1,233 research outputs found

    Advanced multiple access concepts in mobile satellite systems

    Get PDF
    Some multiple access strategies for Mobile Satellite Systems (MSS) are discussed. These strategies were investigated in the context of three separate studies conducted for the International Maritime Satellite Organization (INMARSAT) and the European Space Agency (ESA). Satellite-Switched Frequency Division Multiple Access (SS-FDMA), Code Division Multiple Access (CDMA), and Frequency-Addressable Beam architectures are addressed, discussing both system and technology aspects and outlining advantages and drawbacks of either solution with associated relevant hardware issues. An attempt is made to compare the considered option from the standpoint of user terminal/space segment complexity, synchronization requirements, spectral efficiency, and interference rejection

    Robust Reduced-Rank Adaptive Processing Based on Parallel Subgradient Projection and Krylov Subspace Techniques

    Full text link
    In this paper, we propose a novel reduced-rank adaptive filtering algorithm by blending the idea of the Krylov subspace methods with the set-theoretic adaptive filtering framework. Unlike the existing Krylov-subspace-based reduced-rank methods, the proposed algorithm tracks the optimal point in the sense of minimizing the \sinq{true} mean square error (MSE) in the Krylov subspace, even when the estimated statistics become erroneous (e.g., due to sudden changes of environments). Therefore, compared with those existing methods, the proposed algorithm is more suited to adaptive filtering applications. The algorithm is analyzed based on a modified version of the adaptive projected subgradient method (APSM). Numerical examples demonstrate that the proposed algorithm enjoys better tracking performance than the existing methods for the interference suppression problem in code-division multiple-access (CDMA) systems as well as for simple system identification problems.Comment: 10 figures. In IEEE Transactions on Signal Processing, 201

    VLSI Architectures and Rapid Prototyping Testbeds for Wireless Systems

    Get PDF
    The rapid evolution of wireless access is creating an ever changing variety of standards for indoor and outdoor environments. The real-time processing demands of wireless data rates in excess of 100 Mbps is a challenging problem for architecture design and verification. In this paper, we consider current trends in VLSI architecture and in rapid prototyping testbeds to evaluate these systems. The key phases in multi-standard system design and prototyping include: Algorithm Mapping to Parallel Architectures – based on the real-time data and sampling rate and the resulting area, time and power complexity; Configurable Mappings and Design Exploration – based on heterogeneous architectures consisting of DSP, programmable application-specific instruction (ASIP) processors, and co-processors; and Verification and Testbed Integration – based on prototype implementation on programmable devices and integration with RF units.Nokia Foundation FellowshipNokia CorporationNational InstrumentsNational Science Foundatio

    Adaptive Wireless Networking

    Get PDF
    This paper presents the Adaptive Wireless Networking (AWGN) project. The project aims to develop methods and technologies that can be used to design efficient adaptable and reconfigurable mobile terminals for future wireless communication systems. An overview of the activities in the project is given. Furthermore our vision on adaptivity in wireless communications and suggestions for future activities are presented

    Low Complexity Iterative Multiuser Detection and Decoding for Real-Time Applications

    Get PDF
    This paper presents a low-complexity multiuser decoding technique that can be implemented in real time for a convolutionally coded direct sequence code division multiple access (DS-CDMA) system. The main contribution, denoted here as the iterative prior update (IPU), consists of iterative interference cancellation and prior updates on sequences of coded bits combined with M-algorithm and list decoding. We illustrate performance gains over other low-complexity sequence detection and decoding strategies and argue that the algorithm converges within a few iterations and requires only a small size buffer for keeping track of the priors along iterations. The fact that the we can use existing available architectures for Viterbi decoding with slight modifications and can meet the real-time processing constraints makes the IPU algorithm an attractive alternative for cellular systems

    Layered Steered Space–Time-Spreading-Aided Generalized MC DS-CDMA

    No full text
    Abstract—We present a novel trifunctional multiple-input– multiple-output (MIMO) scheme that intrinsically amalgamates space–time spreading (STS) to achieve a diversity gain and a Vertical Bell Labs layered space–time (V-BLAST) scheme to attain a multiplexing gain in the context of generalized multicarrier direct-sequence code-division multiple access (MC DS-CDMA), as well as beamforming. Furthermore, the proposed system employs both time- and frequency-domain spreading to increase the number of users, which is also combined with a user-grouping technique to reduce the effects of multiuser interference

    Quantum search algorithms, quantum wireless, and a low-complexity maximum likelihood iterative quantum multi-user detector design

    No full text
    The high complexity of numerous optimal classic communication schemes, such as the maximum likelihood (ML) multiuser detector (MUD), often prevents their practical implementation. In this paper, we present an extensive review and tutorial on quantum search algorithms (QSA) and their potential applications, and we employ a QSA that finds the minimum of a function in order to perform optimal hard MUD with a quadratic reduction in the computational complexity when compared to that of the ML MUD. Furthermore, we follow a quantum approach to achieve the same performance as the optimal soft-input soft-output classic detectors by replacing them with a quantum algorithm, which estimates the weighted sum of a function’s evaluations. We propose a soft-input soft-output quantum-assisted MUD (QMUD) scheme, which is the quantum-domain equivalent of the ML MUD. We then demonstrate its application using the design example of a direct-sequence code division multiple access system employing bit-interleaved coded modulation relying on iterative decoding, and compare it with the optimal ML MUD in terms of its performance and complexity. Both our extrinsic information transfer charts and bit error ratio curves show that the performance of the proposed QMUD and that of the optimal classic MUD are equivalent, but the QMUD’s computational complexity is significantly lower

    Survey of Inter-satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View

    Get PDF
    Small satellite systems enable whole new class of missions for navigation, communications, remote sensing and scientific research for both civilian and military purposes. As individual spacecraft are limited by the size, mass and power constraints, mass-produced small satellites in large constellations or clusters could be useful in many science missions such as gravity mapping, tracking of forest fires, finding water resources, etc. Constellation of satellites provide improved spatial and temporal resolution of the target. Small satellite constellations contribute innovative applications by replacing a single asset with several very capable spacecraft which opens the door to new applications. With increasing levels of autonomy, there will be a need for remote communication networks to enable communication between spacecraft. These space based networks will need to configure and maintain dynamic routes, manage intermediate nodes, and reconfigure themselves to achieve mission objectives. Hence, inter-satellite communication is a key aspect when satellites fly in formation. In this paper, we present the various researches being conducted in the small satellite community for implementing inter-satellite communications based on the Open System Interconnection (OSI) model. This paper also reviews the various design parameters applicable to the first three layers of the OSI model, i.e., physical, data link and network layer. Based on the survey, we also present a comprehensive list of design parameters useful for achieving inter-satellite communications for multiple small satellite missions. Specific topics include proposed solutions for some of the challenges faced by small satellite systems, enabling operations using a network of small satellites, and some examples of small satellite missions involving formation flying aspects.Comment: 51 pages, 21 Figures, 11 Tables, accepted in IEEE Communications Surveys and Tutorial
    corecore