well-known graph problems, such as algorithms to find a large independent set, a large induced forest, or even a small dominating set in an input graph G. The name ``locally greedy" comes from the fact that, in an algorithm of this class, the probability associated with the random selection of a vertex v is determined by the current state of the vertices within some fixed distance of v. Given r > 2 and an r-regular graph G, we determine the expected performance of a locally greedy algorithm in G, depending on the girth g of the input and on the degree r of its vertices. When the girth of the graph is sufficiently large, this analysis leads to new lower bounds on the independence number of G and on the maximum number of vertices in an induced forest in G, which, in both cases, improve the bounds previously known. It also implies bounds on the same functions in graphs with large girth and maximum degree r and in random regular graphs. As a matter of fact, the asymptotic lower bounds on the cardinality of a maximum induced forest in a random regular graph improve earlier bounds, while, for independent sets, our bounds coincide with asymptotic lower bounds first obtained by Wormald. Our result provides an alternative proof of these bounds which avoids sharp concentration arguments. The main contribution of this work lies in the method presented rather than in these particular new bounds. This method allows us, in some sense, to directly analyse prioritised algorithms in regular graphs, so that the class of locally greedy algorithms, or slight modifications thereof, may be applied to a wider range of problems in regular graphs with large girth

    Roman domination in direct product graphs and rooted product graphs1

    Get PDF
    Let G be a graph with vertex set V(G). A function f : V(G) -> {0, 1, 2) is a Roman dominating function on G if every vertex v is an element of V(G) for which f(v) = 0 is adjacent to at least one vertex u is an element of V(G) such that f(u) = 2. The Roman domination number of G is the minimum weight omega(f) = Sigma(x is an element of V(G)) f(x) among all Roman dominating functions f on G. In this article we study the Roman domination number of direct product graphs and rooted product graphs. Specifically, we give several tight lower and upper bounds for the Roman domination number of direct product graphs involving some parameters of the factors, which include the domination, (total) Roman domination, and packing numbers among others. On the other hand, we prove that the Roman domination number of rooted product graphs can attain only three possible values, which depend on the order, the domination number, and the Roman domination number of the factors in the product. In addition, theoretical characterizations of the classes of rooted product graphs achieving each of these three possible values are given.The second author (Iztok Peterin) has been partially supported by the Slovenian Research Agency by the projects No. J1-1693 and J1-9109. The last author (Ismael G. Yero) has been partially supported by "Junta de Andalucia", FEDER-UPO Research and Development Call, reference number UPO1263769

    Further Results on the Total Roman Domination in Graphs

    Full text link
    [EN] Let G be a graph without isolated vertices. A function f:V(G)-> {0,1,2} is a total Roman dominating function on G if every vertex v is an element of V(G) for which f(v)=0 is adjacent to at least one vertex u is an element of V(G) such that f(u)=2 , and if the subgraph induced by the set {v is an element of V(G):f(v)>= 1} has no isolated vertices. The total Roman domination number of G, denoted gamma tR(G) , is the minimum weight omega (f)=Sigma v is an element of V(G)f(v) among all total Roman dominating functions f on G. In this article we obtain new tight lower and upper bounds for gamma tR(G) which improve the well-known bounds 2 gamma (G)<= gamma tR(G)<= 3 gamma (G) , where gamma (G) represents the classical domination number. In addition, we characterize the graphs that achieve equality in the previous lower bound and we give necessary conditions for the graphs which satisfy the equality in the upper bound above.Cabrera Martínez, A.; Cabrera García, S.; Carrión García, A. (2020). Further Results on the Total Roman Domination in Graphs. Mathematics. 8(3):1-8. https://doi.org/10.3390/math8030349S1883Henning, M. A. (2009). A survey of selected recent results on total domination in graphs. Discrete Mathematics, 309(1), 32-63. doi:10.1016/j.disc.2007.12.044Henning, M. A., & Yeo, A. (2013). Total Domination in Graphs. Springer Monographs in Mathematics. doi:10.1007/978-1-4614-6525-6Henning, M. A., & Marcon, A. J. (2016). Semitotal Domination in Claw-Free Cubic Graphs. Annals of Combinatorics, 20(4), 799-813. doi:10.1007/s00026-016-0331-zHenning, M. . A., & Marcon, A. J. (2016). Vertices contained in all or in no minimum semitotal dominating set of a tree. Discussiones Mathematicae Graph Theory, 36(1), 71. doi:10.7151/dmgt.1844Henning, M. A., & Pandey, A. (2019). Algorithmic aspects of semitotal domination in graphs. Theoretical Computer Science, 766, 46-57. doi:10.1016/j.tcs.2018.09.019Cockayne, E. J., Dreyer, P. A., Hedetniemi, S. M., & Hedetniemi, S. T. (2004). Roman domination in graphs. Discrete Mathematics, 278(1-3), 11-22. doi:10.1016/j.disc.2003.06.004Stewart, I. (1999). Defend the Roman Empire! Scientific American, 281(6), 136-138. doi:10.1038/scientificamerican1299-136Chambers, E. W., Kinnersley, B., Prince, N., & West, D. B. (2009). Extremal Problems for Roman Domination. SIAM Journal on Discrete Mathematics, 23(3), 1575-1586. doi:10.1137/070699688Favaron, O., Karami, H., Khoeilar, R., & Sheikholeslami, S. M. (2009). On the Roman domination number of a graph. Discrete Mathematics, 309(10), 3447-3451. doi:10.1016/j.disc.2008.09.043Liu, C.-H., & Chang, G. J. (2012). Upper bounds on Roman domination numbers of graphs. Discrete Mathematics, 312(7), 1386-1391. doi:10.1016/j.disc.2011.12.021González, Y., & Rodríguez-Velázquez, J. (2013). Roman domination in Cartesian product graphs and strong product graphs. Applicable Analysis and Discrete Mathematics, 7(2), 262-274. doi:10.2298/aadm130813017gLiu, C.-H., & Chang, G. J. (2012). Roman domination on strongly chordal graphs. Journal of Combinatorial Optimization, 26(3), 608-619. doi:10.1007/s10878-012-9482-yAhangar Abdollahzadeh, H., Henning, M., Samodivkin, V., & Yero, I. (2016). Total Roman domination in graphs. Applicable Analysis and Discrete Mathematics, 10(2), 501-517. doi:10.2298/aadm160802017aAmjadi, J., Sheikholeslami, S. M., & Soroudi, M. (2019). On the total Roman domination in trees. Discussiones Mathematicae Graph Theory, 39(2), 519. doi:10.7151/dmgt.2099Cabrera Martínez, A., Montejano, L. P., & Rodríguez-Velázquez, J. A. (2019). Total Weak Roman Domination in Graphs. Symmetry, 11(6), 831. doi:10.3390/sym1106083
    • …
    corecore