In this paper, we propose a novel reduced-rank adaptive filtering algorithm
by blending the idea of the Krylov subspace methods with the set-theoretic
adaptive filtering framework. Unlike the existing Krylov-subspace-based
reduced-rank methods, the proposed algorithm tracks the optimal point in the
sense of minimizing the \sinq{true} mean square error (MSE) in the Krylov
subspace, even when the estimated statistics become erroneous (e.g., due to
sudden changes of environments). Therefore, compared with those existing
methods, the proposed algorithm is more suited to adaptive filtering
applications. The algorithm is analyzed based on a modified version of the
adaptive projected subgradient method (APSM). Numerical examples demonstrate
that the proposed algorithm enjoys better tracking performance than the
existing methods for the interference suppression problem in code-division
multiple-access (CDMA) systems as well as for simple system identification
problems.Comment: 10 figures. In IEEE Transactions on Signal Processing, 201