649 research outputs found

    Advanced sensors technology survey

    Get PDF
    This project assesses the state-of-the-art in advanced or 'smart' sensors technology for NASA Life Sciences research applications with an emphasis on those sensors with potential applications on the space station freedom (SSF). The objectives are: (1) to conduct literature reviews on relevant advanced sensor technology; (2) to interview various scientists and engineers in industry, academia, and government who are knowledgeable on this topic; (3) to provide viewpoints and opinions regarding the potential applications of this technology on the SSF; and (4) to provide summary charts of relevant technologies and centers where these technologies are being developed

    ELECTROCARDIOGRAM (ECG) SIGNAL PROCESSING ON FPGA FOR EMERGING HEALTHCARE APPLICATIONS

    Get PDF
    In this project an ECG signal processing module will be implemented in VHDL on FPGA platform. The digital filtering will be carried out with low pass FIR architecture. Filters shall filter the 50 Hz coupled noise and other high frequency noises. The filtered signal is subjected to Short Time Fourier transform by which lot of inferences can be made by medical experts. A recorded ECG signal will be used as test input to test the modules implemented on FPGA. The Modelsim Xilinx Edition and Xilinx Integrated Software Environment will be used simulation and synthesis respectively. The Xilinx Chipscope tool will be used to test the results, while the logic running on FPGA. The Xilinx Spartan 3 Family FPGA development board will be used this project

    Antepartum Fetal Monitoring through a Wearable System and a Mobile Application

    Get PDF
    Prenatal monitoring of Fetal Heart Rate (FHR) is crucial for the prevention of fetal pathologies and unfavorable deliveries. However, the most commonly used Cardiotocographic exam can be performed only in hospital-like structures and requires the supervision of expert personnel. For this reason, a wearable system able to continuously monitor FHR would be a noticeable step towards a personalized and remote pregnancy care. Thanks to textile electrodes, miniaturized electronics, and smart devices like smartphones and tablets, we developed a wearable integrated system for everyday fetal monitoring during the last weeks of pregnancy. Pregnant women at home can use it without the need for any external support by clinicians. The transmission of FHR to a specialized medical center allows its remote analysis, exploiting advanced algorithms running on high-performance hardware able to obtain the best classification of the fetal condition. The system has been tested on a limited set of pregnant women whose fetal electrocardiogram recordings were acquired and classified, yielding an overall score for both accuracy and sensitivity over 90%. This novel approach can open a new perspective on the continuous monitoring of fetus development by enhancing the performance of regular examinations, making treatments really personalized, and reducing hospitalization or ambulatory visits. Keywords: tele-monitoring; wearable devices; fetal heart rate; telemedicin

    Bio-Radar: sistema de aquisição de sinais vitais sem contacto

    Get PDF
    The Bio-Radar system is capable to measure vital signs accurately, namely the respiratory and cardiac signal, using electromagnetic waves. In this way, it is possible to monitor subjects remotely and comfortably for long periods of time. This system is based on the micro-Doppler effect, which relates the received signal phase variation with the distance change between the subject chest-wall and the radar antennas, which occurs due to the cardiopulmonary function. Considering the variety of applications where this system can be used, it is required to evaluate its performance when applied to real context scenarios and thus demonstrate the advantages that bioradar systems can bring to the general population. In this work, a bio-radar prototype was developed in order to verify the viability to be integrated in specific applications, using robust and low profile solutions that equally guarantee the general system performance while addressing the market needs. Considering these two perspectives to be improved, different level solutions were developed. On the hardware side, textile antennas were developed to be embedded in a car seat upholstery, thus reaching a low profile solution and easy to include in the industrialization process. Real context scenarios imply long-term monitoring periods, where involuntary body motion can occur producing high amplitude signals that overshadow the vital signs. Non-controlled monitoring environments might also produce time varying parasitic reflections that have a direct impact in the signal. Additionally, the subject's physical stature and posture during the monitoring period can have a different impact in the signals quality. Therefore, signal processing algorithms were developed to be robust to low quality signals and non-static scenarios. On the other hand, the bio-radar potential can also be maximized if the acquired signals are used pertinently to help identify the subject's psychophysiological state enabling one to act accordingly. The random body motion until now has been seen as a noisy source, however it can also provide useful information regarding subject's state. In this sense, the acquired vital signs as well as other body motions were used in machine learning algorithms with the goal to identify the subject's emotions and thus verify if the remotely acquired vital signs can also provide useful information.O sistema Bio-Radar permite medir sinais vitais com precisão, nomeadamente o sinal respiratório e cardíaco, utilizando ondas eletromagnéticas para esse fim. Desta forma, é possível monitorizar sujeitos de forma remota e confortável durante longos períodos de tempo. Este sistema é baseado no efeito de micro-Doppler, que relaciona a variação de fase do sinal recebido com a alteração da distância entre as antenas do radar e a caixa torácica do sujeito, que ocorre durante a função cardiopulmonar. Considerando a variedade de aplicações onde este sistema pode ser utilizado, é necessário avaliar o seu desempenho quando aplicado em contextos reais e assim demonstrar as vantagens que os sistemas bio-radar podem trazer à população geral. Neste trabalho, foi desenvolvido um protótipo do bio radar com o objetivo de verificar a viabilidade de integrar estes sistemas em aplicações específicas, utilizando soluções robustas e discretas que garantam igualmente o seu bom desempenho, indo simultaneamente de encontro às necessidades do mercado. Considerando estas duas perspetivas em que o sistema pode ser melhorado, foram desenvolvidas soluções de diferentes níveis. Do ponto de vista de hardware, foram desenvolvidas antenas têxteis para serem integradas no estofo de um banco automóvel, alcançando uma solução discreta e fácil de incluir num processo de industrialização. Contextos reais de aplicação implicam períodos de monitorização longos, onde podem ocorrer movimentos corporais involuntários que produzem sinais de elevada amplitude que se sobrepõem aos sinais vitais. Ambientes de monitorização não controlados podem produzir reflexões parasitas variantes no tempo que têm impacto direto no sinal. Adicionalmente, a estrutura física do sujeito e a sua postura durante o período de monitorização podem ter impactos diferentes na qualidade dos sinais. Desta forma, foram desenvolvidos algoritmos de processamento de sinal robustos a sinais de baixa qualidade e a cenários não estáticos. Por outro lado, o potencial do bio radar pode também ser maximizado se os sinais adquiridos forem pertinentemente utilizados de forma a ajudar a identificar o estado psicofisiológico do sujeito, permitindo mais tarde agir em conformidade. O movimento corporal aleatório que foi até agora visto como uma fonte de ruído, pode no entanto também fornecer informação útil sobre o estado do sujeito. Neste sentido, os sinais vitais e outros movimentos corporais adquiridos foram utilizados em algoritmos de aprendizagem automática com o objetivo de identificar as emoções do sujeito e assim verificar que sinais vitais adquiridos remotamente podem também conter informação útil.Programa Doutoral em Engenharia Eletrotécnic

    Low-Power Wireless Wearable ECG Monitoring Chestbelt Based on Ferroelectric Microprocessor

    Full text link
    Since cadiovascular disease (CVD) posts a heavy threat to people's health, long-term electrocardiogram (ECG) monitoring is of great value for the improvement of treatment. To realize remote long-term ECG monitoring, a low-power wireless wearable ECG monitoring device is proposed in this paper. The ECG monitoring device, abbreviated as ECGM, is designed based on ferroelectric microprocessor which provides ultra-low power consumption and contains four parts-MCU, BLE, Sensors and Power. The MCU part means circuit of MSP430FR2433, the core of ECGM. The BLE part is the CC2640R2F module applied for wireless transmission of the collected bio-signal data. And the sensors part includes several sensors like BMD101 used for monitoring bio-signals and motion of the wearer, while the Power part consists of battery circuit, charging circuit and 3.3V/1.8V/4.4V power supply circuit. The ECGM first collects ECG signals from the fabric electrodes adhered to wearers' chest, preprocesses the signals to eliminate the injected noise, and then transmit the output data to wearers' hand-held mobile phones through Bluetooth low energy (BLE). The wearers are enabled to acquire ECGs and other physiological parameters on their phones as well as some corresponding suggestions. The novelty of the system lies in the combination of low-power ECG sensor chip with ferroelectric microprocessor, thus achieving ultra-low power consumption and high signal quality

    Comparison of Low-Complexity Algorithms for Real-Time QRS Detection using Standard ECG Database

    Get PDF
    Today, thanks to the development of advanced wearable devices, it is possible to track patient conditions outside hospital setting for several days. One of the most important bio-signals used for health analysis is the electrocardiographic (ECG) signal. It provides information about the heart rate, rhythm, and morphology of heart. Many algorithms are proposed over years for automated ECG analysis. Due to their computational complexity, not all these techniques can be implemented on wearable devices for real-time ECG detection. In this frame, a particular interest is toward the algorithms for automatic QRS detection. Different algorithms have been presented in the literature. Among all, more suitable class for the implementation on embedded systems is based on the use of signal derivatives and thresholds. These algorithms are composed by pre-processing stage, for the noise removal, and decision stage for the QRS detection. In literature, the different algorithms were discriminated only with respect to their pre-processing stages. Furthermore, not all algorithms were tested with standard database: this makes the results difficult to compare and evaluate. Moreover, the algorithms performance in case of pathological behaviours was not compared. This paper is motivated by the need to perform a comparison of the whole algorithms, both pre-processing and decision stages, under a standard database (MIT-BIH ECG database of Physionet), either for non-pathological and pathological signals. The results confirm that the Pan & Tompkins algorithm has the best performance in terms of QRS complex detection. However, in some cases, its performance is comparable with the other algorithms ones. For this reason, in the applications in which the reduced of computational complexity is an important constraint, it is possible to implemented algorithms with comparable performance but with lesser complexity with respect to P&T algorithm

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    PROCESS AWARE ANALOG-CENTRIC SINGLE LEAD ECG ACQUISITION AND CLASSIFICATION CMOS FRONTEND

    Get PDF
    The primary objective of this research work is the development of a low power single-lead ECG analog front-end (AFE) architecture which includes acquisition, digitization, process aware efficient gain and frequency control mechanism and a low complexity classifier for the detecting asystole, extreme bardycardia and tachycardia. Recent research on ECG recording systems focuses on the design of a compact single-lead wearable/portable devices with ultra-low-power consumption and in-built hardware for diagnosis and prognosis. Since, the amplitude of the ECG signal varies from hundreds of µV to a few mV, and has a bandwidth of DC to 250 Hz, conventional front-ends use an instrument amplifier followed by a programmable gain amplifier (PGA) to amplify the input ECG signal appropriately. This work presents an mixed signal ECG fronted with an ultra-low power two-stage capacitive-coupled signal conditioning circuit (or an AFE), providing programmable amplification along with tunable 2nd order high pass and lowpass filter characteristics. In the contemporary state-of-the-art ECG recording systems, the gain of the amplifier is controlled by external digital control pins which are in turn dynamically controlled through a DSP. Therefore, an efficient automatic gain control mechanism with minimal area overhead and consuming power in the order of nano watts only. The AGC turns the subsequent ADC on only after output of the PGA (or input of the ADC) reaches a level for which the ADC achieves maximum signal-to-noise-ratio (SNR), hence saving considerable startup power and avoiding the use of DSP. Further, in any practical filter design, the low pass cut-off frequency is prone to deviate from its nominal value across process and temperature variations. Therefore, post-fabrication calibration is essential, before the signal is fed to an ADC, to minimize this deviation, prevent signal degradation due to aliasing of higher frequencies into the bandwidth for classification of ECG signals, to switch to low resolution processing, hence saving power and enhances battery lifetime. Another short-coming noticed in the literature published so far is that the classification algorithm is implemented in digital domain, which turns out to be a power hungry approach. Moreover, Although analog domain implementations of QRS complexes detection schemes have been reported, they employ an external micro-controller to determine the threshold voltage. In this regard, finally a power-efficient low complexity CMOS fully analog classifier architecture and a heart rate estimator is added to the above scheme. It reduces the overall system power consumption by reducing the computational burden on the DSP. The complete proposed scheme consists of (i) an ultra-low power QRS complex detection circuit using an autonomous dynamic threshold voltage, hence discarding the need of any external microcontroller/DSP and calibration (ii) a power efficient analog classifier for the detection of three critical alarm types viz. asystole, extreme bradycardia and tachycardia. Additionally, a heart rate estimator that provides the number of QRS complexes within a period of one minute for cardiac rhythm (CR) and heart rate variability (HRV) analysis. The complete proposed architecture is implemented in UMC 0.18 µm CMOS technology with 1.8 V supply. The functionality of each of the individual blocks are successfully validated using postextraction process corner simulations and through real ECG test signals taken from the PhysioNet database. The capacitive feedback amplifier, Σ∆ ADC, AGC and the AFT are fabricated, and the measurement results are discussed here. The analog classification scheme is successfully validated using embed NXP LPC1768 board, discrete peak detector prototype and FPGA software interfac
    corecore