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Abstract: The aim of this thesis is to study methods of constructing lower bounds
on Boolean formula size. We focus mainly on formal complexity measures, gener-
alizing the well-known Krapchenko measure to a class of graph measures, which
we thereafter study. We also review one of the other main approaches, using ran-
dom restrictions of Boolean functions. This approach has yielded the currently
largest lower bounds. Finally, we mention a program for finding super-polynomial
bounds based on the KRW conjecture.
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Abstrakt: Cílem této práce je studovat metody konstrukce dolních odhadů
velikosti Booleovských formulí. Soustředíme se zde především na formální míry
složitosti, přičemž zobecníme známou Krapchenkovu míru na třídu grafových
měr, které následně studujeme. Zabýváme se také dalším z hlavních přístupů,
využívající náhodné restrikce Booleovských funkcí. Na závěr zmíníme program
pro nalezení super-polynomiálních odhadů založený na KRW doměnce.
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List of Abbreviations

N The set of all natural numbers including 0
R+ The set of all non-negative real numbers
Z2 The finite field of size 2
log The binary logarithm

𝑓 [𝐴] The image of 𝐴 under 𝑓
𝑓−1(𝑏) The fiber of 𝑏 under 𝑓

𝑇 Transposition
P Probability
E Expected value
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Introduction
Boolean formula size is a measure of complexity of a problem corresponding
to the time required by parallel computations. One of the open problems in
computational complexity is to find an explicit Boolean function with super-
polynomial formula size. Even though it has been proved that such functions
exist (and they even form the majority of all Boolean functions), no attempt to
prove a super-polynomial bound on some function has so far been successful.

In this thesis, we study two of the main streams in construction of formula
size lower bounds. Chapter 1 introduces the necessary background on Boolean
formulas and reviews some examples of functions and their bounds. In Chapter
2 we study the notion of a formal complexity measure and generalize a common
measure to a class of complexity measures. Thereafter, in Chapter 3 we look
at an alternative way of thinking about complexity measures and review some
boundaries of the complexity-measure approach. Finally, Chapter 4 reviews the
other main approach to formula size and the progress towards finding super-
polynomial bounds.
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1. Boolean formula complexity
In this chapter we introduce Boolean functions, circuits and their measures of
complexity, and finally Boolean formulas. Thereafter, we review some of the
functions most common in complexity theory. We mostly uphold the conventions
and notation of Wegener [1987].

Definition 1. A Boolean function is any function 𝑓 : {0, 1}𝑛 → {0, 1} for
some 𝑛 ∈ N. By 𝐵𝑛 we denote the set of all 𝑛-dimensional Boolean functions,
𝐵𝑛 = {𝑓 : {0, 1}𝑛 → {0, 1}}.

In the theory of computation, Boolean functions are typically viewed as a
mathematical representation of some task or problem, where we study the proper-
ties of some computational model solving this task—in our case, the size Boolean
circuits and formulas.

Partially defined functions In some contexts it is useful to consider functions
defined only on a subset of {0, 1}𝑛.

Definition 2. A partially defined Boolean function is any function 𝑓 : {0, 1}𝑛 →
{0, 1, ?} for some 𝑛 ∈ N. By 𝐵*

𝑛 we denote the set of all 𝑛-dimensional partially
defined Boolean functions, 𝐵*

𝑛 = {𝑓 : {0, 1}𝑛 → {0, 1, ?}}.
For 𝑓, 𝑔 ∈ 𝐵*

𝑛 we say that 𝑔 is an extension of 𝑓 , 𝑓 ⊆ 𝑔, if for all 𝑥 ∈ {0, 1}𝑛

it holds that if 𝑓(𝑥) ∈ {0, 1}, then 𝑓(𝑥) = 𝑔(𝑥).

Remark. Here, "𝑓(𝑥) = ?" is interpreted as "𝑓 is undefined on 𝑥". This notation
is equivalent to defining partially defined functions as 𝑓 : 𝑀 ⊆ {0, 1}𝑛 → {0, 1}.

1.1 Boolean circuits and formulas
In this section we define Boolean circuits and formulas and formulate some basic
findings about their size.

1.1.1 Boolean circuits
Boolean circuits model computation on a fixed number of input variables. Apart
from the inputs, they consist of interconnected gates, each corresponding to some
Boolean function. The set of admissible functions is called the basis. For the
purposes of this thesis, we consider only the De Morgan basis, {¬, ∨, ∧}. The
following definition is a reformulation of the one of Wegener [1987].

Definition 3. Let 𝑛 ∈ N be fixed. A (De Morgan) Boolean circuit is a weakly
connected directed acyclic graph 𝑆 = (𝑉, 𝐸) such that each 𝑣 ∈ 𝑉 has a label 𝑃𝑣

that is one of the following:

• ∨, or ∧. In that case, 𝑣 has two predecessors in 𝐸.

• ¬. Then, 𝑣 has one predecessor in 𝐸.

• 𝑥𝑖 for some 𝑖 ≤ 𝑛, 0, or 1. In that case, 𝑣 has no predecessors in 𝐸.
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In the first two cases, 𝑣 is called an inner gate. In the third case, 𝑣 is called a
leaf or an input.

Remark. Predecessors of 𝑣 in 𝐸 are all 𝑢 ∈ 𝑉 such that (𝑢, 𝑣) ∈ 𝐸.

Definition 4. Let 𝑆 = (𝑉, 𝐸) be a circuit on 𝑛 variables and let (𝑦1, . . . , 𝑦𝑛) ∈
{0, 1}𝑛. We define inductively the value of the circuit on 𝑦1, . . . , 𝑦𝑛 on gate 𝑣 ∈ 𝑉 ,
denoted 𝑣(𝑦1, . . . , 𝑦𝑛):

• If 𝑃𝑣 = 1, 𝑣(𝑦1, . . . , 𝑦𝑛) = 1, if 𝑃𝑣 = 0, 𝑣(𝑦1, . . . , 𝑦𝑛) = 0.

• If 𝑃𝑣 = 𝑥𝑖, 𝑣(𝑦1, . . . , 𝑦𝑛) = 𝑦𝑖.

• If 𝑃𝑣 = ¬ and 𝑢 is the predecessor of 𝑣, 𝑣(𝑦1, . . . , 𝑦𝑛) = 1 − 𝑢(𝑦1, . . . , 𝑦𝑛).

• If 𝑃𝑣 = ∨ and 𝑣1, 𝑣2 are the predecessors of 𝑣,

𝑣(𝑦1, . . . , 𝑦𝑛) = max(𝑣1(𝑦1, . . . , 𝑦𝑛), 𝑣2(𝑦1, . . . , 𝑦𝑛)),

if 𝑃𝑣 = ∧ and 𝑣1, 𝑣2 are the predecessors of 𝑣,

𝑣(𝑦1, . . . , 𝑦𝑛) = min(𝑣(𝑦1, . . . , 𝑦𝑛), 𝑣(𝑦1, . . . , 𝑦𝑛)).

We say that the circuit computes a (partially defined) function 𝑓 , if there exists
a gate 𝑣 ∈ 𝑉 such that for all 𝑦 ∈ {0, 1}𝑛 (such that 𝑓(𝑦) ∈ {0, 1}) 𝑓(𝑦) = 𝑣 (𝑦).

Remark. The definition of the value is sound due to the fact that 𝑆 is acyclic and
therefore has a topological ordering that can be used for induction.

Bases In the thesis we consider exclusively circuits on the De Morgan basis
{¬, ∧, ∨}. The two other most commonly used bases are the monotone basis
{∧, ∨} and the full basis 𝐵2. Unlike the other two, the monotone basis is in-
complete in the sense that there exist functions which are not computed by any
{∧, ∨}-circuits. Since every monotone circuit is a De Morgan circuit and every
De Morgan circuit is a 𝐵2-circuit, finding some bounds is surely hardest for the
𝐵2 basis and easiest for monotone circuits.

Circuit size and depth Among circuits computing the same function, the
most natural measure of efficiency is the size—the number of gates. Another basic
characteristic of a circuit is the length of the longest chain of gates connected by
the predecessor relation, called the depth.

Definition 5. Let 𝑆 = (𝑉, 𝐸) be a circuit and let 𝑉𝐼 be the set of all inner gates,
𝑉𝐼 = {𝑣 ∈ 𝑉 | 𝑃𝑣 ∈ {¬, ∨, ∧}}. We define the size of 𝑆 as 𝐶(𝑆) = |𝑉𝐼 | and the
depth of S, 𝑈(𝑆), as the number of edges in the longest path in 𝑆.

For 𝑓 ∈ 𝐵𝑛 denote by 𝐶(𝑓) the smallest size of a circuit computing 𝑓 and by
𝑈(𝑓) the least depth of a circuit computing 𝑓 .

Remark. Circuit size can be interpreted as time of computation in serial comput-
ing, while depth corresponds to time of parallel computation.
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1.1.2 Boolean formulas
Bounded fan-out In Boolean formulas, we bound the fan-out of each gate,
which is the number of its successors in the predecessor relation. This can be
interpreted as considering computation in which we cannot reuse intermediate
results.
Definition 6. Let 𝑆 = (𝑉, 𝐸) be a circuit and 𝑣 ∈ 𝑉 . The fan-out of 𝑣 is the
number of 𝑢 ∈ 𝑉 such that (𝑣, 𝑢) ∈ 𝐸.

De Morgan formulas Boolean formulas are usually defined as circuits such
that each gate has fan-out at most 1. However, by repeated application the De
Morgan laws, for every formula on the De Morgan basis there exists a formula
computing the same function such that its ¬-gates have only variables as their
predecessor, and that the number of leaves is equal in both formulas.

Since most sources assume De Morgan formulas in this form, we give a cor-
responding definition.
Definition 7. A (De Morgan) Boolean formula is a weakly connected directed
acyclic graph 𝑆 = (𝑉, 𝐸) such that each 𝑣 ∈ 𝑉 has fan-out at most 1 and has a
label 𝑃𝑣 that is one of the following:

• ∨, or ∧. In that case, 𝑣 has two predecessors in 𝐸.

• 𝑥𝑖 for some 𝑖 ≤ 𝑛, ¬𝑥𝑖 for some 𝑖 ≤ 𝑛, 0, or 1. In that case, 𝑣 has no
predecessors in 𝐸.

The value of a formula is defined similarly as for circuits. The size of 𝑆 is
defined as 𝐿*(𝑆) = |𝑉𝐼 |. The number of leaves of 𝑆 is 𝐿(𝑆) = 𝐿*(𝑆) + 1.

For 𝑓 ∈ 𝐵𝑛 we define the formula size (or complexity) of 𝑓 , 𝐿(𝑓), as the least
number of leaves of a formula computing 𝑓 .
Remark. Formulas correspond to binary trees. The definition of the number of
leaves of a formula is based on the fact that any binary tree with 𝑘 inner vertices
has 𝑘 + 1 leaves.

The convention of using the number of leaves as formula size is due to the fact
that it is often simpler to reason about than the number of gates, particularly
when working with sub-formulas of a formula. In the following, we will refer to
𝐿 both as the number of leaves and as the size.

Representation by a propositional formula Boolean formulas can be rep-
resented by propositional (De Morgan) formulas. The corresponding proposi-
tional formula for a Boolean formula consisting of a single gate 𝑣 is

• 𝑇 , for 𝑃𝑣 = 1,

• ⊥, for 𝑃𝑣 = 0,

• 𝑥𝑖, for 𝑃𝑣 = 𝑥𝑖.
A Boolean formula consisting of a ∨-gate connecting subformulas 𝑆1 and 𝑆2 is
represented by 𝜙1 ∨ 𝜙2, where 𝜙1 represents 𝑆1 and 𝜙2 represents 𝑆2.

The number of leaves corresponds to the number of occurrences of variables in
the propositional formula representation. The value of a Boolean formula on some
input is the value of the propositional formula under a corresponding valuation.
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The importance of formula size As already mentioned, the formula com-
plexity of a function can be interpreted as time required by serial computation
that is not allowed to reuse intermediate results. However, the following theorem
gives formula complexity a more important role.

Theorem 1 (Spira [1971]). There exists a 𝑘 ∈ N∖{0} such that for all 𝑛 ∈ N∖{0}
and for all 𝑓 ∈ 𝐵𝑛

log (𝐿(𝑓)) ≤ 𝑈(𝑓) ≤ 𝑘 log (𝐿(𝑓))

Remark. This theorem connects formula size to general circuit depth. Therefore,
studying formula size gives us insight into time requirements of parallel compu-
tations.

1.2 Examples of Boolean functions
In this section we review some Boolean functions commonly used in formula
complexity, along with bounds on their formula size.

1.2.1 Basic Boolean functions
Projections Projections are functions that give one of the input variables as
their output.

Definition 8. The 𝑖-th 𝑛-dimensional projection 𝑝𝑛
𝑖 ∈ 𝐵𝑛 is defined for all

(𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 as 𝑝𝑛
𝑖 (𝑥1, . . . , 𝑥𝑛) = 𝑥𝑖.

Remark. When context allows it, we will use simply 𝑝𝑖 instead of 𝑝𝑛
𝑖 . A similar

convention will be applied for all following functions.
Projections and their negations are the simplest (non-constant) functions in

𝐵𝑛. Their complexity is clearly 1, since they are computed by a formula consisting
of a single gate labeled 𝑥𝑖.

The parity function Some of the first bounds on formula size of a particular
function were found for the parity function (Subbotovskaya [1961], Khrapchenko
[1971]). It returns 1 iff the number of input variables equal to 1 is odd.

Definition 9. The 𝑛-dimensional parity function, ⨁︀𝑛 ∈ 𝐵𝑛, is defined for all
(𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 as⨁︁

𝑛
(𝑥1, . . . , 𝑥𝑛) = 𝑥1 ⊕ · · · ⊕ 𝑥𝑛,

where ⊕ denotes addition in Z2.

Remark. It was proved by Khrapchenko [1971] that the formula size of parity is
at least 𝑛2 up to a constant. We cover this result in more detail in Chapter 2.
The following simple construction gives an upper bound on the formula size of
parity.

Proposition 2. Let 𝑛 ∈ N. If 𝑛 = 2𝑏, 𝐿(⨁︀) ≤ 𝑛2. Otherwise, 𝐿(⨁︀) ≤ 4𝑛2.
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Proof. To prove the first part, it is enough to find formula of size 𝑛2 computing
parity. We proceed by induction on 𝑏. If 𝑏 = 0 (𝑛 = 1), parity is equal to the
first 1-dimensional projection and is therefore computed by a formula consisting
of a single gate labeled 𝑥1.

For 𝑛 = 2𝑏+1, let 𝑆1 and 𝑆2 be optimal formulas computing the parity function
on 𝑥1, . . . , 𝑥𝑛

2
and on 𝑥𝑛

2 +1, . . . , 𝑥𝑛, respectively. By the induction hypothesis,
𝐿(𝑆1) ≤ 𝑛2

4 ≥ 𝐿(𝑆2). Let 𝜙1 and 𝜙2 be the propositional formula representations
of 𝑆1 and 𝑆2. Then, (𝜙1 ∧ ¬𝜙2) ∨ (¬𝜙1 ∧ 𝜙2) represents (after propagating ¬ into
the subformulas) a formula computing the parity function on 𝑥1, . . . , 𝑥𝑛 and the
number of its leaves is equal to 4 · max(𝐿(𝑆1), 𝐿(𝑆2)) ≤ 𝑛2.

The second part can be proved from the first using the fact that for any
𝑛 ∈ N ∖ {0} there exists a 𝑏 such that 𝑛 ≤ 2𝑏 < 2𝑛. From the first part, there
exists a formula 𝑆 computing parity on 2𝑏 inputs of size at most 22𝑏 ≤ 4𝑛2. By
substituting all the gates in 𝑆 labeled by 𝑥𝑘, 𝑘 > 𝑛, for 0-gates, we get a formula
computing the parity function on 𝑛 variables of size at most 4𝑛2.

Modulo functions A natural generalization of the parity function is a function
that returns 1 iff the number of input variables equal to 1 equals 1 modulo 𝑘.

Definition 10. The 𝑛-dimensional modulo 𝑘 function, MOD𝑛
𝑘 , is defined for all

(𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 as

MOD𝑛
𝑘 (𝑥1, . . . , 𝑥𝑛) =

⎧⎨⎩1 if ∑︀𝑛
𝑖=1 𝑥𝑖 ≡ 1 (mod k),

0 otherwise.

Remark. In Chapter 2, we show quadratic lower bounds on 𝐿(MOD𝑘) for 𝑘 = 3
and 4.

The majority function Another frequently appearing function is majority, a
function that returns 1 iff at least half of the input variables are equal to 1.

Definition 11. The 𝑛-dimensional majority function, MAJ𝑛, is defined for all
(𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 as

MAJ𝑛 (𝑥1, . . . , 𝑥𝑛) =
⎧⎨⎩1 if ∑︀𝑛

𝑖=1 𝑥𝑖 ≥ 𝑛
2 ,

0 otherwise.

Remark. Despite its simple definition and the fact that it has been studied from
the beginnings of formula complexity, the majority function still has a large gap
between the best lower and upper bounds on its formula size—Gál et al. [2018]
report the current best (De Morgan) bounds as 𝑛3.91 (upper, due to Sergeev
[2016]) and 𝑛2 (lower, proved in Chapter 2), both up to a constant. Because of
this gap, majority has been proposed as a candidate function for super-quadratic
formula size (for example by Ueno [2015]).
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Threshold functions Again, we can generalize this notion to a function giving
1 iff at least 𝑘 inputs are equal to 1.

Definition 12. The 𝑛-dimensional 𝑘-th threshold function, 𝑇 𝑛
𝑘 , is defined for all

(𝑥1, . . . , 𝑥𝑛) ∈ {0, 1}𝑛 as

𝑇 𝑛
𝑘 (𝑥1, . . . , 𝑥𝑛) =

⎧⎨⎩1 if ∑︀𝑛
𝑖=1 𝑥𝑖 ≥ 𝑘,

0 otherwise.

Remark. In Chapter 2, we prove a bound of the form 𝑘 (𝑛 − 𝑘 + 1).

The element distinctness function All of the functions above (except for
projections) are symmetric, meaning their output does not depend on the order
of inputs. As an example of a non-symmetric function, the element distinctness
function divides the input into blocks of equal length and checks if any two blocks
are equal.

Definition 13. Let 𝑛 = 2𝑘 ·2𝑘. The 𝑛-dimensional element distinctness function,
𝐸𝐷𝑛, is defined for all (𝑥1, . . . , 𝑥2𝑘) ∈ {0, 1}2𝑘×2𝑘 (𝑥𝑖 ∈ {0, 1}2𝑘) as

𝐸𝐷𝑛 (𝑥1, . . . , 𝑥2𝑘) =
⎧⎨⎩1 if ∀𝑖 ̸= 𝑗 ≤ 2𝑘: 𝑥𝑖 ̸= 𝑥𝑗,

0 otherwise.

Remark. A method introduced by Nechiporuk [1966] gives a bound of 𝑛2

log 𝑛
up to

a constant for the 𝐸𝐷𝑛 function. In Chapter 2, we use the function to show the
limitations of our methods.

1.2.2 Operations on Boolean functions
There are many ways to combine functions into a new one. For example, we can
insert the outputs of some functions into a function from 𝐵2 or 𝐵1.

Definition 14. For 𝑓, 𝑔 ∈ 𝐵𝑛 we define ¬𝑓 = 1 − 𝑓 and 𝑓 ∨ 𝑔 = max(𝑓, 𝑔).

Theorem 3. Let 𝑓, 𝑔 ∈ 𝐵𝑛. Then,

(i) 𝐿 (¬𝑓) = 𝐿 (𝑓),

(ii) 𝐿 (𝑓 ∨ 𝑔) ≤ 𝐿 (𝑓) + 𝐿 (𝑔).

Proof. (i) Let 𝑆 = (𝑉, 𝐸) be an optimal formula for f. We define a formula
¬𝑆 by switching all ∨-gates for ∧-gates (and vice versa) and all input literals for
their negations. Then, ¬𝑆 computes ¬𝑓 (by the De Morgan laws) and its size is
equal to 𝐿(𝑆). Therefore,

𝐿(¬𝑓) ≤ 𝐿(¬𝑆) = 𝐿(𝑆) = 𝐿(𝑓).

Because ¬¬𝑓 = 𝑓 , 𝐿 (¬𝑓) ≥ 𝐿 (𝑓).
(ii) Let 𝑆𝑓 and 𝑆𝑔 be optimal formulas for 𝑓 and 𝑔, respectively, with propos-

itional representations 𝜙𝑓 , 𝜙𝑔. Consider the formula 𝑆 represented by 𝜙𝑓 ∨ 𝜙𝑔. 𝑆
clearly computes 𝑓 ∨ 𝑔 and therefore its size is at least 𝐿 (𝑓 ∨ 𝑔), that is

𝐿 (𝑓 ∨ 𝑔) ≤ 𝐿 (𝑆) = 𝐿 (𝑓) + 𝐿 (𝑔) .
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Definition 15. Let 𝑓, 𝑔 ∈ 𝐵𝑛 and ℎ ∈ 𝐵2, we define ℎ (𝑓, 𝑔) ∈ 𝐵𝑛 for all
𝑥 ∈ {0, 1}𝑛 as

ℎ (𝑓, 𝑔) (𝑥) = ℎ (𝑓 (𝑥) , 𝑔 (𝑥))

Remark. It does not always hold that

𝐿 (ℎ (𝑓, 𝑔)) ≤ 𝐿 (𝑓) + 𝐿 (𝑔) .

For example, let 𝑛 = 2 and take 𝑓 as the first projection, 𝑝1, 𝑔 as the second
projection, 𝑝2, and ℎ as ⊕ (addition in Z2). Then,

𝐿 (𝑓) + 𝐿 (𝑔) = 2.

In order for the inequality to hold, the ⊕ would have to be computed by a
formula of size at most two, that is, with one inner gate. Only such formulas
correspond to disjunctions and conjunctions of literals, none of which compute⨁︀ (both the disjunction and the conjunction are constant on three out of four
input combinations, while ⨁︀ returns 1 on two of them).

However, based on Theorem 3 we can prove the following result. It is a special
case of a well known theorem stated in the next subsection (Theorem 5).

Proposition 4. Let ℎ ∈ 𝐵2 and 𝑓, 𝑔 ∈ 𝐵𝑛. Then,

𝐿 (ℎ (𝑓, 𝑔)) ≤ 𝐿 (ℎ) · max (𝐿 (𝑓) , 𝐿 (𝑔)) .

Proof. Assume 𝐿(𝑓) ≥ 𝐿(𝑔). Let 𝑆ℎ, 𝑆𝑓 and 𝑆𝑔 be optimal formulas for ℎ, 𝑓
and 𝑔, respectively. Define formula 𝑆 by replacing all instances of 𝑥1 in 𝑆ℎ by
𝑆𝑓 , all instances of ¬𝑥1 by ¬𝑆𝑓 and similarly for 𝑥2 and 𝑆𝑔. 𝑆 clearly computes
ℎ(𝑓, 𝑔). We know that

𝐿
(︁
¬𝑆𝑓

)︁
= 𝐿

(︁
𝑆𝑓
)︁

≥ 𝐿 (𝑆𝑔) = 𝐿 (¬𝑆𝑔) .

Because for each leaf we substitute a formula of size at most 𝐿 (𝑓) and the total
number of all leaves is 𝐿 (ℎ), we get

𝐿 (ℎ (𝑓, 𝑔)) ≤ 𝐿 (𝑆) ≤ 𝐿 (ℎ) · 𝐿 (𝑓) .

Remark. The proposition could easily be generalized to ℎ ∈ 𝐵𝑘 for any 𝑘.
Notice that if we take for example 𝑓 = 𝑔, the resulting complexity can be

much smaller than 𝐿 (ℎ) · 𝐿 (𝑓). This is due to the fact that 𝑓 and 𝑔 are allowed
to share input variables. In the next subsection, we consider a similar situation
with the difference that 𝑓 and 𝑔 each have their own set of variables.
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1.2.3 Composite functions
Composition of functions is a central concept in modern techniques for bound-
ing formula size. Most of the current super-quadratic bounds were proved for
some sort of composite functions. The idea of composition is to take outputs of
independent copies of the same function as the input for another function.

Definition 16. Let 𝑏, 𝑚 ∈ N ∖ {0}, 𝑓 ∈ 𝐵𝑏, 𝑔 ∈ 𝐵𝑚, and 𝑛 = 𝑏𝑚. The composi-
tion of 𝑓 and 𝑔 is 𝑓∘𝑔 ∈ 𝐵𝑛 defined for all 𝑥 = (𝑥1,1, . . . , 𝑥1,𝑚, . . . , 𝑥𝑏,1, . . . , 𝑥𝑏,𝑚) ∈
{0, 1}𝑛 as

(𝑓 ∘ 𝑔) (𝑥) = 𝑓 (𝑔 (𝑥1,1, . . . , 𝑥1,𝑚) , . . . , 𝑔 (𝑥𝑏,1, . . . , 𝑥𝑏,𝑚)) .

Reformulating Proposition 4 in terms of composition, we get a well known
simple result.

Theorem 5. Let 𝑓 ∈ 𝐵𝑏 and 𝑔 ∈ 𝐵𝑚. Then,

𝐿 (𝑓 ∘ 𝑔) ≤ 𝐿 (𝑓) · 𝐿 (𝑔) .

The proof is essentially the same as for Proposition 4.

The KRW conjecture The converse inequality of Theorem 5 is far more in-
teresting. A program for proving super-polynomial lower bounds on formula size
of specific functions has been proposed by Karchmer et al. [1995] that is based
on proving what is now generally known as the KRW conjecture,

𝐿 (𝑓 ∘ 𝑔) ≥ 𝐿 (𝑓) · 𝐿 (𝑔) ,

up to a constant. It has been proved for several special cases of 𝑔, and bounds
on specific functions have been found that hold under the conjecture. We will
review these results in more detail in Chapter 4.

The Andreev function The first super-quadratic bound was proved by An-
dreev [1987] for a function that is not composite itself, but the proof is based on
composite functions. It uses a function that interprets a part of its input as a
truth table of some function (in lexicographic order) and applies a transformation
of the rest of the input to this function.

Definition 17. Assume that 𝑛 = 2𝑏 and at the same time 𝑛 = 𝑏 · 𝑚 (that
is, 𝑏 = 2𝑙). For 𝑦 = (𝑦1,1, . . . 𝑦1,𝑚, . . . 𝑦𝑏,1, . . . 𝑦𝑏,𝑚) ∈ {0, 1}𝑛 define 𝑔(𝑦) =
𝑘 ∈ N as the natural number whose (lexicographic) binary representation is
(⨁︀𝑚 (𝑦1,1, . . . , 𝑦𝑚,1) , . . . ,

⨁︀
𝑚 (𝑦1,𝑏, . . . , 𝑦𝑚,𝑏)).

The 2𝑛-dimensional Andreev function, 𝐴2𝑛 ∈ 𝐵2𝑛, is defined for all (𝑥, 𝑦) =
(𝑥0, . . . , 𝑥𝑛−1, 𝑦1,1, . . . 𝑦1,𝑚, . . . 𝑦𝑏,1, . . . 𝑦𝑏,𝑚) ∈ {0, 1}2𝑛 as

𝐴2𝑛 (𝑥) = 𝑥𝑔(𝑦).

Remark. The first bound on this function of 𝑛2.5−𝑜(1) up to a constant was proved
by Andreev [1987]. Later, this bound was improved to 𝑛3−𝑜(1) by Håstad [1993]
and 𝑛3

(log 𝑛)2 log log 𝑛
up to a constant by Tal [2014]. We review some of the techniques

applied in Chapter 4.
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2. Formal complexity measures
One of the predominant approaches in construction of lower bounds on formula
size uses the abstract notion of a formal complexity measure. This method dates
back to Khrapchenko [1971], who implicitly used a complexity measure to prove
a quadratic bound for the parity function. A formal complexity measure is any
function on 𝐵𝑛 that is at most 1 on all projections 𝑝𝑖 and that behaves similarly
to 𝐿 for operations on functions.

Definition 18. Let 𝑛 ∈ N ∖ {0} be fixed. A function 𝑚 : 𝐵𝑛 → R+ is a formal
complexity measure, if

• ∀𝑖 ≤ 𝑛: 𝑚(𝑝𝑖) ≤ 1, (Normalization)

• ∀𝑓 ∈ 𝐵𝑛: 𝑚(𝑓) = 𝑚(¬𝑓), (Symmetry)

• ∀𝑓, 𝑔 ∈ 𝐵𝑛: 𝑚(𝑓 ∨ 𝑔) ≤ 𝑚(𝑓) + 𝑚(𝑔). (Subadditivity)

We denote by 𝐶𝑛 the set of all formal complexity measures on 𝐵𝑛.

The following well-known theorem states, that 𝐿 is the greatest complexity
measure.

Theorem 6. For all 𝑛 ∈ N ∖ {0}, 𝐿|𝐵𝑛 is a formal complexity measure, 𝐿|𝐵𝑛 ∈
𝐶𝑛. Additionally, for all 𝑚 ∈ 𝐶𝑛 and all 𝑓 ∈ 𝐵𝑛, 𝑚(𝑓) ≤ 𝐿(𝑓).

Proof. Symmetry and subadditivity of 𝐿 follows from Theorem 3, normalization
is trivial (remark after Definition 8).

We prove the second part by induction on 𝐿(𝑓). If 𝐿(𝑓) = 1, 𝑓 is a projection
or its negation and by normalization (and symmetry): 𝑚(𝑓) ≤ 1 = 𝐿(𝑓). Let
𝐿(𝑓) = 𝑘 and assume for all 𝑔 such that 𝐿(𝑔) < 𝑘 that 𝐿(𝑔) ≥ 𝑚(𝑔). Assume
the optimal formula for 𝑓 consists of a ∨-gate connecting subformulas 𝑆1, 𝑆2,
computing functions 𝑓1, 𝑓2. Then,

𝐿(𝑓) = 𝐿(𝑆)
= 𝐿(𝑆1) + 𝐿(𝑆2)
≥ 𝐿(𝑓2) + 𝐿(𝑓2)
≥ 𝑚(𝑓1) + 𝑚(𝑓2)
≥ 𝑚(𝑓1 ∨ 𝑓2)
= 𝑚(𝑓).

Remark. As a consequence of Theorem 6, any lower bound on any complexity
measure is a lower bound on 𝐿. We can therefore proceed by constructing meas-
ures that are easier to compute (or bound) than 𝐿.

12



Properties of 𝐶𝑛 Before continuing on to specific measures, we review a few
simple properties of measures in general that follow from the definition.

Proposition 7. Let 𝑛 ∈ N ∖ {0}. Then,

(i) ∀𝑚 ∈ 𝐶𝑛∀𝑓, 𝑔 ∈ 𝐵𝑛: 𝑚(𝑓 ∧ 𝑔) ≤ 𝑚(𝑓) + 𝑚(𝑔),

(ii) ∀𝑚1, 𝑚2 ∈ 𝐶𝑛∀𝜆1, 𝜆2 ∈ [0, 1], 𝜆1 + 𝜆2 = 1: (𝜆1𝑚1 + 𝜆2𝑚2) ∈ 𝐶𝑛,

(iii) ∀𝑚1, 𝑚2 ∈ 𝐶𝑛: max (𝑚1, 𝑚2) ∈ 𝐶𝑛.

Remark. Statements (ii) and (iii) can be generalized to any finite number of
measures.

In the definition of formal complexity measures, the symmetry condition is
sometimes replaced by statement (i)—this weaker condition still satisfies Theorem
6. We will see a similar situation in Chapter 3.

Normalization Any real function on 𝐵𝑛 satisfying the symmetry and subad-
ditivity conditions can be divided by the maximal value of a projection to obtain
a complexity measure.

Proposition 8. Let ̃︁𝑚 : 𝐵𝑛 → R+ be a function satisfying the symmetry and
subadditivity conditions. Then, 𝑚 : 𝐵𝑛 → R+ defined for all 𝑓 ∈ 𝐵𝑛 as

𝑚(𝑓) =
̃︁𝑚(𝑓)

max𝑖≤𝑛 ̃︁𝑚(𝑝𝑖)

is a formal complexity measure.

2.1 The Krapchenko measure
The Krapchenko measure is one of the most renowned complexity measures in
formula complexity, mainly due to its relative computational simplicity. It form-
alizes the idea that functions that assign different values to inputs close to each
other are complex—here, distance of inputs is interpreted by way of the Hamming
metric.

Definition 19. The Hamming metric, 𝑑𝐻 : ({0, 1}𝑛)2 → N, is defined for all
(𝑥, 𝑦) ∈ ({0, 1}𝑛)2 as the number of coordinates in which 𝑥 and 𝑦 differ,

𝑑𝐻(𝑥, 𝑦) = |𝑥 ⊕𝑛 𝑦|1,

where ⊕𝑛 denotes addition in Z𝑛
2 and |𝑧|1 equals the number of coordinates of 𝑧

equal to 1.
For 𝐴, 𝐵 ⊆ {0, 1}𝑛 and 𝑘 ≤ 𝑛 we denote

𝐻𝑘 (𝐴, 𝐵) = {(𝑥, 𝑦) ∈ 𝐴 × 𝐵 | 𝑑𝐻 (𝑥, 𝑦) = 𝑘}.

Remark. The graph ({0, 1}𝑛, 𝐻1 ({0, 1}𝑛, {0, 1}𝑛))), whose vertices are 𝑛-vectors
on {0, 1} and edges are pairs of vectors of Hamming distance 1, is commonly
referred to as the 𝑛-dimensional (unit) hypercube.
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Definition 20. Let 𝑛 ∈ N ∖ {0}. For all 𝐴, 𝐵 ⊆ {0, 1}𝑛 disjoint we define

𝑃1 (𝐴, 𝐵) = |𝐻1 (𝐴, 𝐵) |2

|𝐴 × 𝐵|
.

The 𝑛-dimensional Krapchenko measure, 𝐾 : 𝐵𝑛 → R+, is defined for all 𝑓 ∈ 𝐵𝑛

as
𝐾(𝑓) = max{𝑃1 (𝐴, 𝐵) | 𝐴 ⊆ 𝑓−1(0) & 𝐵 ⊆ 𝑓−1(1)}.

Lemma 9. For all 𝑎, 𝑏, 𝑐, 𝑑 ∈ R+,

(𝑎 + 𝑏)2

𝑐 + 𝑑
≤ 𝑎2

𝑐
+ 𝑏2

𝑑
.

Proof. Multiplying both sides by the denominators, the claim is equivalent to

𝑐𝑑(𝑎 + 𝑏)2 ≤ 𝑎2𝑑(𝑐 + 𝑑) + 𝑏2𝑐(𝑐 + 𝑑),

which can be rewritten as

𝑎2𝑐𝑑 + 2𝑎𝑏𝑐𝑑 + 𝑏2𝑐𝑑 ≤ 𝑎2𝑐𝑑 + 𝑎2𝑑2 + 𝑏2𝑐2 + 𝑏2𝑐𝑑,

which is equivalent to

0 ≤ 𝑎2𝑑2 − 2𝑎𝑏𝑐𝑑 + 𝑏2𝑐2 = (𝑎𝑑 − 𝑏𝑐)2 .

This is always true, so the claim holds.

Remark. As the following theorem states, the Krapchenko measure is indeed a
formal complexity measure. We reproduce the proof from Wegener [1987], which
we generalize in Section 2.3.

Theorem 10. The Krapchenko measure 𝐾 is a formal complexity measure.

Proof. Let 𝑖 ≤ 𝑛 and let 𝐴 ⊆ 𝑝−1
𝑖 (0) and 𝐵 ⊆ 𝑝−1

𝑖 (1). For each 𝑥 ∈ 𝐴 there
exists only one 𝑦 ∈ {0, 1}𝑛 such that 𝑦𝑖 ̸= 𝑥𝑖 = 1 and 𝑑𝐻(𝑥, 𝑦) = 1. This implies
that |𝐻1(𝐴, 𝐵)| ≤ min (|𝐴|, |𝐵|), so

𝑃1(𝐴, 𝐵) ≤ min (|𝐴|, |𝐵|)2

|𝐴||𝐵|
≤ 1.

Therefore, 𝐾 (𝑝𝑖) ≤ 1.
Symmetry follows from the fact that |𝐻1(𝐴, 𝐵)| = |𝐻1(𝐵, 𝐴)|.
Let 𝑓, 𝑔 ∈ 𝐵𝑛 and let 𝐴 ⊆ 𝑓−1(0), 𝐵 ⊆ 𝑓−1(1) be optimal for 𝐾(𝑓 ∨ 𝑔), so

that 𝐾(𝑓 ∨ 𝑔) = 𝑃1(𝐴, 𝐵). Then, 𝑓 [𝐴] = {0} = 𝑔[𝐴] and there exist 𝐵1, 𝐵2
disjoint such that 𝐵1 ∪ 𝐵2 = 𝐵 and 𝑓 [𝐵1] = {1} = 𝑔[𝐵2]. We get |𝐻1(𝐴, 𝐵)| =
|𝐻1(𝐴, 𝐵1)| + |𝐻1(𝐴, 𝐵2)| and |𝐴 × 𝐵| = |𝐴| (|𝐵1| + |𝐵2|). By Lemma 9,

𝐾 (𝑓 ∨ 𝑔) = 𝑃1 (𝐴, 𝐵)

= 1
|𝐴|

(|𝐻1(𝐴, 𝐵1)| + |𝐻1(𝐴, 𝐵2)|)2

|𝐵1| + |𝐵2|

≤ |𝐻1(𝐴, 𝐵1)|2
|𝐴 × 𝐵1|

+ |𝐻1(𝐴, 𝐵2)|2
|𝐴 × 𝐵2|

= 𝑃1(𝐴, 𝐵1) + 𝑃1(𝐴, 𝐵2).
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Because 𝐴 ⊆ 𝑓−1(0) ∩ 𝑔−1(0) and 𝐵1 ⊆ 𝑓−1(1), 𝐵2 ⊆ 𝑔−1(1), we get 𝑃1(𝐴, 𝐵1) +
𝑃1(𝐴, 𝐵2) ≤ 𝐾(𝑓) + 𝐾(𝑔).

Corollary. For all 𝑛 ∈ N ∖ {0} and all 𝑓 ∈ 𝐵𝑛

𝐾 (𝑓) ≤ 𝐿 (𝑓) .

Computing the Krapchenko measure We mention some simple observa-
tions that will be useful in the following examples. For any 𝐴 and 𝐵, 𝐻1(𝐴, 𝐵)
can be computed as the sum over 𝑥 ∈ 𝐴 of the number of neighbors of 𝑥 in 𝐵
(𝑦 ∈ 𝐵 is a neighbor of 𝑥 if its distance from 𝑥 is equal to 1),

𝐻1 (𝐴, 𝐵) =
∑︁
𝑥∈𝐴

|{𝑦 ∈ 𝐵 | 𝑑𝐻(𝑥, 𝑦) = 1}| =
∑︁
𝑥∈𝐴

|𝐻1 ({𝑥}, 𝐵) |.

If for all 𝑥 ∈ 𝐴: |𝐻1({𝑥}, 𝐵)| = 𝑐, then 𝐻1(𝐴, 𝐵) = 𝑐|𝐴|.
If |𝐴| = |𝐵|, 𝑃1(𝐴, 𝐵) equals to the square of the average over 𝑥 in 𝐴 of the

number of neighbors of 𝑥 in 𝐵. That is,

𝑃1 (𝐴, 𝐵) =
(︃

1
|𝐴|

(︃∑︁
𝑥∈𝐴

|𝐻1({𝑥}, 𝐵)|
)︃)︃2

.

Parity The Krapchenko measure provides a simple way to prove a quadratic
bound for parity.

Proposition 11. For all 𝑛 ∈ N ∖ {0},

𝐿
(︁⨁︁

𝑛

)︁
≥ 𝑛2.

Proof. Set 𝐴 = ⨁︀−1(0), 𝐵 = ⨁︀−1(1). For all 𝑥 ∈ 𝐴, all 𝑛 neighbors of 𝑥 are in
𝐵 (changing any one bit of 𝑥 changes its parity). Furthermore, |𝐴| = |𝐵| = 2𝑛−1.
So,

𝑃1 (𝐴, 𝐵) =
(︃

1
|𝐴|

(︃∑︁
𝑥∈𝐴

𝑛

)︃)︃2

= 𝑛2.

Remark. In most cases, we do not necessarily need to find the exact value of 𝐾(𝑓).
Since 𝑃1(𝐴, 𝐵) is a lower bound on 𝐾(𝑓) for all (suitable) 𝐴, 𝐵, it is sufficient to
find 𝐴 and 𝐵 giving a large 𝑃1(𝐴, 𝐵). Here, however, we have found the maximal
value of 𝑃1 (follows from theorem 14).

Propositions 2 and 11 together imply that for 𝑛 = 2𝑏, formula size of parity
is exactly 𝑛2.
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Threshold functions Now we apply the same technique to a general threshold
function, 𝑇 𝑛

𝑘 .

Definition 21. For all 𝑛 ∈ N ∖ {0} and all 𝑘 ≤ 𝑛, the 𝑛-dimensional 𝑘-slice,
𝑆𝑛

𝑘 ⊆ {0, 1}𝑛, is the set of elements of {0, 1}𝑛 with exactly 𝑘 coordinates equal to
1,

𝑆𝑛
𝑘 = {𝑥 ∈ {0, 1}𝑛 | |𝑥|1 = 𝑘}.

Remark. Symmetric Boolean functions can be defined as being constant on all
slices. For all 𝑛 and 𝑘 the size of the 𝑘-slice is equal to the number of ways to
select 𝑘 out of 𝑛 coordinates, that is

|𝑆𝑛
𝑘 | =

(︃
𝑛

𝑘

)︃
.

For any 𝑥 ∈ 𝑆𝑛
𝑘 , the number of neighbors of 𝑥 in 𝑆𝑛

𝑘+1 is equal to 𝑛−𝑘 (the number
of 0-coordinates that can be increased to 1) and the number of its neighbors in
𝑆𝑛

𝑘−1 is equal to 𝑘 (the number of 1-coordinates that can be decreased to 0).

Proposition 12. For all 𝑛 ∈ N ∖ {0} and all 𝑘 ≤ 𝑛,

𝐿 (𝑇 𝑛
𝑘 ) ≥ 𝑘(𝑛 − 𝑘 + 1).

As a special case for 𝑘 = ⌈𝑛
2 ⌉ (the majority function),

𝐿(𝑀𝐴𝐽𝑛) ≥

⎧⎨⎩
𝑛2

4 + 𝑛
2 if 𝑛 is even,

𝑛2

4 + 𝑛
2 + 1

4 if 𝑛 is odd.

Proof. Let 𝑛 ∈ N ∖ {0} and 𝑘 ≤ 𝑛, 𝑘 > 0. Set 𝐴 = 𝑆𝑛
𝑘−1 and 𝐵 = 𝑆𝑛

𝑘 . Then,
𝑇𝑘[𝐴] = {0} and 𝑇𝑘[𝐵] = {1}. For any 𝑥 ∈ 𝐴, the number of neighbors of 𝑥 in 𝐵

is equal to 𝑛 − (𝑘 − 1), so |𝐻1(𝐴, 𝐵)| =
(︁

𝑛
𝑘−1

)︁
(𝑛 − 𝑘 + 1). Therefore,

𝑃1 (𝐴, 𝐵) =

(︁(︁
𝑛

𝑘−1

)︁
(𝑛 − 𝑘 + 1)

)︁2(︁
𝑛

𝑘−1

)︁(︁
𝑛
𝑘

)︁ = ((𝑛 − 𝑘 + 1))2 𝑘

𝑛 − 𝑘 + 1 = 𝑘(𝑛 − 𝑘 + 1).

Modulo 3 We show one more example, bounding the 𝑀𝑂𝐷3 function.

Proposition 13. Let 𝑛 = 3𝑚, then

𝐿(𝑀𝑂𝐷3) ≥ 𝑛2

2 .

Proof. Set 𝐴 = {𝑥 ∈ {0, 1}𝑛 | |𝑥|1 mod 3 = 0 ∨ |𝑥|1 mod 3 = 2} and 𝐵 =
{𝑦 ∈ {0, 1}𝑛 | |𝑦|1 mod 3 = 1}. Any 𝑦 ∈ 𝐵 has all of its 𝑛 neighbors in A.
Furthermore,

|𝐵| =
𝑛/3∑︁
𝑘=0

(︃
𝑛

3𝑘 + 1

)︃
= 1

3 (2𝑛 − 𝑜(𝑛)) .
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Then, |𝐴| ≈ 2
32𝑛, so we get

𝑃1 (𝐴, 𝐵) =

(︁
𝑛1

32𝑛
)︁2

1
32𝑛 2

32𝑛
= 𝑛2

2 .

Limitations of 𝐾 We have seen that the Krapchenko measure provides a
simple way of obtaining lower bounds on formula size. However, the bounds
it provides cannot be more than quadratic.

Theorem 14. Let 𝑛 ∈ N ∖ {0} and 𝑓 ∈ 𝐵𝑛. Then,

𝐾(𝑓) ≤ 𝑛2.

Proof. Since each element of {0, 1}𝑛 has 𝑛 Hamming neighbors and since for all
𝐴, 𝐵 disjoint: |𝐻1(𝐴, 𝐵)| = ∑︀

𝑥∈𝐴 |𝐻1({𝑥}, 𝐵)| = ∑︀
𝑦∈𝐵 |𝐻1(𝐴, {𝑦})|, it follows

that 𝐻1(𝐴, 𝐵) ≤ min(𝑛|𝐴|, 𝑛|𝐵|). This implies a quadratic upper bound on the
Krapchenko measure of any function, because

𝑃1(𝐴, 𝐵) ≤ (min (𝑛|𝐴|, 𝑛|𝐵|))2

|𝐴||𝐵|
≤ 𝑛2.

The Krapchenko measure on partially defined functions We can view 𝑃1
as a measure on partially defined Boolean functions in the following sense: If we
extend the definition of a complexity measure to all partially defined functions,
the function 𝜅 : 𝐵*

𝑛 → R+, 𝜅( ̃︀𝑓) = 𝑃1( ̃︀𝑓−1(0), ̃︀𝑓−1(1)) would be a complexity
measure. Furthermore, there is a correspondence between 𝐾 and 𝜅:

∀𝑓 ∈ 𝐵𝑛 : 𝐾(𝑓) = max{𝜅( ̃︀𝑓) | ̃︀𝑓 ∈ 𝐵*
𝑛 & ̃︀𝑓 ⊆ 𝑓},

∀ ̃︀𝑓 ∈ 𝐵*
𝑛 : 𝜅( ̃︀𝑓) ≤ min{𝐾(𝑓) | 𝑓 ∈ 𝐵𝑛 & ̃︀𝑓 ⊆ 𝑓}.

The first line follows from the definition of K, the second from the fact that
for any 𝑓 ⊇ ̃︀𝑓 , we can set 𝐴 = ̃︀𝑓−1(0) and 𝐵 = ̃︀𝑓−1(1)). On the second line,
equality may hold under additional conditions, but there exist partial functions
with 𝜅( ̃︀𝑓) = 0 (while 𝐾(𝑓) is always positive).

In Chapter 3 we generalize the idea of measures defined for all partially defined
functions and their duality with complexity measures.

2.2 Hamming distance measures
In this section we introduce a set of complexity measures based on the Hamming
metric.
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Definition 22. Let 𝑛 ∈ N ∖ {0} and 𝑘 ≤ 𝑛. For all 𝐴, 𝐵 ⊆ {0, 1}𝑛 disjoint we
define

𝑃𝑘 (𝐴, 𝐵) = |𝐻𝑘 (𝐴, 𝐵) |2

|𝐴 × 𝐵|
.

We define ̃︁𝐾𝑘 : 𝐵𝑛 → R+ for all 𝑓 ∈ 𝐵𝑛 as

̃︁𝐾𝑘 (𝑓) = max{𝑃𝑘 (𝐴, 𝐵) | 𝐴 ⊆ 𝑓−1(0) & 𝐵 ⊆ 𝑓−1(1)}.

Remark. Even though ̃︁𝐾𝑘 satisfies the symmetry and subadditivity conditions
(which will follow from a more general theorem in section 2.3), it needs to be
normalized in order to become a measure.

Theorem 15. For all 𝑛 ∈ N ∖ {0}, all 𝑘 ≤ 𝑛 and all 𝑖 ≤ 𝑛,

̃︁𝐾𝑘 (𝑝𝑖) =
(︃

𝑛 − 1
𝑘 − 1

)︃2

.

Proof. Set 𝐴 = 𝑝−1
𝑖 (0), 𝐵 = 𝑝−1

𝑖 (1). For any 𝑥 ∈ 𝐴, its 𝑘-neighbors (neighbors in
the 𝐻𝑘({0, 1}𝑛, {0, 1}𝑛) relation) in 𝐵 are all 𝑦 that differ in the 𝑖-th coordinate
and in 𝑘 − 1 of the 𝑛 − 1 remaining coordinates, so |𝐻𝑘({𝑥}, 𝐵)| =

(︁
𝑛−1
𝑘−1

)︁
.

𝑃𝑘(𝐴, 𝐵) =

(︁
|𝐴|
(︁

𝑛−1
𝑘−1

)︁)︁2

|𝐴||𝐵|
=
(︃

𝑛 − 1
𝑘 − 1

)︃2

.

Hence, ̃︁𝐾𝑘 (𝑝𝑖) ≥
(︁

𝑛−1
𝑘−1

)︁2
.

On the other hand, for all 𝐴 ⊆ 𝑝−1
𝑖 (0) and 𝐵 ⊆ 𝑝−1

𝑖 (1), |𝐻𝑘(𝐴, 𝐵)| ≤
min

(︁(︁
𝑛−1
𝑘−1

)︁
|𝐴|,

(︁
𝑛−1
𝑘−1

)︁
|𝐵|

)︁
, so

𝑃𝑘(𝐴, 𝐵) ≤
min

(︁
|𝐴|
(︁

𝑛−1
𝑘−1

)︁
, |𝐵|

(︁
𝑛−1
𝑘−1

)︁)︁2

|𝐴||𝐵|
≤
(︃

𝑛 − 1
𝑘 − 1

)︃2

.

Therefore, ̃︁𝐾𝑘 (𝑝𝑖) ≤
(︁

𝑛−1
𝑘−1

)︁2
.

Definition 23. The 𝑛-dimensional Hamming 𝑘-measure, 𝐾𝑘 : 𝐵𝑛 → R+, is
defined for all 𝑓 ∈ 𝐵𝑛 as

𝐾𝑘 (𝑓) =
̃︁𝐾𝑘 (𝑓)(︁

𝑛−1
𝑘−1

)︁2 .

Modulo 4 We will use the Hamming 2-measure to find a bound for the 𝑀𝑂𝐷4
function.

Example 1. For simplicity assume 𝑛 = 4𝑚. Set 𝐴 = {𝑥 ∈ {0, 1}𝑛 | |𝑥|1 mod 4 =
3} and 𝐵 = {𝑦 ∈ {0, 1}𝑛 | |𝑦|1 mod 4 = 1}. Let 𝑥 be an element of the slice 𝑆𝑛

𝑘 ,
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where 𝑘 mod 4 = 3. Then, 𝑥 has
(︁

𝑘
2

)︁
2-neighbors in 𝑆𝑛

𝑘−2 and
(︁

𝑛−𝑘
2

)︁
2-neighbors

in 𝑆𝑛
𝑘+2. So, |𝐻2(𝑆𝑛

𝑘 , 𝐵)| =
(︁

𝑛
𝑘

)︁ (︁(︁
𝑘
2

)︁
+
(︁

𝑛−𝑘
2

)︁)︁
=
(︁

𝑛
𝑘

)︁
(1

2𝑛(𝑛 − 1) − 𝑘𝑛 + 𝑘2).

𝐻2 (𝐴, 𝐵) =
⎛⎝𝑛/4∑︁

𝑘=0

(︃
𝑛

4𝑘 + 3

)︃(︃(︃
4𝑘 + 3

2

)︃
+
(︃

𝑛 − 4𝑘 − 3
2

)︃)︃⎞⎠
= 1

4(2𝑛−1𝑛(𝑛 − 1) − 2𝑛−1𝑛2 + 2𝑛−2𝑛(𝑛 + 1) + 𝑜(𝑛))

≈ 2𝑛−3𝑛2.

We have |𝐴| = |𝐵| = 2𝑛−2, so

𝑃2(𝐴, 𝐵)
(𝑛 − 1)2 = (2𝑛−3𝑛2)2

(𝑛 − 1)2(2𝑛−2)2 = 1
4(𝑛2 + 2𝑛 + 𝑜(1)).

Example 2. For comparison we find a bound for the same function using 𝐾. Set
𝐴 = {𝑥 ∈ {0, 1}𝑛 | |𝑥|1 mod 4 = 0∨|𝑥|1 mod 4 = 2} and 𝐵 = {𝑦 ∈ {0, 1}𝑛 | |𝑦|1
mod 4 = 1}. Any element of 𝐵 has all of its neighbors in 𝐴 and |𝐴| = 2𝑛−1,
|𝐵| = 2𝑛−2. Therefore,

𝑃1(𝐴, 𝐵) = (2𝑛−2𝑛)2

2𝑛−22𝑛−1 = 𝑛2

2 .

Remark. Not only was the second computation much simpler, it also yielded a
slightly better bound.

Proposition 16. For all 𝑛 ∈ N ∖ {0},

𝐿 (𝑀𝑂𝐷𝑛
4 ) ≥ 𝑛2

2 .

The following theorem describes limitations of Hamming measures.

Theorem 17. Let 𝑛 ∈ N ∖ {0}, 𝑘 ≤ 𝑛 and 𝑓 ∈ 𝐵𝑛. Then,

𝐾𝑘(𝑓) ≤ 𝑛2

𝑘2 .

Proof. Every 𝑥 ∈ {0, 1}𝑛 has
(︁

𝑛
𝑘

)︁
𝑘-neighbors, which means that |𝐻𝑘(𝐴, 𝐵)| ≤

min
(︁(︁

𝑛
𝑘

)︁
|𝐴|,

(︁
𝑛
𝑘

)︁
|𝐵|

)︁
. Therefore,

𝑃𝑘(𝐴, 𝐵)(︁
𝑛−1
𝑘−1

)︁2 ≤

⎛⎝
(︁

𝑛
𝑘

)︁
(︁

𝑛−1
𝑘−1

)︁
⎞⎠2

=
(︂

𝑛

𝑘

)︂2
.

Remark. This implies that 𝐾𝑘 cannot give super-linear bounds for large 𝑘.
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2.3 Graph measures
We can view 𝐾𝑘(𝑓) as counting edges of a graph of elements of distance 𝑘 from
each other, 𝐺𝑘 = ({0, 1}𝑛, 𝐻𝑘 ({0, 1}𝑛, {0, 1}𝑛)), intersected with the complete
bipartite graph ({0, 1}𝑛, 𝑓−1(0) × 𝑓−1(1)). In this section we generalize this idea
to arbitrary graphs.

Definition 24. Let 𝑛 ∈ N ∖ {0} and let 𝐺 = ({0, 1}𝑛, 𝐸) be an undirected graph
on {0, 1}𝑛. For all 𝐴, 𝐵 ⊆ {0, 1}𝑛 disjoint we define

𝑃𝐺 (𝐴, 𝐵) = |𝐸 ∩ (𝐴 × 𝐵)|2
|𝐴 × 𝐵|

.

We define ̃︁𝐾𝐺 : 𝐵𝑛 → R+ for all 𝑓 ∈ 𝐵𝑛 as

̃︁𝐾𝐺 (𝑓) = max{𝑃𝐺 (𝐴, 𝐵) | 𝐴 ⊆ 𝑓−1(0) & 𝐵 ⊆ 𝑓−1(1)}.

Proposition 18. For all 𝑛 ∈ N ∖ {0} and 𝐺 = ({0, 1}𝑛, 𝐸), ̃︁𝐾𝐺 is symmetric
and subadditive.

Proof. The proof is an adaptation of the proof of Theorem 10. Symmetry follows
from the fact that 𝐺 is undirected, so |𝐸 ∩ (𝐴 × 𝐵)| = |𝐸 ∩ (𝐵 × 𝐴)|.

Let 𝑓, 𝑔 ∈ 𝐵𝑛 and let 𝐴 ⊆ 𝑓−1(0), 𝐵 ⊆ 𝑓−1(1) be optimal for ̃︁𝐾𝐺 (𝑓 ∨ 𝑔),
so that ̃︁𝐾𝐺 (𝑓 ∨ 𝑔) = 𝑃𝐺(𝐴, 𝐵). Then, 𝑓 [𝐴] = {0} = 𝑔[𝐴] and there exist
𝐵1, 𝐵2 disjoint such that 𝐵1 ∪ 𝐵2 = 𝐵 and 𝑓 [𝐵1] = {1} = 𝑔[𝐵2]. We get
|𝐸 ∩ (𝐴 × 𝐵)| = |𝐸 ∩ (𝐴 × 𝐵1)| + |𝐸 ∩ (𝐴 × 𝐵2)| and |𝐴 × 𝐵| = |𝐴| (|𝐵1| + |𝐵2|).
By Lemma 9,

̃︁𝐾𝐺 (𝑓 ∨ 𝑔) = 𝑃𝐺 (𝐴, 𝐵)

= 1
|𝐴|

(|𝐸 ∩ (𝐴 × 𝐵1)| + |𝐸 ∩ (𝐴 × 𝐵2)|)2

|𝐵1| + |𝐵2|

≤ |𝐸 ∩ (𝐴 × 𝐵1)|2
|𝐴 × 𝐵1|

+ |𝐸 ∩ (𝐴 × 𝐵2)|2
|𝐴 × 𝐵2|

= 𝑃𝐺(𝐴, 𝐵1) + 𝑃𝐺(𝐴, 𝐵2).

Because 𝐴 ⊆ 𝑓−1(0) ∩ 𝑔−1(0) and 𝐵1 ⊆ 𝑓−1(1), 𝐵2 ⊆ 𝑔−1(1), we get 𝑃𝐺(𝐴, 𝐵1) +
𝑃𝐺(𝐴, 𝐵2) ≤ ̃︁𝐾𝐺 (𝑓) + ̃︁𝐾𝐺 (𝑔).

Definition 25. Let 𝑝𝐺 = max{̃︁𝐾𝐺(𝑝𝑖) | 𝑖 ≤ 𝑛}. The complexity measure induced
by 𝐺, 𝐾𝐺, is defined for all 𝑓 ∈ 𝐵𝑛 as

𝐾𝐺 (𝑓) =
̃︁𝐾𝐺 (𝑓)

𝑝𝐺

.

Remark. The following is a corrolary of Proposition 18 along with Proposition 8.

Theorem 19. For all 𝑛 ∈ N ∖ {0} and all 𝐺 = ({0, 1}𝑛, 𝐸), 𝐾𝐺 is a formal
complexity measure.
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Modulo 4 We now revisit the 𝑀𝑂𝐷4 function, using a graph measure to find
another bound.
Example 3. Let 𝑛 = 2𝑚 and let 𝑒𝑖 be the 𝑖-th unit vector. Define 𝐸 = {(𝑥, 𝑥 +
𝑒2𝑖−1 + 𝑒2𝑖) | 𝑖 ≤ 𝑛

2 }, 𝐺 = ({0, 1}𝑛, 𝐸). 𝐺 is a subgraph of 𝐻2 in which all
neighbors differ in one coordinate pair out of 𝑛

2 fixed pairs. Since each 𝑥 has only
one neighbor that differs in the 𝑖-th coordinate for all 𝑖, 𝑝𝐺 = 1.

Let 𝐴 = {𝑥 ∈ {0, 1}𝑛 | |𝑥|1 mod 4 = 3} and 𝐵 = {𝑦 ∈ {0, 1}𝑛 | |𝑦|1 mod 4 =
1}. For all 𝑥 ∈ 𝐴 and 𝑖 ≤ 𝑛

2 , 𝑥 + 𝑒2𝑖−1 + 𝑒2𝑖 is an element of 𝐵 iff 𝑥2𝑖−1 = 𝑥2𝑖. For
𝑖 fixed, the number of all such 𝑥 in the slice 𝑆𝑛

𝑘 is
(︁

𝑛−2
𝑘−2

)︁
+
(︁

𝑛−2
𝑘

)︁
. So,

|𝐸 ∩ (𝐴 × 𝐵)| =
𝑛/4∑︁
𝑘=0

𝑛

2

(︃(︃
𝑛 − 2

4𝑘 + 3 − 2

)︃
+
(︃

𝑛 − 2
4𝑘 + 3

)︃)︃
= 𝑛

2 (2𝑛−3 − 𝑜(𝑛)).

Because |𝐴| = |𝐵| = 2𝑛−3, we get

𝑃𝐺(𝐴, 𝐵) = 𝑛2

4 − 𝑜(1).

Remark. Again, we obtained a bound of 𝑛2

4 , which is weaker than the 𝑛2

2 given by
𝐾. The graph from the last example cannot give larger bounds than 𝑛2

4 , because
each of its vertices has 𝑛

2 neighbors (see the proof of Theorem 17).

Element distinctness Since it is not symmetric, the element distinctness func-
tion (Definition 13) cannot be effectively bounded by way of counting over slices
as in most of the previous examples.
Example 4. Let 𝑛 = 2𝑘2𝑘. For all 𝑥 ∈ {0, 1}𝑛 we denote by 𝑥 = (𝑥1, . . . , 𝑥2𝑘)
the partition of 𝑥 into 2𝑘 vectors of length 2𝑘. For 𝑖 ̸= 𝑗 ≤ 2𝑘 define ̃︀𝑥𝑖,𝑗 as the
vector created by substituting 𝑥𝑗 for 𝑥𝑖 in 𝑥. Finally, we define 𝐸 = {(𝑥, ̃︀𝑥𝑖,𝑗) | 𝑖 ̸=
𝑗 ≤ 2𝑘 & 𝑥𝑖 ̸= 𝑥𝑗}, 𝐺 = ({0, 1}𝑛, 𝐸).

Let us consider the 𝑟-th projection and let 𝑖 = 𝑟 ÷ 2𝑘, 𝑙 = 𝑟 mod 2𝑘. For any
𝑥 such that (𝑥𝑖)𝑙 = 0, if 𝑥𝑖 is equal to some 𝑥𝑗, then all 𝑦 such that for all 𝑠 ̸= 𝑖:
𝑦𝑠 = 𝑥𝑠 and (𝑦𝑖)𝑙 = 1 are neighbors of 𝑥. It follows that 𝑝𝐺 ≤ (22𝑘−1)2.

Define 𝐵 = {𝑦 | ∀𝑖 ̸= 𝑗 : 𝑦𝑖 ̸= 𝑦𝑗}, all 2𝑘-tuples of distinct 2𝑘-vectors, and 𝐴 =
{̃︀𝑦𝑖,𝑗 | 𝑦 ∈ 𝐵}, which equals {𝑥 | ∃𝑖 ̸= 𝑗 (𝑥𝑖 = 𝑥𝑗 & ∀{𝑟, 𝑠} ≠ {𝑖, 𝑗} : 𝑥𝑟 ̸= 𝑥𝑠)}, the
set of all 2𝑘-tuples of 2𝑘-vectors such that exactly one pair of vectors is identical.
Any 𝑦 ∈ 𝐵 has 2𝑘(2𝑘 − 1) neighbors in 𝐴 (the number of ways to choose a 𝑗 and
an 𝑖 for substituting 𝑦𝑗 for 𝑦𝑖). The size of 𝐵 equals to the number of all 2𝑘-tuples
of distinct 2𝑘-vectors, |𝐵| = 22𝑘(22𝑘 − 1) . . . (22𝑘 − 2𝑘 + 1) = 22𝑘!

(22𝑘−2𝑘)! . Similarly,
|𝐴| =

(︁
2𝑘

2

)︁
22𝑘!

(22𝑘−2𝑘+1)! . Therefore,

𝑃𝐺(𝐴, 𝐵) =

(︁
2𝑘(2𝑘 − 1) 22𝑘!

(22𝑘−2𝑘)!

)︁2

22𝑘!
(22𝑘−2𝑘)!

(︁
2𝑘

2

)︁
22𝑘!

(22𝑘−2𝑘+1)!

= 2(22𝑘 − 2𝑘 + 1)2𝑘(2𝑘 − 1).

Normalizing the result, we get
𝑃𝐺(𝐴, 𝐵)

𝑝𝐺

≥ 2(22𝑘 − 2𝑘 + 1)2𝑘(2𝑘 − 1)
(22𝑘−1)2 ≈ 8 − 𝑜(1).

So, despite the promising 𝑃𝐺(𝐴, 𝐵) we have not been able to find a bound on the
size of 𝐸𝐷𝑛 due to the huge value of 𝑝𝐺.
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Example 5. We now try to obtain a bound using the Krapchenko measure. Set
𝐴 = {𝑥 | ∃𝑖 ̸= 𝑗 (𝑥𝑖 = 𝑥𝑗 & ∀{𝑟, 𝑠} ≠ {𝑖, 𝑗} : 𝑥𝑟 ̸= 𝑥𝑠)} and 𝐵 = {𝑦 | ∀𝑖 ̸= 𝑗 : 𝑦𝑖 ̸=
𝑦𝑗} (same as in the previous example).

Denote 𝑈 = {(𝑥, 𝑙) ∈ 𝐴 × {1, . . . , 𝑛} | 𝑥 + 𝑒𝑙 ∈ 𝐴 & ∃𝑗 ̸= 𝑙 ÷ 2𝑘 : 𝑥𝑗 = 𝑥𝑙÷2𝑘},
the set of all pairs of a vector and a coordinate such that the coordinate belongs
to one of the two identical subvectors and changing the coordinate will create a
new pair of identical subvectors. Let 𝑈𝑙 = {𝑥 | (𝑥, 𝑙) ∈ 𝑈}.

For any 2𝑘-vector 𝑧, the number of all vectors with distance from 𝑧 at least
two is 22𝑘 − 2𝑘 − 1. The number of all (2𝑘 − 2)-tuples of distinct vectors with
distance from 𝑧 at least two is (22𝑘−2𝑘−1)!

(2𝑘−2)! . Finally, the number of all (2𝑘 − 2)-
tuples of distinct vectors such that at least one has distance one from 𝑧 and none
is identical to 𝑧 is the number of all (2𝑘 − 2)-tuples of distinct vectors non-equal
to 𝑧 minus the number of all (2𝑘 −2)-tuples of distinct vectors with distance from
𝑧 at least two, (22𝑘−1)!

(2𝑘−2)! − (22𝑘−2𝑘−1)!
(2𝑘−2)! . It follows that

|𝑈𝑙| = (2𝑘 − 1)22𝑘

(︃
(22𝑘 − 1)!
(2𝑘 − 2)! − (22𝑘 − 2𝑘 − 1)!

(2𝑘 − 2)!

)︃

and |𝑈 | = 2𝑘2𝑘|𝑈𝑙|. Then,

|𝐻1(𝐴, 𝐵)| = 4𝑘|𝐴| − |𝑈 |

= 4𝑘

(︃
2𝑘

2

)︃
22𝑘!

(22𝑘 − 2𝑘 + 1)! − 4𝑘

(︃
2𝑘

2

)︃
22𝑘 (22𝑘 − 1)! − (22𝑘 − 2𝑘 − 1)!

(2𝑘 − 2)!

≈ 4𝑘

(︃
2𝑘

2

)︃
22𝑘!

(22𝑘 − 2𝑘 + 1)!

and we get

𝑃1(𝐴, 𝐵) ≥

(︁
4𝑘
(︁

2𝑘

2

)︁
22𝑘!

(22𝑘−2𝑘+1)!

)︁2

(︁
2𝑘

2

)︁ (22𝑘)!(22𝑘)!

(22𝑘−2𝑘)!(22𝑘−2𝑘+1)!

= 8𝑘22𝑘(2𝑘 − 1)
22𝑘 − 2𝑘 + 1 = 8𝑘2(1 − 𝑜(1)) ≈ 2 (log 𝑛)2

We can see that using formal complexity measures to construct bounds on non-
symmetric functions can be complicated and not very effective. We might slightly
improve the bound if we used 𝐵 = {𝑦 | ∀𝑖 ̸= 𝑗 : 𝑦𝑖 ̸= 𝑦𝑗 & ∃𝑖 ̸= 𝑗 : 𝑑𝐻(𝑥𝑖, 𝑥𝑗) = 1}
instead.

The role of 𝐾 In all the examples, the Krapchenko measure proved more
effective than any other graph measure. Even though we believe the Krapchenko
measure might be the greatest graph measure, we have not been able to prove it,
nor find a counterexample.

Limitations of graph measures In Chapter 3 we show that all graph meas-
ures give at most quadratic bounds (Theorem 27).

Theorem 20. There exists 𝑎 ∈ R+ such that for all 𝑛 ∈ N ∖ {0}, all graphs
𝐺 = ({0, 1}𝑛, 𝐸) and all 𝑓 ∈ 𝐵𝑛

𝐾𝐺(𝑓) ≤ 𝑎𝑛2.
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3. Combinatorial rectangles
Combinatorial rectangles provide an alternative way of thinking about Boolean
functions. This point of view was first applied by Rychkov [1985]. In this chapter
we introduce combinatiorial rectangles and their measures and show their cor-
respondence to Boolean functions and formal complexity measures. Thereafter,
we review the results of Karchmer et al. [1992] and Hrubeš et al. [2010], giv-
ing an upper bound of 9

8(𝑛2 + 𝑛) for a class of rectangle measures, including all
graph-induced measures.

Definition 26. Let 𝑆0, 𝑆1 ⊆ {0, 1}𝑛, 𝑆 = 𝑆0 × 𝑆1 is an 𝑛-dimensional combin-
atiorial rectangle, if 𝑆0 ∩ 𝑆1 = ∅. A subrectangle of 𝑆 is a subset of 𝑆 that is a
rectangle. We denote the set of all 𝑛-dimensional rectangles by 𝑅𝑛 and the set of
all subrectangles of some 𝑆 ∈ 𝑅𝑛 by 𝑅𝑛(𝑆).

Example 6. Let 𝑓 ∈ 𝐵𝑛, we can define the rectangle of 𝑓 as 𝑆𝑓 = 𝑓−1(0)×𝑓−1(1).
Since 𝑓−1(0) ∩ 𝑓−1(1) = ∅, 𝑆𝑓 is a combinatorial rectangle.

Definition 27. Let 𝑓 ∈ 𝐵𝑛 and 𝑆 = 𝑆0 × 𝑆1 ∈ 𝑅𝑛. We say that 𝑓 separates 𝑆 if
𝑓 [𝑆0] ⊆ {0} and 𝑓 [𝑆1] ⊆ {1}.

Remark. Equivalently, 𝑓 separates 𝑆 if 𝑆 ⊆ 𝑆𝑓 .

Definition 28. A rectangle 𝑀 ∈ 𝑅𝑛 is monochromatic if it is separated by some
projection or its negation. We denote by 𝑀𝑛 the set of all monochromatic rect-
angles and by 𝑀𝑛(𝑆) the set of all monochromatic subrectangles of 𝑆, for any
𝑆 ∈ 𝑅𝑛.

Remark. 𝑀 ∈ 𝑅𝑛 is monochromatic iff there exists some 𝑖 ≤ 𝑛 and 𝑏 ∈ {0, 1}
such that for all 𝑥 ∈ 𝑀0: 𝑥𝑖 = 𝑏 and for all 𝑦 ∈ 𝑀1: 𝑦𝑖 = 1 − 𝑏.
Remark. For a partially defined Boolean function ̃︀𝑓 ∈ 𝐵𝑛 we can define 𝑆̃︀𝑓 =̃︀𝑓−1(0) × ̃︀𝑓−1(1). Then, for each 𝑆 ∈ 𝑅𝑛 there exists ̃︀𝑓 ∈ 𝐵𝑛 such that 𝑆 = 𝑆̃︀𝑓 ,
namely

̃︀𝑓(𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1 if 𝑥 ∈ 𝑆1,
0 if 𝑥 ∈ 𝑆0,
? otherwise.

This is a one-to-one correspondence, except for constant partial functions, which
all correspond to the empty rectangle ∅.

3.1 Rectangle measures
In this section we introduce an analogue of formal complexity measures for com-
binatorial rectangles and review some basic examples of rectangle measures.

Definition 29. A function 𝜇 : 𝑅𝑛 → R+ is a rectangle measure if

• ∀𝑀 ∈ 𝑀𝑛: 𝜇(𝑀) ≤ 1, (Normalization)

• ∀𝑆 = 𝑆0 × 𝑆1 ∈ 𝑅𝑛: 𝜇(𝑆0 × 𝑆1) = 𝜇(𝑆1 × 𝑆0), (Symmetry)
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• ∀𝑆 ∈ 𝑅𝑛 ∀𝑆1, 𝑆2 ∈ 𝑅𝑛 disjoint such that 𝑆1∪𝑆2 = 𝑆: 𝜇(𝑆) ≤ 𝜇(𝑆1)+𝜇(𝑆2).
(Subadditivity)

Remark. Here, subadditivity is a stronger condition than the one we considered for
complexity measures, as it encompasses both ∨-subadditivity and ∧-subadditivity:
any 𝑆 = 𝑆0 × 𝑆1 can be divided into two disjoint subrectangles in two ways, as
(𝑆0 × 𝑆1

1) ∪ (𝑆0 × 𝑆2
1), 𝑆1

1 ∩ 𝑆2
1 = ∅, or (𝑆1

0 × 𝑆1) ∪ (𝑆2
0 × 𝑆1), 𝑆1

0 ∩ 𝑆2
0 = ∅. The

first corresponds to disjunction, the second to conjunction. Under symmetry,
however, the notions are equivalent.

Symmetry is not a necessary condition for rectangle measures, but we keep it
in order for the definition to correspond to that of complexity measures. Without
symmetry it corresponds to the more general definition of formal complexity
measures mentioned after Proposition 7.

Relating rectangle and complexity measures The following theorem states
that any formal complexity measure induces a rectangle measure and vice versa.

Theorem 21. Let 𝑛 ∈ N ∖ {0}.

(i) For all formal complexity measures 𝑚 ∈ 𝐶𝑛, 𝜇𝑚 defined for all 𝑆 ∈ 𝑅𝑛 as

𝜇𝑚(𝑆) = min{𝑚(𝑓) | 𝑓 ∈ 𝐵𝑛 separates 𝑆}

is a rectangle measure and for all 𝑓 ∈ 𝐵𝑛: 𝜇𝑚(𝑆𝑓 ) = 𝑚(𝑓).

(ii) For all rectangle measures 𝜇, 𝑚𝜇 defined for all 𝑓 ∈ 𝐵𝑛 as

𝑚𝜇(𝑓) = max{𝜇(𝑆) | 𝑓 separates 𝑆 ∈ 𝑅𝑛}

is a formal complexity measure and for all 𝑓 ∈ 𝐵𝑛: 𝜇(𝑆𝑓 ) = 𝑚𝜇(𝑓).

Proof. (i) Normalization: Let 𝑀 ∈ 𝑀𝑛 be monochromatic, separated by a
projection or its negation 𝑞. Since 𝑚 is normalized and symmetric, 𝑚(𝑞) ≤ 1, so

𝜇𝑚(𝑀) ≤ 𝑚(𝑞) ≤ 1.

Symmetry: Follows from the symmetry of 𝑚 and the fact that 𝑓 separates 𝑆0 ×𝑆1
iff ¬𝑓 separates 𝑆1 × 𝑆0.

Subadditivity: Let 𝑆1, 𝑆2 ∈ 𝑅𝑛 form a disjoint partition of 𝑆 ∈ 𝑅𝑛 and
assume 𝑆0 = 𝑆1

0 = 𝑆2
0 (otherwise use 𝑆1). Let 𝑓 and 𝑔 ∈ 𝐵𝑛 be optimal separating

functions for 𝑆1 and 𝑆2, respectively, that is 𝜇𝑚(𝑆1) = 𝑚(𝑓) and 𝜇𝑚(𝑆2) = 𝑚(𝑔).
Then, 𝑓 ∨ 𝑔 separates 𝑆, so

𝜇𝑚(𝑆1) + 𝜇𝑚(𝑆2) = 𝑚(𝑓) + 𝑚(𝑔) ≥ 𝑚(𝑓 ∨ 𝑔) ≥ 𝜇𝑚(𝑆).

𝜇𝑚(𝑆𝑓 ) = 𝑚(𝑓) follows from the fact that 𝑓 is the only function separating
𝑆𝑓 .

(ii) Normalization: For 𝑖 ≤ 𝑛, the optimal rectangle 𝑆 ∈ 𝑅𝑛 separated by 𝑝𝑖

(such that 𝑚𝜇(𝑝𝑖) = 𝜇(𝑆)) is separated by a projection, which makes it mono-
chromatic. Therefore,

𝑚𝜇(𝑝𝑖) ≤ 𝜇(𝑆) ≤ 1.
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Symmetry: Follows from the symmetry of 𝜇 and the fact that 𝑓 separates
𝑆0 × 𝑆1 iff ¬𝑓 separates 𝑆1 × 𝑆0.

Subadditivity: Let 𝑆 = 𝑆0 ×𝑆1 be the optimal rectangle for 𝑓 ∨𝑔. There exist
𝑆1

1 , 𝑆2
1 ⊆ 𝑆1 disjoint such that 𝑆1 = 𝑆1

1 ∪ 𝑆2
1 , 𝑓 [𝑆1

1 ] ⊆ {1} and 𝑔[𝑆2
1 ] ⊆ {1}. That

is, 𝑓 separates 𝑆1 = 𝑆0 × 𝑆1
1 and 𝑔 separates 𝑆2 = 𝑆0 × 𝑆2

1 . Furthermore, 𝑆1 and
𝑆2 form a disjoint partition of 𝑆. So,

𝑚𝜇(𝑓 ∨ 𝑔) = 𝜇(𝑆) ≤ 𝜇(𝑆1) + 𝜇(𝑆2) ≤ 𝑚𝜇(𝑓) + 𝑚𝜇(𝑔).

Again, 𝜇(𝑆𝑓 ) = 𝑚𝜇(𝑓) follows from the fact that 𝑓 is the only function sep-
arating 𝑆𝑓 .

Theorem 22. Let us denote Λ = 𝜇𝐿, the rectangle measure induced by 𝐿. Then,
for all rectangle measures 𝜇 and all 𝑆 ∈ 𝑅𝑛:

Λ(𝑆) ≥ 𝜇(𝑆).

Proof. The proof is an extension of the proof of Theorem 6. We proceed by
induction on Λ(𝑆) ∈ N. If Λ(𝑆) = 1, 𝑆 is separated by a function computed
by a formula of size 1, that is by a projection or its negation, which means 𝑆 is
monochromatic and 𝜇(𝑆) ≤ 1.

Now let Λ(𝑆) = 𝑛 > 1 and let the following hold: for all 𝑅 ∈ 𝑅𝑛, if Λ(𝑅) < 𝑛,
then Λ(𝑅) ≥ 𝜇(𝑅). Let 𝑓 be the optimal function separating 𝑆, that is, Λ(𝑆) =
𝐿(𝑓), and let 𝐹 be the optimal formula for 𝑓 . Without loss of generality, the last
gate in 𝐹 is a ∨-gate connecting subformulas 𝐹1 and 𝐹2. Let 𝐹1 and 𝐹2 compute
functions 𝑓1 and 𝑓2, respectively. Then, for 𝑆 = 𝑆0 × 𝑆1, there exists a disjoint
partition 𝑆1 = 𝑆1

1 ∪ 𝑆2
1 such that 𝑓1[𝑆1

1 ] ⊆ {1} and 𝑓2[𝑆2
1 ] ⊆ {1}, so 𝑓1 separates

𝑆1 = 𝑆0 × 𝑆1
1 and 𝑓2 separates 𝑆2 = 𝑆0 × 𝑆2

1 . Altogether, we get

𝜇(𝑆) ≤ 𝜇(𝑆1) + 𝜇(𝑆2)
≤ Λ(𝑆1) + Λ(𝑆2)
≤ 𝐿(𝑓1) + 𝐿(𝑓2)
≤ 𝐿(𝐹1) + 𝐿(𝐹2)
= 𝐿(𝐹 )
= Λ(𝑆).

Remark. This means Λ plays the same role for rectangle measures as 𝐿 does for
complexity measures. Λ was introduced by Karchmer and Wigderson [1990] as a
measure denoting the minimal number of leaves in a communication protocol for
a Karchmer–Wigderson game on a rectangle 𝑆.

The partition number An important example of a rectangle measure is the
partition number, the minimal number of disjoint monochromatic rectangles cov-
ering a rectangle.
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Definition 30. For 𝑛 ∈ N ∖ {0}, the partition number, 𝐷 : 𝑅𝑛 → N, is defined
for all 𝑆 ∈ 𝑅𝑛 as

𝐷(𝑆) = min{𝑘 | ∃𝑀1, . . . , 𝑀𝑘 ∈ 𝑀𝑛 disjoint: 𝑆 =
𝑘⋃︁

𝑖=1
𝑀 𝑖}.

Remark. The partition number is maximal on a subset of measures that satisfy
a stronger form of subadditivity.

Definition 31. A function 𝜇 : 𝑅𝑛 → R+ is strongly subadditive, if for all 𝑆 ∈ 𝑅𝑛

and all 𝑆1, . . . , 𝑆𝑘 ∈ 𝑅𝑛 disjoint such that 𝑆 = ⋃︀𝑘
𝑖=1 𝑆𝑖 it holds that

𝜇(𝑆) ≤
𝑘∑︁

𝑖=1
𝜇(𝑆𝑖).

Theorem 23 (Rychkov [1985]). For all 𝑛 ∈ N ∖ {0}, 𝐷 is a strongly subadditive
rectangle measure. Additionally, for all strongly subadditive rectangle measures 𝜇
and all 𝑆 ∈ 𝑅𝑛,

𝜇(𝑆) ≤ 𝐷(𝑆).

Remark. 𝐷 is a rectangle measure, so 𝐷(𝑆𝑓 ) ≤ 𝐿(𝑓) holds for all 𝑓 . On the other
hand, Aho et al. [1983] showed that log 𝐿(𝑓) ≤ (log 𝐷(𝑆𝑓 ))2, which implies that
𝐷 can yield super-polynomial bounds. Therefore, strongly additive measures may
suffice for finding large bounds. The gap between 𝐿 and 𝐷 has been intensely
studied. For example, a rectangle measure has been constructed by Ueno [2010]
that can surpass 𝐷 on some rectangles, meaning the gap is probably non-trivial.

The Krapchenko rectangle measure and graph measures We close this
section by reformulating the Krapchenko measure and graph measures for rect-
angles.

Definition 32. For 𝑛 ∈ N ∖ {0}, the 𝑛-dimensional Krapchenko rectangle meas-
ure, 𝜅𝑛, is defined for all non-empty 𝑆 = 𝑆0 × 𝑆1 ∈ 𝑅𝑛 as

𝜅𝑛(𝑆) = |𝐻1(𝑆0, 𝑆1)|2
|𝑆|

Remark. The definition of 𝐾 can be reinterpreted as 𝐾 = 𝑚𝜅, meaning for all
𝑓 ∈ 𝐵𝑛: 𝐾(𝑓) = max{𝜅(𝑆) | 𝑓 separates 𝑆 ∈ 𝑅𝑛}.

Definition 33. For 𝑛 ∈ N ∖ {0} and 𝐺 = ({0, 1}𝑛, 𝐸) an undirected graph on
{0, 1}𝑛, we denote ̃︀𝛿𝐺(𝑆) = |𝐸 ∩ 𝑆|2

|𝑆|
.

The rectangle measure induced by 𝐺, 𝛿𝐺, is defined for all 𝑆 ∈ 𝑅𝑛 as

𝛿𝐺(𝑆) =
̃︀𝛿𝐺(𝑆)

max𝑀∈𝑀𝑛
̃︀𝛿𝐺(𝑀)

.
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3.2 Convexity
It was proved by Karchmer et al. [1992] that a certain rectangle measure, the
fractional partition number, is at most quadratic. Later, Hrubeš et al. [2010]
showed that the fractional partition number is the largest in a set of measures
called convex measures and that this set encompasses many of the most common
measures.

Definition 34. Let us denote by 𝜒𝑆 the characteristic function of any 𝑆 ∈ 𝑅𝑛,
that is, for all 𝑒 ∈ {0, 1}𝑛 × {0, 1}𝑛

𝜒𝑆(𝑒) =
⎧⎨⎩1 if 𝑒 ∈ 𝑆,

0 otherwise.

Let 𝑛 ∈ N∖{0}, 𝑆, 𝑆1, . . . , 𝑆𝑘 ∈ 𝑅𝑛 and 𝑟1, . . . , 𝑟𝑘 ∈ [0, 1]. We say that 𝑆1, . . . , 𝑆𝑘

is a fractional cover of 𝑆 with weights 𝑟1, . . . 𝑟𝑘, denoted 𝑆 = ∑︀𝑘
𝑖=1 𝑟𝑖𝑆

𝑖, if for all
𝑒 ∈ {0, 1}𝑛 × {0, 1}𝑛

𝜒𝑆(𝑒) =
𝑘∑︁

𝑖=1
𝑟𝑖𝜒𝑆𝑖(𝑒).

Remark. Equivalently, 𝑆1, . . . , 𝑆𝑘 is a fractional cover of 𝑆 if 𝑆1, . . . , 𝑆𝑘 are sub-
rectangles of 𝑆 and for all 𝑒 ∈ 𝑆 ∑︁

𝑖|𝑒∈𝑆𝑖

𝑟𝑖 = 1.

Definition 35. A function 𝜇 : 𝑅𝑛 → R+ is convex if for all 𝑆 ∈ 𝑅𝑛, all
𝑆1, . . . , 𝑆𝑘 ∈ 𝑅𝑛 and all 𝑟1, . . . , 𝑟𝑘 ∈ [0, 1] such that 𝑆 = ∑︀𝑘

𝑖=1 𝑟𝑖𝑆
𝑖

𝜇(𝑆) ≤
𝑘∑︁

𝑖=1
𝑟𝑖𝜇(𝑆𝑖).

Definition 36. For 𝑛 ∈ N∖ {0}, the fractional partition number, 𝐷* : 𝑅𝑛 → R+,
is defined for all 𝑆 ∈ 𝑅𝑛 as

𝐷*(𝑆) = min{
𝑘∑︁

𝑖=1
𝑟𝑖 | ∃𝑀1, . . . , 𝑀𝑘 ∈ 𝑀𝑛 : 𝑆 =

𝑘∑︁
𝑖=1

𝑟𝑖𝑀
𝑖}.

Theorem 24 (Karchmer et al. [1992]). For all 𝑛 ∈ N ∖ {0}, 𝐷* is a convex
rectangle measure. Additionally, for all convex rectangle measures 𝜇 and all 𝑆 ∈
𝑅𝑛,

𝜇(𝑆) ≤ 𝐷*(𝑆).

Remark. Convexity implies strong subadditivity, since any disjoint partition 𝑆 =⋃︀𝑘
𝑖=1 𝑆𝑖 is a fractional partition with all weights equal to 1. Therefore, 𝐷*(𝑆) ≤

𝐷(𝑆) for all 𝑆 ∈ 𝑅𝑛.
The following theorem, bounding convex measures, was first proved by Karch-

mer et al. [1992]. We present the version of Hrubeš et al. [2010] with a slightly
better constant.
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Theorem 25 (Hrubeš et al. [2010]). For all 𝑛 ∈ N ∖ {0} and all 𝑆 ∈ 𝑅𝑛,

𝐷*(𝑆) ≤ 9
8(𝑛2 + 𝑛).

Corollary. For all convex rectangle measures 𝜇 and all 𝑆 ∈ 𝑅𝑛,

𝜇(𝑆) ≤ 9
8(𝑛2 + 𝑛).

Example 7. Let us show that 𝜅 is convex. Let 𝑆 ∈ 𝑅𝑛, 𝑆 = ∑︀𝑘
𝑖=1 𝑟𝑖𝑆

𝑖. Then,
|𝑆| = ∑︀𝑘

𝑖=1 𝑟𝑖|𝑆𝑖| and |𝐻1(𝑆0, 𝑆1)| = ∑︀𝑘
𝑖=1 𝑟𝑖|𝐻1(𝑆𝑖

0, 𝑆𝑖
1)| (see the example after

definition 37 for proof). Since for all 𝑎1, . . . , 𝑎𝑘, 𝑏1, . . . , 𝑏𝑘:(︁∑︀𝑘
𝑖=1 𝑎𝑖

)︁2

∑︀𝑘
𝑖=1 𝑏𝑖

≤
𝑘∑︁

𝑖=1

𝑎2
𝑖

𝑏𝑖

(can be proved by induction from Lemma 9), we get

𝜅(𝑆) = |𝐻1(𝑆0, 𝑆1)|2
|𝑆|

=

(︁∑︀𝑘
𝑖=1 𝑟𝑖|𝐻1(𝑆𝑖

0, 𝑆𝑖
1)|
)︁2

∑︀𝑘
𝑖=1 𝑟𝑖|𝑆𝑖|

≤
𝑘∑︁

𝑖=1

(𝑟𝑖|𝐻1(𝑆𝑖
0, 𝑆𝑖

1)|)
2

𝑟𝑖|𝑆𝑖|

=
𝑘∑︁

𝑖=1
𝑟𝑖

|𝐻1(𝑆𝑖
0, 𝑆𝑖

1)|2
|𝑆𝑖|

=
𝑘∑︁

𝑖=1
𝑟𝑖𝜅(𝑆𝑖).

Sufficient conditions for convexity Several conditions were formulated by
Hrubeš et al. [2010] under which a measure is convex and therefore cannot give
stronger than quadratic bounds. We apply one of them to graph measures.

Definition 37. A function 𝜇 : 𝑅𝑛 → R+ is additive, if for all 𝑆 ∈ 𝑅𝑛, all
𝑆1, . . . , 𝑆𝑘 ∈ 𝑅𝑛 and all 𝑟1, . . . , 𝑟𝑘 ∈ [0, 1] such that 𝑆 = ∑︀𝑘

𝑖=1 𝑟𝑖𝑆
𝑖

𝜇(𝑆) =
𝑘∑︁

𝑖=1
𝑟𝑖𝜇(𝑆𝑖).

Example 8. For any graph 𝐺 = ({0, 1}𝑛, 𝐸), the function 𝜈𝐺 : 𝑆 ↦→ |𝐸 ∩ 𝑆| is
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additive. Let 𝑆 = ∑︀𝑘
𝑖=1 𝑟𝑖𝑆

𝑖, then

|𝐸 ∩ 𝑆| =
∑︁

𝑒∈({0,1}𝑛)2

𝜒𝐸∩𝑆(𝑒)

=
∑︁

𝑒∈({0,1}𝑛)2

𝜒𝐸(𝑒)𝜒𝑆(𝑒)

=
∑︁

𝑒∈({0,1}𝑛)2

𝜒𝐸(𝑒)
(︃

𝑘∑︁
𝑖=1

𝑟𝑖𝜒𝑆𝑖(𝑒)
)︃

=
𝑘∑︁

𝑖=1
𝑟𝑖

⎛⎝ ∑︁
𝑒∈({0,1}𝑛)2

𝜒𝐸(𝑒)𝜒𝑆𝑖(𝑒)
⎞⎠

=
𝑘∑︁

𝑖=1
𝑟𝑖|𝐸 ∩ 𝑆𝑖|.

As a corollary, the function 𝜈 : 𝑆 ↦→ |𝑆| is additive.
The following is a special case of a theorem by Hrubeš et al. [2010] and it

gives a criterion for convexity of measures composed of additive functions.

Theorem 26. Let 𝐹 : R+ → R+ be convex and nondecreasing and let 𝜇1, 𝜇2 :
𝑅𝑛 → R+ be additive and symmetric. Then, 𝜇 : 𝑅𝑛 → R+ defined for all 𝑆 ∈ 𝑅𝑛

as
𝜇(𝑆) = 𝜇2(𝑆)𝐹

(︃
𝜇1(𝑆)
𝜇2(𝑆)

)︃
is subadditive, symmetric and convex.

Example 9. Let us finally show that graph measures are convex. For any graph
𝐺 = ({0, 1}𝑛, 𝐸), define 𝜈𝐺(𝑆) = |𝐸 ∩ 𝑆|, 𝜈(𝑆) = |𝑆|. We have seen that 𝜈𝐺 and
𝜈 are additive and they are also clearly symmetric. Set 𝐹 (𝑥) = 𝑥2, 𝐹 is convex
and nondecreasing on R+. Then,

̃︀𝛿𝐺(𝑆) = |𝐸 ∩ 𝑆|2

|𝑆|
= 𝜈(𝑆)𝐹

(︃
𝜈𝐺(𝑆)
𝜈(𝑆)

)︃

is convex, so 𝛿𝐺 is also convex.

Theorem 27. For all 𝑛 ∈ N ∖ {0}, all graphs 𝐺 = ({0, 1}𝑛, 𝐸) and all 𝑆 ∈ 𝑅𝑛

𝛿𝐺(𝑆) ≤ 9
8(𝑛2 + 𝑛).

Remark. Theorem 20 is a corollary of theorem 27.
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4. Super-quadratic bounds
One of the other main streams in lower bounds on formula size, apart from
formal complexity measures, is based on the shrinkage of formulas under random
restrictions. This method has yielded the current largest bounds, which are also
the only super-quadratic bounds. In this chapter we give a brief overview of the
main results and frontiers of this approach.

4.1 Random restrictions
The method of random restrictions was first used by Subbotovskaya [1961] to
prove a bound of 𝑛1.5 for parity the parity function. In this section we introduce
the key points of the method and illustrate it on some examples.

Definition 38. A restriction on 𝑛 variables is an element of 𝑄𝑛 = {0, 1, *}𝑛.
For 𝜌 ∈ 𝑄𝑛 and 𝑥 ∈ {0, 1}𝑛 we define 𝜌(𝑥) by

𝜌(𝑥)𝑖 =
⎧⎨⎩𝑥𝑖 if 𝜌𝑖 = *,

𝜌𝑖 otherwise.

For 𝑓 ∈ 𝐵𝑛 and 𝜌 ∈ 𝑄𝑛 we define the restriction of 𝑓 by 𝜌, 𝑓 |𝜌 : {0, 1}𝑛 →
{0, 1}, for all 𝑥 ∈ {0, 1}𝑛 as

𝑓 |𝜌(𝑥) = 𝑓(𝜌(𝑥)).

We denote by 𝑄𝑛
𝑘 the set of all 𝑛-dimensional restrictions leaving 𝑘 variables

unrestricted, 𝑄𝑛
𝑘 = {𝜌 ∈ 𝑄𝑛 | |𝜌|* = 𝑘}.

Even though there exist many variations, the following is the most commonly
used definition of random restrictions.

Definition 39. For 𝑝 ∈ (0, 1), an 𝑛-dimensional random 𝑝-restriction is defined
as a random vector 𝜚 = (𝜚1, . . . , 𝜚𝑛)𝑇 ∈ 𝑄𝑛 such that 𝜚1, . . . , 𝜚𝑛 are independent
identically distributed random variables satisfying

P (𝜚1 = *) = 𝑝,

P (𝜚1 = 0) = P (𝜚1 = 1) = 1 − 𝑝

2 .

The following theorem, commonly referred to as the shrinkage lemma, is cent-
ral to the method of random restrictions. We present the version proved by Sub-
botovskaya [1961] and Håstad [1993]. It states that the formula size of a random
restriction of a function decreases from the original formula on average by a factor
of 𝑝2.

Theorem 28. There exists 𝑐 > 0 such that for all 𝑝 ∈ (0, 1), all random 𝑝-
restrictions 𝜚 and all 𝑓 ∈ 𝐵𝑛

E [𝐿 (𝑓 |𝜚)] ≤ 𝑐
(︁
𝑝2𝐿(𝑓)

)︁
.
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Remark. Subbotovskaya [1961] proved a version of this lemma with 𝑝1.5 on the
right hand side. Later, Håstad [1993] proved the actual value of the exponent to
be to 2.

For the purpose of our examples we will use a simplified version of random
restrictions with a corresponding shrinkage lemma.
Definition 40. Let 𝑘 ≤ 𝑛. The 𝑛-dimensional 𝑘-variable random restriction is
a random vector 𝜚𝑘 distributed uniformly on 𝑄𝑛

𝑘 , that is, for all 𝜌 ∈ 𝑄𝑛
𝑘

P (𝜚 = 𝜌) = 1
|𝑄𝑛

𝑘 |
= 1(︁

𝑛
𝑘

)︁
2𝑛−𝑘

.

Theorem 29. For all 𝑘 ≤ 𝑛 and all 𝑓 ∈ 𝐵𝑛

E
[︁
𝐿
(︁
𝑓 |𝜚𝑘

)︁]︁
≤ 𝑐

(︃
𝑘

𝑛

)︃2

𝐿(𝑓).

Example 10. Let us show a simple application of the shrinkage lemma to the
parity function by Subbotovskaya [1961]. Consider for any 𝜌 ∈ 𝑄𝑛

1 the restriction⨁︀ |𝜌. It is equal to some projection or its negation and therefore has formula size
1. We get

𝑐
(︂ 1

𝑛

)︂2
𝐿
(︁⨁︁)︁

≥ E
[︁
𝐿
(︁⨁︁

|𝜚1

)︁]︁
=

∑︁
𝜌∈𝑄𝑛

𝑘

1
|𝑄𝑛

𝑘 |
= 1.

Multiplying both sides by 𝑛2,
𝐿
(︁⨁︁)︁

≥ 𝑐𝑛2.

Example 11. We can try to use the shrinkage lemma to improve our bounds on
the majority function. Assume 𝑛 = 2𝑚. For all 𝑘 ≤ 𝑛 and all 𝜌 ∈ 𝑄𝑛

𝑘 , 𝑀𝑎𝑗|𝜌
is equal to some threshold (or constant) function. Namely, let 𝑖 = |𝜌|1, then
𝑀𝑎𝑗|𝜌 = 𝑇 𝑘

𝑚−𝑖 for 𝑖 ≤ min(𝑛 − 𝑘, 𝑚) and 𝑖 ≥ max(0, 𝑚 − 𝑘) (otherwise it is
constant). Since 𝐾(𝑓) ≤ 𝐿(𝑓) for all 𝑓 ,

E
[︁
𝐾
(︁
𝑓 |𝜚𝑘

)︁]︁
≤ E

[︁
𝐿
(︁
𝑓 |𝜚𝑘

)︁]︁
≤ 𝑐

(︃
𝑘

𝑛

)︃2

𝐿(𝑓).

In Chapter 2 we proved that 𝐾(𝑇 𝑛
𝑘 ) ≥ 𝑘(𝑛 − 𝑘 + 1), so for 𝑘 and 𝜌 as above,

𝐾(𝑀𝑎𝑗|𝜌) = 𝐾(𝑇 𝑘
𝑚−𝑖) ≥ (𝑚 − 𝑖)(𝑘 − 𝑚 + 𝑖 + 1). Furthermore,

P(|𝜚𝑘|1 = 𝑖) =

(︁
𝑛
𝑘

)︁(︁
𝑛−𝑘

𝑖

)︁
(︁

𝑛
𝑘

)︁
2𝑛−𝑘

=

(︁
𝑛−𝑘

𝑖

)︁
2𝑛−𝑘

.

Altogether, we get

𝑐

(︃
𝑘

𝑛

)︃2

𝐿(𝑀𝑎𝑗) ≥ E
[︁
𝐾
(︁
𝑀𝑎𝑗|𝜚𝑘

)︁]︁
≥

min(𝑛−𝑘,𝑚)∑︁
𝑖=max(0,𝑚−𝑘)

(︁
𝑛−𝑘

𝑖

)︁
2𝑛−𝑘

(𝑚 − 𝑖)(𝑘 − 𝑚 + 𝑖 + 1).

Denote the right hand term by 𝑏𝑘,

𝐿(𝑀𝑎𝑗) ≥ 𝑐
𝑛2

𝑘2 𝑏𝑘 = 𝑐
𝑛2

𝑘2

min(𝑛−𝑘, 𝑛
2 )∑︁

𝑖=max(0, 𝑛
2 −𝑘)

(︁
𝑛−𝑘

𝑖

)︁
2𝑛−𝑘

(︂
𝑛

2 − 𝑖
)︂(︂

𝑘 − 𝑛

2 + 𝑖 + 1
)︂

.

We computed the bounds 𝑛2

𝑘2 𝑏𝑘 for several values of 𝑘. These are shown in table
4.1. We can see that this method has not yielded better bounds on 𝐿(𝑀𝑎𝑗) than
we already have.
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𝑘
(︁)︁

𝑛2

𝑘2 𝑏𝑘

(︁)︁
𝑛

(︁)︁
𝑛2

4 + 𝑛
2

(︁)︁
𝑛 − 1

(︁)︁
𝑛2

4 − 1
4

(︁)︁
𝑛
2

(︁)︁
𝑛2

16 − 𝑜(𝑛2)
(︁)︁

2
(︁)︁ (︁

𝑛−1
𝑛
2 −1

)︁
22−𝑛

(︁)︁
1

(︁)︁ (︁
𝑛−1
𝑛
2 −1

)︁
21−𝑛

(︁)︁
Table 4.1: Bounds on 𝑀𝑎𝑗 found combining the shrinkage lemma and
Krapchenko bounds.

4.2 Super-quadratic functions
In this section we give a brief overview of functions for which super-quadratic
bounds have been proved.

The Andreev bound The first super-quadratic bound by Andreev [1987] was
proved using random restrictions. The proof uses the idea that the formula size
of the Andreev function is greater or equal to the formula size of the composition
of parity with any function on log 𝑛 bits. That is, for all 𝑓 ∈ 𝐵log 𝑛

𝐿(𝐴2𝑛) ≥ 𝐿(𝑓 ∘
⨁︁

).

We know that there exists 𝑓 ∈ 𝐵log 𝑛 with exponential formula size (in log 𝑛).
Assuming the KRW conjecture, we would get

𝐿(𝑓 ∘
⨁︁

) = 2log 𝑛

(︃
𝑛

log 𝑛

)︃2

= 𝑛3

(log 𝑛)2 .

Instead, Andreev uses the fact that the parity function is non-constant under all
restrictions (of less than 𝑛 variables). Therefore, 𝑓 ∘ (⨁︀ |𝜌) provides 𝑓 with as
many different inputs as 𝑓 ∘⨁︀. This idea can be formalized by a lower bound on
the expected value in the shrinkage lemma.

Variations of the Andreev function Several variations of the Andreev func-
tions have also yielded super-quadratic bounds. A bound of 𝑛3

log 𝑛(log log 𝑛)2 was
proved by Tal [2017] for a function similar to the Andreev function that in-
stead of specifying the whole truth table as a part of the input uses an error-
correcting code to determine the function. This bound is slightly greater than
Tal’s 𝑛3

(log 𝑛)2 log log 𝑛
for the Andreev function (Tal [2014]). Bogdanov [2018] showed

the bound 𝑛3

log 𝑛(log log 𝑛)2 for any element of a special class of random Boolean func-
tions.

Gál et al. [2018] proved an almost-cubic lower bound for a variation of the
Andreev function that uses majority instead of the parity function. They even
showed, that any function that coincides with majority on the middle two slices
(which includes parity) can be used to obtain a similar bound. Instead of simple
random restrictions, they used "staged" random restrictions that iteratively re-
strict variables in a way that keeps the restricted majority function non-constant.
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Towards the KRW conjecture While it is deemed unlikely that shrinkage
could provide larger than cubic bounds (Dinur and Meir [2016]), proving the
KRW conjecture would provide explicit super-polynomial bounds. The conjecture
essentially states that the naive way (Proposition 4) of constructing a formula for
a composite function is the optimal way.

Karchmer et al. [1995] proposed to prove the conjecture for compositions with
the universal relation 𝑈 , a weaker version than for functions. For 𝑈 ∘ 𝑈 it was
proved by Edmonds et al. [2001] and later Gavinsky et al. [2014] proved the
conjecture for 𝑓 ∘ 𝑈 , 𝑓 arbitrary. The most recent major result was achieved
by Dinur and Meir [2016], who proved the conjecture for 𝑓 ∘ ⨁︀, 𝑓 arbitrary.
The results of Gál et al. [2018] can be also viewed as a step towards proving the
conjecture for compositions with majority.
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Conclusion
We have given an overview of two of the main approaches in construction of
lower bounds on (De Morgan) Boolean formula size. The first approach, using
formal complexity measures, has not so far yielded any super-quadratic bounds.
Furthermore, there has not been as much research of this approach in the last
few years, especially since it has been proved that only non-convex measures can
give noteworthy bounds.

The second approach uses mainly random restrictions and composition, and
has been able to produce almost cubic bounds. On the other hand, the research
conducted in this approach is somewhat less systematic than for complexity meas-
ures. It is generally believed that understanding composition of Boolean function
would lead to super-polynomial bounds, mainly through the KRW conjecture.

An open problem of this thesis is whether 𝐾 is the largest graph measure
(or at least the largest Hamming measure). However, since all of the measures
involved are convex, the consequences of the problem are not particularly useful.
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