57 research outputs found

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    A Study on Human Fall Detection Systems: Daily Activity Classification and Sensing Techniques

    Get PDF
    Fall detection for elderly is a major topic as far as assistive technologies are concerned. This is due to the high demand for the products and technologies related to fall detection with the ageing population around the globe. This paper gives a review of previous works on human fall detection devices and a preliminary results from a developing depth sensor based device. The three main approaches used in fall detection devices such as wearable based devices, ambient based devices and vision based devices are identified along with the sensors employed.  The frameworks and algorithms applied in each of the approaches and their uniqueness is also illustrated. After studying the performance and the shortcoming of the available systems a future solution using depth sensor is also proposed with preliminary results

    The Emerging Wearable Solutions in mHealth

    Get PDF
    The marriage of wearable sensors and smartphones have fashioned a foundation for mobile health technologies that enable healthcare to be unimpeded by geographical boundaries. Sweeping efforts are under way to develop a wide variety of smartphone-linked wearable biometric sensors and systems. This chapter reviews recent progress in the field of wearable technologies with a focus on key solutions for fall detection and prevention, Parkinson’s disease assessment and cardiac disease, blood pressure and blood glucose management. In particular, the smartphone-based systems, without any external wearables, are summarized and discussed

    A quantitative comparison of Overlapping and Non-overlapping sliding windows effects for human activity recognition using inertial sensors

    Get PDF
    The sliding window technique is widely used to segment inertial sensor signals, i.e., accelerometers and gyroscopes, for activity recognition. In this technique, the sensor signals are partitioned into fix-sized time windows which can be of two types: (1) non-overlapping windows, in which time windows do not intersect, and (2) overlapping windows, in which they do. There is a generalized idea about the positive impact of using overlapping sliding windows on the performance of recognition systems in Human Activity Recognition. In this thesis, we analyze the impact of overlapping sliding windows on the performance of Human Activity Recognition systems with different evaluation techniques, namely subject-dependent cross validation and subject-independent cross validation. Our results show that the performance improvements regarding to overlapping windowing reported in the literature seem to be associated with the underlying limitations of subject-dependent cross validation. Furthermore, we do not observe any performance gain from the use of such technique in conjunction with subject-independent cross validation. We conclude that when using subject-independent cross validation, non-overlapping sliding windows reach the same performance as sliding windows. This result has significant implications on the resource usage for training the human activity recognition systems

    Computational Approaches for Remote Monitoring of Symptoms and Activities

    Get PDF
    We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone based prototype activity detection system that can detect basic human activities for monitoring by remote observers was developed and explored in this study. The majority voting fusion technique, along with decision tree learners were used to classify eight activities in a multi-sensor framework. This multimodal approach was examined in details and evaluated for both single and multi-subject cases. Time-delay embedding with expectation-maximization for Gaussian Mixture Model was explored as a way of developing activity detection system using reduced number of sensors, leading to a lower computational cost algorithm. The systems and algorithms developed in this work focus on means for remote monitoring using smart phones. The smart phone based remote symptom monitoring system called e-ESAS serves as a working tool to monitor essential symptoms of patients with breast cancer by doctors. The activity detection system allows a remote observer to monitor basic human activities. For the activity detection system, the majority voting fusion technique in multi-sensor architecture is evaluated for eight activities in both single and multiple subjects cases. Time-delay embedding with expectation-maximization algorithm for Gaussian Mixture Model was studied using data from multiple single sensor cases
    • …
    corecore