2,697 research outputs found

    Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data

    Get PDF
    We provide formal definitions and efficient secure techniques for - turning noisy information into keys usable for any cryptographic application, and, in particular, - reliably and securely authenticating biometric data. Our techniques apply not just to biometric information, but to any keying material that, unlike traditional cryptographic keys, is (1) not reproducible precisely and (2) not distributed uniformly. We propose two primitives: a "fuzzy extractor" reliably extracts nearly uniform randomness R from its input; the extraction is error-tolerant in the sense that R will be the same even if the input changes, as long as it remains reasonably close to the original. Thus, R can be used as a key in a cryptographic application. A "secure sketch" produces public information about its input w that does not reveal w, and yet allows exact recovery of w given another value that is close to w. Thus, it can be used to reliably reproduce error-prone biometric inputs without incurring the security risk inherent in storing them. We define the primitives to be both formally secure and versatile, generalizing much prior work. In addition, we provide nearly optimal constructions of both primitives for various measures of ``closeness'' of input data, such as Hamming distance, edit distance, and set difference.Comment: 47 pp., 3 figures. Prelim. version in Eurocrypt 2004, Springer LNCS 3027, pp. 523-540. Differences from version 3: minor edits for grammar, clarity, and typo

    Order-Revealing Encryption and the Hardness of Private Learning

    Full text link
    An order-revealing encryption scheme gives a public procedure by which two ciphertexts can be compared to reveal the ordering of their underlying plaintexts. We show how to use order-revealing encryption to separate computationally efficient PAC learning from efficient (ϵ,δ)(\epsilon, \delta)-differentially private PAC learning. That is, we construct a concept class that is efficiently PAC learnable, but for which every efficient learner fails to be differentially private. This answers a question of Kasiviswanathan et al. (FOCS '08, SIAM J. Comput. '11). To prove our result, we give a generic transformation from an order-revealing encryption scheme into one with strongly correct comparison, which enables the consistent comparison of ciphertexts that are not obtained as the valid encryption of any message. We believe this construction may be of independent interest.Comment: 28 page

    EsPRESSo: Efficient Privacy-Preserving Evaluation of Sample Set Similarity

    Full text link
    Electronic information is increasingly often shared among entities without complete mutual trust. To address related security and privacy issues, a few cryptographic techniques have emerged that support privacy-preserving information sharing and retrieval. One interesting open problem in this context involves two parties that need to assess the similarity of their datasets, but are reluctant to disclose their actual content. This paper presents an efficient and provably-secure construction supporting the privacy-preserving evaluation of sample set similarity, where similarity is measured as the Jaccard index. We present two protocols: the first securely computes the (Jaccard) similarity of two sets, and the second approximates it, using MinHash techniques, with lower complexities. We show that our novel protocols are attractive in many compelling applications, including document/multimedia similarity, biometric authentication, and genetic tests. In the process, we demonstrate that our constructions are appreciably more efficient than prior work.Comment: A preliminary version of this paper was published in the Proceedings of the 7th ESORICS International Workshop on Digital Privacy Management (DPM 2012). This is the full version, appearing in the Journal of Computer Securit

    On the Cryptographic Hardness of Local Search

    Get PDF
    We show new hardness results for the class of Polynomial Local Search problems (PLS): - Hardness of PLS based on a falsifiable assumption on bilinear groups introduced by Kalai, Paneth, and Yang (STOC 2019), and the Exponential Time Hypothesis for randomized algorithms. Previous standard model constructions relied on non-falsifiable and non-standard assumptions. - Hardness of PLS relative to random oracles. The construction is essentially different than previous constructions, and in particular is unconditionally secure. The construction also demonstrates the hardness of parallelizing local search. The core observation behind the results is that the unique proofs property of incrementally-verifiable computations previously used to demonstrate hardness in PLS can be traded with a simple incremental completeness property

    Towards an Information Theoretic Analysis of Searchable Encryption (Extended Version)

    Get PDF
    Searchable encryption is a technique that allows a client to store data in encrypted form on a curious server, such that data can be retrieved while leaking a minimal amount of information to the server. Many searchable encryption schemes have been proposed and proved secure in their own computational model. In this paper we propose a generic model for the analysis of searchable encryptions. We then identify the security parameters of searchable encryption schemes and prove information theoretical bounds on the security of the parameters. We argue that perfectly secure searchable encryption schemes cannot be efficient. We classify the seminal schemes in two categories: the schemes that leak information upfront during the storage phase, and schemes that leak some information at every search. This helps designers to choose the right scheme for an application

    Best Effort and Practice Activation Codes

    Get PDF
    Activation Codes are used in many different digital services and known by many different names including voucher, e-coupon and discount code. In this paper we focus on a specific class of ACs that are short, human-readable, fixed-length and represent value. Even though this class of codes is extensively used there are no general guidelines for the design of Activation Code schemes. We discuss different methods that are used in practice and propose BEPAC, a new Activation Code scheme that provides both authenticity and confidentiality. The small message space of activation codes introduces some problems that are illustrated by an adaptive chosen-plaintext attack (CPA-2) on a general 3-round Feis- tel network of size 2^(2n) . This attack recovers the complete permutation from at most 2^(n+2) plaintext-ciphertext pairs. For this reason, BEPAC is designed in such a way that authenticity and confidentiality are in- dependent properties, i.e. loss of confidentiality does not imply loss of authenticity.Comment: 15 pages, 3 figures, TrustBus 201

    Making Existential-Unforgeable Signatures Strongly Unforgeable in the Quantum Random-Oracle Model

    Get PDF
    Strongly unforgeable signature schemes provide a more stringent security guarantee than the standard existential unforgeability. It requires that not only forging a signature on a new message is hard, it is infeasible as well to produce a new signature on a message for which the adversary has seen valid signatures before. Strongly unforgeable signatures are useful both in practice and as a building block in many cryptographic constructions. This work investigates a generic transformation that compiles any existential-unforgeable scheme into a strongly unforgeable one, which was proposed by Teranishi et al. and was proven in the classical random-oracle model. Our main contribution is showing that the transformation also works against quantum adversaries in the quantum random-oracle model. We develop proof techniques such as adaptively programming a quantum random-oracle in a new setting, which could be of independent interest. Applying the transformation to an existential-unforgeable signature scheme due to Cash et al., which can be shown to be quantum-secure assuming certain lattice problems are hard for quantum computers, we get an efficient quantum-secure strongly unforgeable signature scheme in the quantum random-oracle model.Comment: 15 pages, to appear in Proceedings TQC 201

    Type 2 Structure-Preserving Signature Schemes Revisited

    Get PDF
    Abstract. Abe, Groth, Ohkubo and Tibouchi recently presented structure-preserving signature schemes using Type 2 pairings. The schemes are claimed to enjoy the fastest signature verification. By properly accounting for subgroup membership testing of group elements in signatures, we show that the schemes are not as efficient as claimed. We presen
    corecore