13,525 research outputs found

    The Orthogonal Vectors Conjecture for Branching Programs and Formulas

    Get PDF
    In the Orthogonal Vectors (OV) problem, we wish to determine if there is an orthogonal pair of vectors among n Boolean vectors in d dimensions. The OV Conjecture (OVC) posits that OV requires n^{2-o(1)} time to solve, for all d=omega(log n). Assuming the OVC, optimal time lower bounds have been proved for many prominent problems in P, such as Edit Distance, Frechet Distance, Longest Common Subsequence, and approximating the diameter of a graph. We prove that OVC is true in several computational models of interest: - For all sufficiently large n and d, OV for n vectors in {0,1}^d has branching program complexity Theta~(n * min(n,2^d)). In particular, the lower and upper bounds match up to polylog factors. - OV has Boolean formula complexity Theta~(n * min(n,2^d)), over all complete bases of O(1) fan-in. - OV requires Theta~(n * min(n,2^d)) wires, in formulas comprised of gates computing arbitrary symmetric functions of unbounded fan-in. Our lower bounds basically match the best known (quadratic) lower bounds for any explicit function in those models. Analogous lower bounds hold for many related problems shown to be hard under OVC, such as Batch Partial Match, Batch Subset Queries, and Batch Hamming Nearest Neighbors, all of which have very succinct reductions to OV. The proofs use a certain kind of input restriction that is different from typical random restrictions where variables are assigned independently. We give a sense in which independent random restrictions cannot be used to show hardness, in that OVC is false in the "average case" even for AC^0 formulas: For all p in (0,1) there is a delta_p > 0 such that for every n and d, OV instances with input bits independently set to 1 with probability p (and 0 otherwise) can be solved with AC^0 formulas of O(n^{2-delta_p}) size, on all but a o_n(1) fraction of instances. Moreover, lim_{p - > 1}delta_p = 1

    Dolní odhady velikosti Booleovských formulí

    Get PDF
    Cı́lem této práce je studovat metody konstrukce dolnı́ch odhadů velikosti Booleovských formulı́. Soustředı́me se zde předevšı́m na formálnı́ mı́ry složitosti, přičemž zobecnı́me známou Krapchenkovu mı́ru na třı́du grafových měr, které následně studujeme. Zabýváme se také dalšı́m z hlavnı́ch přı́stupů, využı́vajı́cı́ náhodné restrikce Booleovských funkcı́. Na závěr zmı́nı́me program pro nalezenı́ super-polynomiálnı́ch odhadů založený na KRW doměnce. 1The aim of this thesis is to study methods of constructing lower bounds on Boolean formula size. We focus mainly on formal complexity measures, gener- alizing the well-known Krapchenko measure to a class of graph measures, which we thereafter study. We also review one of the other main approaches, using ran- dom restrictions of Boolean functions. This approach has yielded the currently largest lower bounds. Finally, we mention a program for finding super-polynomial bounds based on the KRW conjecture. 1Department of LogicKatedra logikyFaculty of ArtsFilozofická fakult

    An average-case depth hierarchy theorem for Boolean circuits

    Full text link
    We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND\mathsf{AND}, OR\mathsf{OR}, and NOT\mathsf{NOT} gates. Our hierarchy theorem says that for every d2d \geq 2, there is an explicit nn-variable Boolean function ff, computed by a linear-size depth-dd formula, which is such that any depth-(d1)(d-1) circuit that agrees with ff on (1/2+on(1))(1/2 + o_n(1)) fraction of all inputs must have size exp(nΩ(1/d)).\exp({n^{\Omega(1/d)}}). This answers an open question posed by H{\aa}stad in his Ph.D. thesis. Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to a random oracle with probability 1, confirming a conjecture of H{\aa}stad, Cai, and Babai. We also use our result to show that there is no "approximate converse" to the results of Linial, Mansour, Nisan and Boppana on the total influence of small-depth circuits, thus answering a question posed by O'Donnell, Kalai, and Hatami. A key ingredient in our proof is a notion of \emph{random projections} which generalize random restrictions

    The quantum adversary method and classical formula size lower bounds

    Get PDF
    We introduce two new complexity measures for Boolean functions, or more generally for functions of the form f:S->T. We call these measures sumPI and maxPI. The quantity sumPI has been emerging through a line of research on quantum query complexity lower bounds via the so-called quantum adversary method [Amb02, Amb03, BSS03, Zha04, LM04], culminating in [SS04] with the realization that these many different formulations are in fact equivalent. Given that sumPI turns out to be such a robust invariant of a function, we begin to investigate this quantity in its own right and see that it also has applications to classical complexity theory. As a surprising application we show that sumPI^2(f) is a lower bound on the formula size, and even, up to a constant multiplicative factor, the probabilistic formula size of f. We show that several formula size lower bounds in the literature, specifically Khrapchenko and its extensions [Khr71, Kou93], including a key lemma of [Has98], are in fact special cases of our method. The second quantity we introduce, maxPI(f), is always at least as large as sumPI(f), and is derived from sumPI in such a way that maxPI^2(f) remains a lower bound on formula size. While sumPI(f) is always a lower bound on the quantum query complexity of f, this is not the case in general for maxPI(f). A strong advantage of sumPI(f) is that it has both primal and dual characterizations, and thus it is relatively easy to give both upper and lower bounds on the sumPI complexity of functions. To demonstrate this, we look at a few concrete examples, for three functions: recursive majority of three, a function defined by Ambainis, and the collision problem.Comment: Appears in Conference on Computational Complexity 200
    corecore