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Abstract

A quantitative comparison of Overlapping and Non-overlapping sliding windows effects
for human activity recognition using inertial sensors

Akbar Dehghani

The sliding window technique is widely used to segment inertial sensor signals, i.e., accelerom-

eters and gyroscopes, for activity recognition. In this technique, the sensor signals are partitioned

into fix-sized time windows which can be of two types: (1) non-overlapping windows, in which

time windows do not intersect, and (2) overlapping windows, in which they do. There is a gener-

alized idea about the positive impact of using overlapping sliding windows on the performance of

recognition systems in Human Activity Recognition. In this thesis, we analyze the impact of over-

lapping sliding windows on the performance of Human Activity Recognition systems with different

evaluation techniques, namely subject-dependent cross validation and subject-independent cross

validation. Our results show that the performance improvements regarding to overlapping win-

dowing reported in the literature seem to be associated with the underlying limitations of subject-

dependent cross validation. Furthermore, we do not observe any performance gain from the use of

such technique in conjunction with subject-independent cross validation. We conclude that when

using subject-independent cross validation, non-overlapping sliding windows reach the same per-

formance as sliding windows. This result has significant implications on the resource usage for

training the human activity recognition systems.
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Chapter 1

Introduction

This chapter includes an overview of the thesis, along with a description of the challenges. A

summary is also given on contributions that are brought forth into this thesis.

1.1 Research Problem and Scope

The tremendous advances in microelectronics and computer systems during the past decades

enable wearable and mobile devices with remarkable abilities which are transforming society at

a rapid pace. Such abilities, including high computational power, low cost, and small size have

provided a context in which people interact with such devices as inseparable parts of their life, which

results in producing huge volumes of data. There exists an active research area named Ubiquitous

Sensing with the main goal of extracting knowledge from the such data (Perez, Labrador, & Barbeau,

2010). In particular, thanks to the importance of comprehension of human demands and necessities,

human activity recognition (HAR) has become a task of high interest among researchers. Such

understanding has many applications in different fields including security, virtual reality, sports

training, and especially health care. For instance, this information has been used to detect anomalous

behaviors such as falls (Bianchi, Redmond, Narayanan, Cerutti, & Lovell, 2010; Luštrek & Kaluža,

2009; Tamura, Yoshimura, Sekine, Uchida, & Tanaka, 2009) and track movement-related conditions

in seniors (K.-Y. Chen, Harniss, Patel, & Johnson, 2014). Another example is recognizing human

activities to promote healthier lifestyles by encouraging do exercise (Consolvo et al., 2008; Lin,
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Mamykina, Lindtner, Delajoux, & Strub, 2006) and preventing unhealthy habits such as tobacco

use or unwholesome food (E. Sazonov, Metcalfe, Lopez-Meyer, & Tiffany, 2011; E. S. Sazonov et

al., 2009).

The recognition of human activities has been approached in two different ways, namely using

external and wearable sensors (Lara & Labrador, 2012). In the external scenario, the sensors are

fixed in prearranged points and the recognition depends on the interaction of users with the sensors

and also being accessible to them. As for wearable sensing, however, the sensors are attached to

the user’s body and consequently, recognition is invariant to user interaction and position respect

to the sensors. In general, wearable sensing has been proven to be the prevalent technology in

HAR (Banos, Galvez, Damas, Pomares, & Rojas, 2014);

A classic example of using external sensors to recognize human activities is intelligent homes (Kasteren,

Englebienne, & Kröse, 2010; Sarkar, Lee, Lee, et al., 2011; Tolstikov et al., 2011; Yang, Lee, &

Choi, 2011). In these systems, sensors are placed in target objects (e.g. stove, fridge, washing

machine, etc) and user’s activities are recognized during interaction with them. Another example

of external sensing is using cameras to recognize human activities (Ahad, Tan, Kim, & Ishikawa,

2008; Candamo, Shreve, Goldgof, Sapper, & Kasturi, 2009; Joseph et al., 2010; Turaga, Chellappa,

Subrahmanian, & Udrea, 2008) which is especially suitable for security and gaming (Shotton et

al., 2011). In general, systems with external sensors are able to recognize fairly complex activities

such as eating, taking a shower, washing dishes, etc (Lara & Labrador, 2012). However, such sys-

tems have several issues including privacy, pervasiveness, complexity, and maintenance cost (Lara

& Labrador, 2012) which motivate to use of wearable sensors in HAR.

Wearable fitness devices such as the Nike Fuel Band and Fit-Bit Flex are good examples for

wearable sensing. These devices, which can be used during exercise, track their wearers physical

activities (e.g. number of steps taken) and caloric expenditure. Users may use such information

to set their own fitness goals and monitor their progression. In general, the employed sensors in

wearable devices can be categorized into three groups: (1) sensors to measure the user’s movement

(e.g. accelerometer, gyroscope, GPS, etc), (2) sensors to measure the environmental variables (e.g.

temperature and humidity), and (3) sensors to measure the physiological signals (e.g., heart rate and

electrocardiogram).
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Most HAR systems use an Activity Recognition Process (ARP) to detect activities. These sys-

tems usually consist of one or more sensors attached to different parts of a person’s body that provide

diverse streams of sensor data. Such data streams, subsequently, are segmented into several time

windows with specific length and from which feature vectors are extracted and fed to a classifier.

1.2 Motivation

Segmentation in time windows is a critical process in ARP, often implemented with sliding win-

dows (Banos et al., 2014; Janidarmian, Roshan Fekr, Radecka, & Zilic, 2017) that can be of two

types: (1) non-overlapping windows, in which time windows do not intersect, and (2) overlapping

windows, in which they do (Lara & Labrador, 2012). Both overlapping and non-overlapping win-

dows are commonly used in the literature. For instance, in Recofit (Morris, Saponas, Guillory, &

Kelner, 2014), sensor signals are windowed into 5-second overlapping windows sliding at 200ms.

Another example is the work in (Banos et al., 2014), that uses non-overlapping sliding windows to

partition sensor signals.

Several works (Janidarmian, Radecka, & Zilic, 2014; Keogh, Chu, Hart, & Pazzani, 2001) have

shown that using overlapping sliding windows instead of non-overlapping ones improves the accu-

racy of the recognition systems. However, the amount of such improvement and its sources in HAR

remain unclear. This study addresses this question: based on a detailed, quantitative analysis of

multiple datasets, we explain why and by how much overlapping windows affect the performance

of ARP. We report and discuss the general and per activity impacts of these two methods consid-

ering two cross validation (CV) techniques namely subject-dependent CV and subject-independent

CV.

1.3 Thesis Contributions

The major contributions of the thesis are as follows:

• An in-depth investigation of how HAR system performance is impacted by overlapping and

non-overlapping sliding windows.

3



• An investigation of the main reasons of performance improvement by overlapping sliding

windows in HAR systems

• A set of publicly available scripts1 to help the research community further shed light on the

important topic of choosing the types of sliding windows in HAR.

1.4 Thesis Overview

Chapter 2 discusses the background of HAR using wearable devices. This Chapter is divided

into two parts. The first part describes the different stages of ARP and the commonly used tech-

niques in each stage. Moreover, this part explains and compares diverse types of system evaluation

techniques in HAR systems. The second part of Chapter 2 reviews the segmentation process using

the sliding window technique in previous works in HAR fields. Chapter 3 explains the used datasets

in this study and our ARP setting including utilized window sizes, feature sets, and classifiers. Fur-

thermore, the used classifiers in this work are explained precisely in this chapter. Chapter 4 presents

the results and conclusions of five different experiments were conducted to investigate the general

and per activity impacts of overlapping and non-overlapping sliding windows on HAR systems. For

each experiment, setting, results, and conclusion are presented. Chapter 5 discusses and compares

the results of different experiments. Finally, we conclude the thesis by summarizing our work and

findings and offering remarks on possible future works. All of the chapters of this thesis except for

some small parts of Chapter 1 and Chapter 2 have been published in Sensors journal (Dehghani,

Sarbishei, Glatard, & Shihab, 2019).

1http://www.github.com/big-data-lab-team/paper-generalizability-window-size

4

http://www.github.com/big-data-lab-team/paper-generalizability-window-size


Chapter 2

Human Activity Recognition using

Wearable sensors

2.1 Background

In this section, we provide an overview of a typical activity recognition process (ARP) explain

and compare different sliding windows techniques and describe common evaluation methods in

HAR.

2.1.1 Activity Recognition Process

Figure 2.1: Human activity recognition process
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ARP is composed of a sequence of signal processing, pattern recognition, and machine learning

techniques (Bulling, Blanke, & Schiele, 2014). It mainly consists of 5 steps, shown in Figure 2.1

and explained hereafter.

Figure 2.2: Generic data acquisition architecture for HAR (extracted from (Lara & Labrador,
2012)).

Data acquisition

Several sensors are attached to different body parts. They mostly acquire 3D acceleration, gy-

roscopic and magnetic field measurements, etc, which measure different attributes such as mo-

tion (Iglesias, Cano, Bernardos, & Casar, 2011), location (Choujaa & Dulay, 2008), tempera-

ture (Parkka et al., 2006), and ECG (Jatoba, Grossmann, Kunze, Ottenbacher, & Stork, 2008).

Sensors discretize signals at a given frequency, typically 50Hz for daily activities or 200Hz for fast

sports, and transmit data through UDP/IP or TCP/IP protocols to integration devices (ID) to be

preprocessed (Lara & Labrador, 2012). IDs can be different devices including cellphones, PDAs,

laptops or a customized embedded systems (Lara & Labrador, 2012). Figure 2.2 shows a generic

architecture of data acquisition in HAR. It should be noted that all of the mentioned components are

not necessarily implemented in every HAR systems.

Preprocessing

Data points coming from sensors may include artifacts of various origins such as electronic

fluctuations, sensor malfunctions, and physical activities (Bulling et al., 2014). To eliminate such

artifacts, filtering techniques are commonly applied, such as the Butterworth low-pass filter, which

6



flats the coming signals as much as possible through rolling off down the higher frequencies be-

yond the cut-off point to zero (Morris et al., 2014; Najafi et al., 2003; Selles, Formanoy, Bussmann,

Janssens, & Stam, 2005). In any case, preprocessing techniques need to preserve the signal charac-

teristics that carry relevant information about the activities and consequently, they should be used

with care as they may remove valuable information from the signals.

Segmentation

In this stage, the coming signals from sensors are partitioned into time windows labeled from the

most frequent activity in the window. There are several ways to segment the sensor signals in HAR

field which can be categorized into three groups, namely activity-defined windows, event-defined

windows and sliding windows (Banos et al., 2014).

Activity-defined windows.In this technique, signals are partitioned based on the detection of ac-

tivity changes, so the start and end points of each activity should be determined. Since the times

of activities can be different, the window sizes are not fixed. In the literature, several methods

have been used to identify the activity-transition points. For instance, Nyan, Tay, Seah, and Sitoh

(2006); Sekine, Tamura, Togawa, and Fukui (2000) suggest a model based on the variations in

the frequency characteristics to identify activity-transition points. Another example is the work

in (Yoshizawa, Takasaki, & Ohmura, 2013) which proposes a heuristic method to separate static ac-

tions from dynamic ones. In the simpler scenario, the activity-transition points can be identified by

user feedback (Dernbach, Das, Krishnan, Thomas, & Cook, 2012; Figo, Diniz, Ferreira, & Cardoso,

2010; He & Jin, 2009; Lester, Choudhury, & Borriello, 2006).

Event-defined windows. Some activities such as meal preparation could be better recognized as a

sequence of actions performed in a certain order. However, such activities are irregular and the or-

der of actions for a specific one can be different and under such circumstances, the identification of

specific events is particularly advised. The goal of event-defined windows is locating specific events

in the signals to be used for data segmentation. In particular, this method is widely used in gait anal-

ysis (Banos et al., 2014). In this case, the models aim to detect heel strikes (the initial floor contact)

and toe-offs (the end of floor contact) events. In the literature, several methods have been utilized

to identify such events including analyzing the foot’s linear acceleration (Aminian et al., 1999;
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Selles et al., 2005), Foot (Aminian, Najafi, Büla, Leyvraz, & Robert, 2002) and shank (Jasiewicz

et al., 2006) sagittal angular velocity, using clustering models such as Gaussian mixture (Aung et

al., 2013), using external mechanisms like stopwatch to register the first crossing time of hind foot

and lead foot from a given start and end lines respectively (Dobkin, Xu, Batalin, Thomas, & Kaiser,

2011), etc. Identifying such events, subsequently can be used to recognize activities. For exam-

ple, Benocci et al. (2010) use a model to recognize walking by identifying the gait cycle on a single

foot tagged through a heel strike event. Like activity-defined windows, the window sizes are not

fixed since the events may not be uniformly distributed in time.

(a) Non-overlapping (b) Overlapping-2 s sharing

Figure 2.3: 5-second sliding windows.

Sliding windows. The sliding window approach is the most widely used method in the segmentation

step of ARP due to its implementational simplicity and lack of preprocessing (Banos et al., 2014).

In this approach, the sensor signals are split into windows of fixed size. If there is overlap between

adjacent windows, this technique is known as overlapping sliding window, and if not, it is called

non-overlapping windows technique. Figure 2.3 illustrates the non-overlapping and overlapping

windowing techniques.

Formal definition- Mathematically, a sliding window process can be defined as follows. Assume a

stream of data values xi ∈ R at times ti (i ∈ N). For simplicity, we assume that t0 = 0 and the

sampling period remains constant at ∆T , i.e.,

∀i ∈ N, ti+1 − ti = ∆T .
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A fixed length sliding window splits the data stream into individual segments, where each seg-

ment consists of n (n ∈ N,n > 1) samples. Consequently, the window size T in seconds is

computed as follows:

T = (n− 1)∆T ,

where ∆T is the sampling period. We also denote p ∈ {0, 1, 2, ..., n− 1} as the number of

samples that are within the overlapping period between two consecutive windows, where p = 0

refers to the scenario with non-overlapping windows. Next, the overlapping period between two

consecutive windows in seconds, i.e., OP, can be computed as follows:

OP = p∆T .

Many research articles define the overlapping period as a percentage of the overall window

length, e.g., 80% overlapping windows. The overlapping period in percentage can also be found as

follows:

OP (%) = p
n

Finally, we can express each window/segment Sk(k ∈ N) as a set of data values xi as follows:

SK = {xk(n−p), xk(n−p)+1, ..., xk(n−p)+n−1}, (k ∈ N)

There is a generalized idea that using overlapping sliding windows increases the performance

of classifiers in HAR (Janidarmian et al., 2014), since they involve more data points, and unlike the

non-overlapping windows, they are not prone to missing important events (Coggeshall & Wu, 2005),

particularly within activity transition periods. While these assumptions are generally true, we will

show later with our detailed experiments that non-overlapping windows overall deliver comparable

recognition accuracy, while majorly reducing the required training computations and memory usage.

The number of data points in a time window, a.k.a the window size, heavily impacts the performance

of the model (Banos et al., 2014; Bulling et al., 2014). Finding the optimal window size depends

on the specific requirements of the HAR system. For instance, the number of activities for which

system is devised or special recognition time (Banos et al., 2014). However, in any case, the window

size should be properly selected in such a way that each window contains enough samples (at least

one cycle of an activity) to be differentiable from similar movements (Janidarmian et al., 2017). The

current method to select the window size is empirical (Bulling et al., 2014). We apply ARP with
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different window sizes which mostly selected from the values used in previous works, and choose

the one which maximizes the performance of the recognition system. This process can be very time

consuming due to the fact that there is no prior knowledge about the optimal window size and the

entire space should be searched in an uninformed way. Table 2.1 shows an extensive review of used

window size in previous studies.

Window size range (s) publications

0 - 1

Pirttikangas, Fujinami, and Nakajima (2006), Stikic, Huynh,
Van Laerhoven, and Schiele (2008), Marx (2012), Huynh and
Schiele (2005), Kern, Schiele, and Schmidt (2003), Maurer,

Smailagic, Siewiorek, and Deisher (2006a), Suutala,
Pirttikangas, and Röning (2007), Amft and Tröster (2008), Han,

Kang, and Kim (2010), J.-H. Wang, Ding, Chen, and Chen
(2012)

1 - 2
Pirttikangas et al. (2006), Stikic et al. (2008), Huynh and Schiele
(2005), Sun, Zhang, Li, Guo, and Li (2010), Gjoreski and Gams

(2011)

2 - 3

Mannini, Intille, Rosenberger, Sabatini, and Haskell
(2013), Stikic et al. (2008), Preece, Goulermas, Kenney, and

Howard (2008), Mantyjarvi, Himberg, and Seppanen
(2001), Huynh and Schiele (2005), N. Wang, Ambikairajah,

Lovell, and Celler (2007), Khan, Lee, Lee, and Kim (2010), Sun
et al. (2010),Nam and Park (2013b),Nam and Park (2013a)

3 - 4 Sun et al. (2010)

4 - 5
Mannini et al. (2013), Stikic et al. (2008), Huynh and Schiele

(2005),Parkka et al. (2006), Sun et al. (2010)

5 - 6
Ravi, Dandekar, Mysore, and Littman (2005), Altun and Barshan

(2010), Sun et al. (2010), Atallah, Lo, King, and Yang
(2011), Lee and Cho (2011)

6 - 7
Bao and Intille (2004a), Huynh, Blanke, and Schiele (2007),
Sun et al. (2010), Jiang, Shang, Wang, Li, and Wang (2011)

7+

Mannini et al. (2013), Stikic et al. (2008), Krause, Siewiorek,
Smailagic, and Farringdon (2003), Parkka et al.

(2006), Kwapisz, Weiss, and Moore (2011), Siirtola and Röning
(2012), Hemalatha and Vaidehi (2013), Zheng, Wong, Guan, and

Trost (2013)

Table 2.1: Distribution of the activity recognition research studies based on the utilized window size
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Group Methods Publications

Time domain

Mean, Standard deviation, Variance, Interquartile
range, Mean absolute deviation, Correlation
between axes, Kurtosis, Root Mean Square,

Averaged derivatives, Skewness, Zero Crossing
Rate, Mean Crossing Rate, Pairwise Correlation,

Spectral Entropy

Banos et al.
(2014), Morris et al.
(2014), Parkka et al.
(2006), Tapia et al.

(2007), Kao, Lin, and
Wang (2009), Maurer et
al. (2006a), Zhang and

Sawchuk (2011)

Frequency domain Fourier Transform, Discrete Cosine Transform

Bao and Intille
(2004a), Morris et al.

(2014), Y.-P. Chen, Yang,
Liou, Lee, and Wang

(2008), Altun and
Barshan (2010)

Others
Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Autoregresive

Model (AR), HAAR filters

Morris et al.
(2014), Altun and

Barshan (2010), He and
Jin (2009), Y.-P. Chen et

al. (2008), Hanai,
Nishimura, and Kuroda

(2009)

Table 2.2: Summery of common used features in HAR publications

Feature extraction

The main reason for applying feature extraction on each time window is that it is almost impos-

sible for two given time windows to be exactly identical even if they come from the same subject

doing the same activity (Lara & Labrador, 2012). In the other words, through that we can filter out

relevant information and obtain a quantitative measure of each time window which can further be

used to compare with other time windows. In general, feature extraction methods can be categorized

into two groups: statistical and structural (Olszewski, 2001). Regarding the statistical methods, they

use quantitative characteristics of the data to extract features. Table 2.2 shows a summary of com-

mon statistical features in HAR literature. As for structural methods, however, they consider the

interrelationship among data to extract features from signals. In some situations, such features play

an extremely significant role in HAR. To illustrate, consider Figure 2.4 which represents the heart

rate signal for a person that was walking and the same signal in reverse temporal order. Under such

11



Figure 2.4: Heart rate signal for walking (bold) and flipped signal (thin) (extracted from Lara and
Labrador (2012)).

circumstances, statistical features such as time domain and frequency domain features are not dis-

criminative since for these two signals, most of them are equal and we need to use utilize features

that take the structure of signals into account. According to Lara and Labrador (2012) and from

a mathematical perspective, given a time series Y (t), a structure detector implements a function

f(Y (t)) = Ŷ (t) such that Ŷ (t) approximates Y (t). Table 2.3 shows the common functions im-

plemented by structure detectors. In general, choosing the feature extraction method and feature

sets are dependent to the nature of signal. For instance, acceleration signals tend to fluctuate and

be oscillatory and the features extraction method should be able to handle the high variability of

signals.

Classification

Finally, a classifier is trained on the vector of extracted features and corresponding labels, and

assigns future observations to one of the learned activities. Table 2.4 summarizes most common

classifiers and some work examples of them in the HAR field.

12



Function Equation Parameters

Linear F (t) = mt+ b {m, b}

Polynomial F (t) = a0 + a1t+ ...+ an−1t
n−1 {a0, ..., an−1}

Exponential F (t) = a|b|t + c {a, b, c}

Sinusoidal F (t) = a× sin(t+ b) + c {a, b, c}

Table 2.3: Common functions implemented by structure detectors (extracted from (Lara &
Labrador, 2012)).

2.1.2 Subject dependent cross validation and subject independent cross validation

One of the most important steps in designing a system is evaluation. The evaluation in HAR

has been mostly carried out through k-fold cross validation. In k-fold CV (Figure 2.5(a)), the over-

all data is randomly partitioned in k equal subsets. The model is then trained on k − 1 subsets,

and the remaining one is used for testing (Trevor, Robert, & JH, 2009). In this process, the test

set can be any part of the dataset meaning that training and test sets may contain the data of same

subject and due to that, this method is referred to as subject-dependent CV in literature (Al Machot

et al., 2019). The main assumption of this process is that samples are Independent and Identically

Distributed (i.i.d.) (Arlot, Celisse, et al., 2010), which means that all the data points are sampled

independently from the same distribution. However, samples drawn from a given subject are likely

to not be independent, for two reasons. First, there is a strong inter-subject variability in the way

activities are conducted (Bulling et al., 2014). This means that the similarity of samples drawn from

the same subject is likely to be higher than that of samples drawn from different subjects. Several

factors might explain such variability, including sex, gender, age or experience. Second, there is

a temporal dependence between activities performed by the same subject: the similarity between

samples drawn in a short time interval, for instance in the same training session in case of training

activities, will most likely be higher than that of samples drawn further apart in time. This is due to
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Classifier Publications

Decision tree

Banos et al. (2014), Jatoba, Grossmann, Kunze,
Ottenbacher, and Stork (2008), Maurer, Smailagic,

Siewiorek, and Deisher (2006b), Bao and Intille
(2004b), Ermes, Parkka, and Cluitmans (2008)

Naive Bayes
Banos et al. (2014), Tapia et al. (2007), Bao and

Intille (2004a), Lara and Labrador (2012), Kern et
al. (2003), Ravi et al. (2005)

K-nearest neighbors
Banos et al. (2014), Jatoba et al. (2008), Maurer et

al. (2006b), Maurer et al. (2006a), Ravi et al. (2005)

Neural Networks
Sarbishei (2019), Al Machot, Elmachot, Ali,

Al Machot, and Kyamakya (2019), J. Wang, Chen,
Hao, Peng, and Hu (2018)

Support Vector Machines

Morris et al. (2014), Zhen-Yu He and Lian-Wen Jin
(2008), J. Wang et al. (2018), Zhenyu He, Zhibin
Liu, Lianwen Jin, Li-Xin Zhen, and Jian-Cheng
Huang (2008), Huynh et al. (2007),Zhang and

Sawchuk (2011)
Markov models Vinh et al. (2011), Zhu and Sheng (2009)

Nearest Centroid Classifier Huynh and Schiele (2005)

Table 2.4: Summary of common classifiers in HAR publications

factors such as fatigue and training. Thus, k-fold CV may overestimate the performance of recog-

nizer systems in HAR. Such overestimation is even larger when k-fold CV is used with overlapping

sliding windows since the overlap between adjacent windows is another source of dependency be-

tween data points. A more formal discussion about the problems of k-fold CV in HAR can be found

in (Dehghani, Glatard, & Shihab, 2019).

To address these issues, the training and testing sets should be split by subject. In this method

which is known as subject-independent CV (Al Machot et al., 2019; Janidarmian et al., 2017), in

each iteration the model is trained on all the subjects except one, which is used for testing. In this

way, the intra-subject dependencies present in subject-dependent CV are hence removed. It should

be noted that, in this case, as is shown in Figure 2.5(b), the number of folds is lower or equal to the

number of subjects in the dataset.
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(a) Subject-dependent CV

(b) Subject independent CV

Figure 2.5: Different types of CV in HAR
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2.2 Related work

The sliding window technique is widely employed in HAR, and the literature contains a plethora

of examples where both, overlapping (e.g., (Bao & Intille, 2004a; Lara, Pérez, Labrador, & Posada,

2012; Morris et al., 2014; Tapia et al., 2007)) and non-overlapping time windows are used (e.g., (Banos

et al., 2014; Cheng, Amft, & Lukowicz, 2010; Minnen, Westeyn, Ashbrook, Presti, & Starner, 2007;

Reddy et al., 2010)).

2.2.1 Overlapping sliding windows

The work by Bao and Intille (2004a) uses overlapping sliding windows to segment signals com-

ing from five biaxial accelerometers placed on 20 subjects (13 males and 7 females) under laboratory

and semi-naturalistic conditions while performing 20 daily activities. Subsequently, each window is

transformed into a set of features namely mean, energy, frequency-domain entropy, and correlation

of acceleration data. The authors use k-nearest neighbor (KNN), decision tree (DT), and naive bayes

(NB) classifiers, and subject-independent cross-validation (CV) and subject-dependent CV for sys-

tem evaluation. They reach the overall accuracy of 84% with DT under the subject-independent CV

process.

Another example is work by Tapia et al. (2007) where the authors develop a real-time recogni-

tion system to recognize physical activities and in some cases, their intensities. They segment the

signal data collected from 21 subjects wearing triaxial wireless accelerometers and a wireless heart

rate monitor while performing 30 physical gymnasium activities using overlapping sliding windows.

Subsequently, from each window, they extract time domain and frequency domain features and us-

ing a DT classifier they recognize activities.with an accuracy of 94.6% using subject-dependent CV

and 56.3% using subject-independent CV.

Lara et al. (2012) combine acceleration data with vital signs to improve the performance of HAR

systems. They apply ARP on a dataset that was collected from eight subjects (7 males and 1 female)

while wearing a BioHarnessTM BT chest sensor strap1. Using data from a triaxial accelerometer and

vital signs, they detect five activities including running, walking, sitting, ascending, or descending.
1http://www.zephyr-technology.com/bioharness-bt.html

16

http://www.zephyr-technology.com/bioharness-bt.html


Sensor signals are partitioned into overlapping time windows with three different sizes: 5-seconds,

12-seconds, and 20-seconds sliding at 50% of their sizes and 90 features were extracted from each

time window. NB, DT, Bayesian Network, Multilayer Perceptron, Additive Logistic Regression and

classifier ensembles are used to recognize activities. They achieve up to 95.7% overall accuracy,

which was evaluated through subject-dependent CV. Their results also indicate that vital signs are

useful to discriminate between certain activities like running and sitting compared to the cases that

utilize acceleration data only.

Recofit (Morris et al., 2014) is a well-known reference on HAR, which applies ARP on a dataset

of accelerometer and gyroscope data collected from 114 participants over 146 sessions. The authors

address three major challenges namely (1) segmenting exercise from intermittent non-exercise peri-

ods, (2) recognizing which exercise is being performed, and (3) counting repetitions. Data points are

windowed into 5-second overlapping windows sliding at 200 ms and subsequently, each window is

transformed into 224 features. Linear support vector machines (SVM) are used in the classification

stage and evaluated by subject-independent CV. Spectacular performance is achieved, with preci-

sion and recall greater than 95% to identify exercise periods, recognition of up to 99% for circuits

of 4 exercises, and counting accurate to ±1 repetition, 93% of the time.

2.2.2 Non-overlapping sliding windows

Regarding non-overlapping windowing, Minnen et al. (2007) describes an activity recognition

component to recognize soldier activities as a part of the Soldier Assist System (SAS). They ap-

ply ARP on the signal of a six three-axis bluetooth accelerometers positioned on the right thigh

sidearm holster to recognize 14 soldier activities. The sensor signals are partitioned by 3-second

non-overlapping sliding windows and then each window is transformed into 378 features. A boost-

ing ensemble classifier is used to select the most important features and also recognize the activities.

Their recognition system achieves 78.7% for continuous event recognition (considering null activ-

ity) and 70.3% frame level accuracy. These values increase to 90.3% and 90.3%, respectively when

considering only the modeled activities. In their study, they use subject-independent CV to evaluate

their system.
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Another example is the work by Reddy et al. (2010), where the authors create a transporta-

tion mode recognition system using a mobile phone to identify whether an individual is stationary,

walking, running, biking, or in motorized transport. The dataset used in their study contains ac-

celerometer measurements, GPS, WiFi, and GSM signals of sixteen individuals (eight male and

eight female) while six phones attached to their bodies simultaneously and were in one of the five

transportation modes for fifteen minutes. The signals are windowed into 1-second non-overlapping

sliding windows and each window is transformed into a set of features such as magnitude of the

force vector, mean, variance, energy, etc. They use several classifiers namely DT, NB, KNN, SVM,

Hidden Markov Model and a two-stage classifier involving DT combined with discrete Hidden

Markov Model. They achieve an accuracy level of 93.6% with the two-stage classifier, which was

evaluated by subject-dependent CV.

Cheng et al. (2010) implement an on-body capacitive sensing approach to recognize activities

such as chewing, swallowing, speaking, sighing (taking a deep breath), as well as different head

motions and positions. They use a dataset that contains the 4.3 hours-electrode collar data which

was collected from three subjects (one female, two males; aged between 25 and 45 years) while

performing a set of head movements, swallow water from a cup, chew and swallow bread pieces

and speak. Each signal is partitioned into 1.5-second non-overlapping sliding windows and each

window then is transformed into time domain features such as signal mean, variance, maximum,

etc. They use a linear discriminant classifier to identify various activities and evaluate the system

through subject-dependent CV and report the accuracy rate for the combination of activities.

Another example is the work by Banos et al. (2014), where the authors present an extensive

study to distinguish the windowing procedure, its impacts on the recognition system. They apply

ARP on the accelerometer data of a benchmark dataset collected from 17 subjects of different pro-

files performing 33 fitness activities in an out-of-lab environment. Sensor signals are windowed

into non-overlapping windows with a substantial set of window sizes ranging from 0.25 to 7 sec-

onds in steps of 0.25-seconds. Each window is then transformed into three different feature sets

(FS) namely FS1 (mean only), FS2 (mean and standard deviation) and FS3 (mean, standard devi-

ation, maximum, minimum and mean crossing rate). They use DT, KNN (K=3), NB and Nearest

Centroid Classifier (NCC) as the classifiers and subject-dependent CV for system evaluation. From
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this study, they prove that the interval 1–2 second is the best trade-off between recognition speed

and performance. Besides, they provide a set of guidelines for system definition and configuration

based on the particular application requirements and target activities.

2.3 Summary

In this chapter, all stages of ARP and the commonly used techniques in each stage are reviewed

in details. Considering sliding windows as the most widely used technique in the segmentation

stage of ARP, we review different types of this technique in previous works in HAR literature. In

the next chapter, we present our experiment setting including datasets, features sets, window sizes,

etc.
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Chapter 3

Methodology

3.1 Datasets

In this study, we use two public datasets of human activity, to evaluate the impact of overlapping

windows in a wide range of subjects, activities, and conditions.

3.1.1 Dataset 1

As the first dataset, we use the dataset described in (Baños et al., 2012), one of the most complete

public datasets for HAR in terms of the number of activities and subjects. The dataset consists of

data collected from 17 subjects of diverse profiles while wearing 9 Xsens1 inertial measurement

units (IMU) on different parts of their body. Subjects performed 33 fitness activities (Table 3.1)

ranging from warm up to fitness exercises in an out-of-lab environment. Each sensor provides

tri-directional acceleration, gyroscope, and magnetic field measurements, as well as, orientation

estimates in quaternion format (4D). Similar to prior work in Banos et al. (2014), acceleration

data was used in our study. The dataset also provides data for three sensor displacement scenarios

namely “default”, “self-placement” and “mutual-displacement” to compare the sensor anomalies,

but as in Banos et al. (2014), only the data from the default scenario is used in our study.

1https://www.xsens.com
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Activity Label Activity Label

No activity 0
Upper trunk and lower body opposite

twist (20x)
18

Walking (1 min) 1 Arms lateral elevation (20x) 19
Jogging (1 min) 2 Arms frontal elevation (20x) 20
Running (1 min) 3 Frontal hand claps (20x) 21
Jump up (20x) 4 Arms frontal crossing (20x) 22

Jump front & back (20x) 5 Shoulders high amplitude rotation (20x) 23
Jump sideways (20x) 6 Shoulders low amplitude rotation (20x) 24

Jump leg/arms open/closed (20x) 7 Arms inner rotation (20x) 25
Jump rope (20x) 8 Knees (alternatively) to the breast (20x) 26

Trunk twist (arms outstretched) (20x) 9
Heels (alternatively) to the backside

(20x)
27

Trunk twist (elbows bended) (20x) 10 Knees bending (crouching) (20x) 28
Waist bends forward (20x) 11 Knees (alternatively) bend forward (20x) 29

Waist rotation (20x) 12 Rotation on the knees (20x) 30
Waist bends

(reach foot with opposite hand) (20x)
13 Rowing (1 min) 31

Reach heels backwards (20x) 14 Elliptic bike (1 min) 32
Lateral bend

(10x to the left + 10x to the right)
15 Cycling (1 min) 33

Lateral bend arm up
(10x to the left + 10x to the right)

16 - -

Repetitive forward stretching (20x) 17 - -

Table 3.1: Activity set in dataset 1.
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3.1.2 Dataset 2

The second dataset used is also one of the most complete and big public datasets for HAR in

terms of the number of activities and subjects (Morris et al., 2014). The dataset contains data for 74

activities (Table 3.2) from 94 subjects (28 female), ages 18-58 (µ = 34.2). The data was collected

in a large lab space from an armband worn on the right forearm, containing a SparkFun “Razor

IMU” inertial sensor2. This IMU includes a 3-axis accelerometer and a 3-axis gyroscope, which

transmit sensor values to a PC at 50Hz. As can be seen in Table 3.2, there are several activities

in the dataset such as ”Arm band adjustment” and ”Device on Table” which we consider as noise

in this study. Besides, since during the data collection, the subjects wore a single joint sensor on

their right forearm, the activities of the opposite hand (left hand) can not be captured properly with

the sensors. Thus, we have done a relabeling process to clarify the dataset. In this process, (1) we

label all the irrelevant and opposite hand activities as a ”Noise” class (2) all the activities that refer

to multiple labels are grouped together as one exercise. Table 3.2 shows all the activities and their

labels after the relabeling process.

3.2 Experimental Setup

Similar to prior work by Banos et al. (2014), we did not apply any pre-processing to the dataset.

We used both overlapping and non-overlapping windows. Overlapping windows were sliding at

200 ms, with window sizes ranging from 0.25 s to 7 s in steps of 0.25 s. For instance, a 5-second

window shared 4.8 s of data with the previous one. Given the constant value of the sliding duration

(200 ms), using a set of different window sizes is equivalent to exploring the impact of various

overlapping sizes on the performance of our HAR systems. For non-overlapping windows, we used

the same settings as in Banos et al. (2014): disjoint windows with sizes ranging from 0.25 s to 7 s

in steps of 0.25 s. We used the same feature sets as in Banos et al. (2014), namely FS1 (mean

only), FS2 (mean and standard deviation) and FS3 (mean, standard deviation, maximum, minimum

and mean crossing rate). Finally, for the classification part, we used the following classifiers: DT,

KNN (K=3), NB and Nearest Centroid Classifier (NCC). We used these classifiers as implemented
2https://www.sparkfun.com
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Activity Label Activity Label Activity Label
Arm band adjustment 1(Noise) Lawnmower (both) 20 Squat (arms in front) 33

Arm straight up 1(Noise) Lawnmower (left) 1(Noise) Squat (hands behind head) 33
Band Pull-Down row 2 Lawnmower (right) 21 Squat (kettlebell) 33

Bicep Curl 3 Lunge (both legs) 22 Squat Jump 33
Bicep Curl (band) 3 Ball Slam 23 Squat Rack Shoulder Press 33

Box Jump 4 No Exercise 1(Noise) Static Stretching 1(Noise)
Burpee 5 Note 1(Noise) Stretching 1(Noise)

Butterfly sit-up 6 Triceps Extension(standing) 24 Tap IMU 1(Noise)
Chest Press 7 Triceps Extension (both) 24 Tap left IMU 1(Noise)

Crunch 8 Plank 25 Tap right IMU 1(Noise)
Device on Table 1(Noise) Power Boat pose 26 Triceps Kickback(bench –both) 34

Dip 9 Pushups (foot variation) 27 Triceps Kickback (bench –left) 1(Noise)
Dumbbell Deadlift Row 10 Pushups 27 Triceps Kickback (bench –right) 34
Dumbbell Row (both) 11 Stretching 1(Noise) Triceps Extension (lying –both) 35
Dumbbell Row (left) 1(Noise) Rest 1(Noise) Triceps Extension (lying –left) 1(Noise)

Dumbbell Row (right) 12 Rowing Machine 28 Triceps Extension (lying –right) 35
Dumbbell Squat (hands at side) 13 Running 29 Two-arm Dumbbell Curl (both) 36

Dynamic Stretch 1(Noise) Russian Twist 30 Non-listed 1(Noise)
Elliptical Machine 14 Seated Back Fly 31 V-up 37

Punches 15 Shoulder Press 32 Walk 38
Invalid 1(Noise) Side Plank (left) 25 Walking lunge 39

Jump Rope 16 Side Plank (right) 25 Wall Ball 40
Jumping Jacks 17 Sit-up (hand behind head) 6 Wall Squat 41

Kettlebell Swing 18 Sit-up 6 Dumbbell Curl (alternating) 36
Lateral Raise 19 Squat 33

Table 3.2: Activity set in dataset 2.
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in scikit-learn 0.20 (Pedregosa et al., 2011) with default hyperparameters. We have also investi-

gated non-default hyperparameters in another experiment. Furthermore, to provide a comparison

with the framework in Sarbishei (2019), we have utilized time-domain histogram features and the

AdamOptimizer algorithm in Tensorflow 1.12.0 to train a neural network classifier with Sigmoid

and Softmax trigger functions in the hidden and output layers, respectively. Such experiments will

be explained in details in Chapter 4.

To evaluate model performance, we used both subject-dependent CV and subject-independent

CV. We use the F1-score as a performance measure due to its robustness in class imbalance. F1-

score which reaches its best at 1 and worse at 0, is computed as follows:

F1 = 2×(precision×recall)
(precision+recall)

All the source code for the conducted experiments are available in our GitHub repository 3. The

repository contains the scripts to segment the datasets for different window sizes, feature sets and

sliding window techniques. There is also a script for training and testing all mentioned classifiers

on windowed datasets. Finally, it also contains code to reproduce all presented figures in this paper.

3.3 Classifiers

In this section, the utilized classifiers in this study are explained.

3.3.1 Decision Tree

Decision Tree is a non-parametric supervised learning method used for classification and regres-

sion (Quinlan, 1986). A decision tree is a flowchart-like structure which is constituted of several

nodes and branches. Nodes can be categorized into two types namely internal nodes (decision Node)

which show a test on a feature of dataset and leaves (terminal Node) which represent a class label

of the dataset. Regarding the branches, they represent the output of the test on internal nodes. A

tree is constructed by splitting the training dataset into subsets based on a set of tests on the values

of a certain feature. This process follows a recursive manner meaning that for each derived subset

it is repeated. The recursion is finished when the classes of all samples in the subset at a node are
3http://www.github.com/big-data-lab-team/paper-generalizability-window-size
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the same or when partitioning the data does not improve the prediction. The primary challenge in

the growing the decision tree (learning phase) is to select the best attribute as the root node and also

each level to split the dataset. To do so, the impurity of each node should be calculated. Table 3.3

indicates the most widely used criterion for measuring the node impurity. Using such techniques, at

each internal node, the entropy of all attributes in the dataset is calculated and one with the lowest

entropy is selected to split the dataset. In scoring time for a given data point, we start from the root

of the tree and apply its test on the corresponding attribute of data point. Based on the result, we

follow the corresponding branch and jump to the next level. We continue until we reach a leaf node

that contains predicted class value.

Criterion Formula Description

Gini Index
∑

i p(i)(1− p(i))
p(i) is the probability that an

arbitrary sample being classified
to class i.

Entropy −
∑

i p(i) log p(i)
p(i) is the relative frequency of

class i

Towing rule pLpR
4 (

∑
i |(p(i|tL)− (p(i|tR)|)2

where L and R refer to the left
and right sides of a given split
respectively, and p(i|t) is the
relative frequency of class i at

node t

Table 3.3: The most common utilized techniques for splitting the dataset in DT (Zambon et al.,
2006)

3.3.2 K-Nearest Neighbors

KNN is an instance-based supervised learning method used for classification and regression (Cover,

Hart, et al., 1967). This method is also categorized as non-generalizing learning algorithms since

it does not learn a general internal model from the training dataset but simply stores all of the data

points. KNN is based on a neighborhood majority voting scheme and assigns the new instance to

the most common class amongst its K nearest neighbors. Table 3.4 describes several metrics to

measure the similarity of two vectors which can be used to find the k nearest neighbors of a given

instance. Regarding the number of neighbors (K), according to to (“Miscellaneous Clustering Meth-

ods”, 2011), increasing it may (1) improve the performance of the classifier (2) reduce the effect
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of noise on the classification (3) makes the decision boundary less distinct. It should be noted that

choosing a too big value for k may result in performance drop since it can destroy the locality and

as a result, KNN uses the not neighbors to classify the coming data point.

Distance Metric Formula Distance Metric Formula

Euclidean
√∑n

i=1 (xi − yi)2 Standardized Euclidean
√∑n

i=1
(xi−yi)2

xi
2

City Block
∑n

i=1 |xi − yi| Minkowski p
√∑n

i=1 |xi − yi|
p

Chebychev maxi{|xi − yi|} Cosine x.y
||x||||y||

Table 3.4: Common used distance metrics in KNN - x and y are two vectors with equal length

3.3.3 Naı̈ve Bayes

NB (Theodoridis & Koutroumbas, 1998) is a supervised learning algorithm based on the Bayes

theorem with the naive assumption of feature independence. The following equations show the NB

formula:

P (y|x1, x2, ..., xn) =
p(y)

∏n
i=1 p(xi|y)

p(x1, x2, ..., xn)
(1)

Where y represents classes and x1 to xn are feature vector. Since p(x1, x2, ..., xn) is constant given

the input, we can use the following classification rule:

ŷ = argmaxyp(y)

n∏
i=1

p(xi|y) (2)

In general, there are several types of NB classifiers such as Gaussian NB, Multinomial NB and

Complement NB which mostly differ by the assumptions they make about the distribution of p(xi|y).

3.3.4 Nearest Centroid Classifier

NCC (Tibshirani, Hastie, Narasimhan, Chu, et al., 2003) is a classification model which widely

used in text classification (Tan, 2008), bioinformatics (Levner, 2005) and medical domain (Sharma
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& Paliwal, 2010). This classifier calculates the centroid (mean) of each class in training set and

assigns to the observation the class whose mean is closet to the observation. The following equations

show the training and predicting phases of NCC:

Training: given labeled training samples {(~x, y1), (~x, y2), ..., (~x, yn)}where ~x is feature vector and

yi is the class label ∈ Y, for each class the centroid is calculated as follows:

~ul =
1

cl

∑
i∈cl

~xi (3)

where Cl is the set of indices of samples belonging to class l ∈ Y.

Prediction: The assigned class (ŷ) to a given observation ,~xi calculated as follow:

ŷ = argminl||~ul − ~x|| (4)

3.3.5 Artificial Neural Network

An Artificial Neural Network (ANN) is a systematic procedure of data processing inspired by

the nervous system function in animals. It tries to reproduce the brain logical operation using a

collection of neuron-like entities to perform processing of input data (Cortina-Puig et al., 2010). The

basic processing unit of an ANN is called perceptron which is an approximation to the biological

neuron. It is a decision-making unit with several input connections and a single output as shown in

Figure 3.1. The input neuron pi is weighted with a connection weight wi wi. The perceptron sums

the dot product of weights and inputs vectors and adds a bias b. The obtained total value (n) will be

transformed by a function (f) to produce the output value. This process is summarized as:

a = f(b+

i∑
j=1

wjpj) (5)

The function f which is called activation function or transfer function is used to introduce non-

linear properties into the network. Tables 3.5 shows the most widely used activation functions.
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Figure 3.1: Schematic representation of the perceptron (extracted from Cortina-Puig et al. (2010)).

Activation function Formula
Sigmoid f(x) = 1

1+e−x

Hyperbolic Tangent f(x) = 1−e−2x

1+e−2x

Rectified Linear units f(x) = max(x, 0)

Table 3.5: Commonly used activation functions in ANN

The problem of a perceptron is that it can not learn nonlinearly separable datasets. To solve this

problem, we can add several perceptrons to form a layer and also introducing further layers. In this

way, we have a multilayer feedforward neural network. In general, there are three types of layers in

ANN namely input layer, hidden layer, and output layer. The goal of the input layer is to distribute

incoming signals to the next layer and by definition, its units are not perceptron. However, the units

in all layers after the input layer and output layer are perceptron since they communicate with the

environment by sending or receiving messages to units in the layers to which they are connected.

The output layer provides a link between the network and environment by submitting the processed

information. In a classification problem, the number of units in the output layer is equal to the

number of class labels Sharma, Lee, and Chung (2008). In training the network, its parameters (wi)

are adjusted so that the difference between the output units and the target values is minimized. There

are several ways to train an ANN such as Resilient Backpropagation Riedmiller and Braun (1993),

Scaled Conjugate Gradient Møller (1993) and Levenberg–Marquardt backpropagation (Hagan &

Menhaj, 1994).
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3.4 Summary

In this chapter, the used datasets in this thesis are discussed. Subsequently, we explain the

experiment setup including feature sets, window sizes, classifiers, etc. As discussed in Chapter 2,

there are numerous classifiers that have been used in HAR field. In this chapter, we tried to cover

those that we utilized in this work. In the next chapter, we explain the conduced experiments and

present their results.
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Chapter 4

Results

In this section, the impact of the overlapping and non-overlapping sliding windows in HAR

systems with Subject-dependent CV and Subject-independent CV for both datasets is evaluated.

The experiments are categorized into global evaluation and activity-specific analysis.

For each experiment, we report distributions of average F1-score values obtained across all

validation folds. Each distribution contains 28 measures obtained for the different window sizes

mentioned in Section 3.2. We selected this representation over summary statistics or confusion

matrix as it provides a comprehensive and synthetic overview of classification performance over a

range of window sizes, classifiers, and feature sets. In all the figures of this section, “O” and “NO”

stand for overlapping and non-overlapping windowing respectively. Non-overlapping windowing is

represented in green, and overlapping windowing is in red.

4.1 Global evaluation

In this set of experiments, we analyze the general impact of overlapping and non-overlapping

windowing in HAR systems trough the average performance of models for different activities and

window sizes.
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Experiment 1: Subject-dependent CV

In this experiment, we apply non-overlapping and overlapping windowing with subject-dependent

CV and use it as a baseline for further evaluations.

We applied the ARP system as explained in Section 3.2, on the datasets described in Section 3.1.

For each window size, we partitioned the dataset in non-overlapping and overlapping windows

separately and extracted feature sets FS1, FS2, and FS3 in each window. We trained the classifiers

on the resulting feature vectors, and measured their average F1-score over 10-fold CV.

Dataset 1. Figure 4.1 shows the distribution of the F1-scores of the classifiers for different win-

dow sizes in overlapping and non-overlapping windows. The classifiers can be categorized into two

groups: (1) KNN and DT, that have very different performance distributions for overlapping and

non-overlapping windowing, and (2) NB and NCC, that show almost similar distributions for both

techniques. Our findings show that, in general, using overlapping windowing improves the perfor-

mance of all classifiers in all feature sets. Regarding the first group (KNN and DT), quantitatively,

using the overlapping windowing technique improves the F1-score of the KNN and DT by about

10%, 8% and 8% on average in FS1, FS2, and FS3 respectively. However, the improvement for the

second group is about 1%, on average, for all features sets, which is insignificant.

Dataset 2. The distribution of F1-scores for different window sizes and classifiers for overlapping

and non-overlapping windowing is shown in Figure 4.2. Generally, the trends for Dataset 2 and

Dataset 1 are similar. Overlapping windowing increases the F1-score and we observe the same two

performance groups as before. The F1-score distributions of DT and KNN for overlapping and

non-overlapping windowing are very different. Quantitatively, using overlapping sliding windows

increases the performance of KNN and DT by about 9%, 12% and 13% on average in FS1, FS2,

and FS3 respectively. Regarding the NB and NCC, however, the increase is minor to negligible for

all feature sets.

These results show that using the overlapping windowing technique rather than the non-overlapping

one in subject-dependent CV improves the performance of classifiers. This agreement between

our results and the general argument of the effectiveness of overlapping windowing in HAR sys-

tems (Janidarmian et al., 2014, 2017) reinforces our confidence in the correctness of our analysis
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method and its applicability to our next experiments.

(a) FS1 (b) FS2

(c) FS3

Figure 4.1: Experiment 1 – Subject-dependent CV – Dataset 1.

Experiment 2: Subject-independent CV

As explained in Section 2.1.2, subject-independent CV should be used to evaluate the perfor-

mance of HAR systems. Thus, in this experiment, we compare the overlapping and non-overlapping

windowing techniques when using subject-independent CV. The only difference between this ex-

periment and Experiment 1 is the use of subject-independent CV rather than subject-dependent CV.

Dataset 1. Figure 4.3 shows our results. Similar to Experiment 1 for this dataset, we observed the

same two performance groups among classifiers. Regarding the first group (KNN and DT), however,

overlapping windows do not lead to any improvement of the F1-score compared to non-overlapping

windows. Overlapping windows even slightly decrease the F1-scores of DT and KNN in all feature
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(a) FS1 (b) FS2

(c) FS3

Figure 4.2: Experiment 1 – Subject-dependent CV – Dataset 2.

sets, on average by 2% (FS1), 4% (FS2) and 1% (FS3). To further illustrate this result, Table 4.1

shows the F1-score of DT and KNN for several window sizes in overlapping and nonoverlapping

windowing techniques for FS3: the performance of overlapping and non-overlapping windows is

very similar. For NB and NCC the F1-scores obtained with both techniques are similar for all feature

sets.

Dataset 2. Figure 4.4 shows the results of Experiment 2 for Dataset 2. Once again, the F1-scores ob-

tained for overlapping and nonoverlapping windows are very similar. This time, with DT and KNN,

overlapping windowing improves the F1-scores slightly compared to non-overlapping windowing,

on average by 2% (FS1), 1% (FS2) and 1% (FS3). The comparison between the performance of

KNN and DT for several window sizes is shown in Table 4.1. For NB and NCC the F1-scores

obtained with both techniques are similar for all feature sets.
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Dataset window size (sec) Classifier F1-score - O (%) F1-score - NO (%)

1

1
DT 86.42 86.0

KNN 89.04 88.78

4
DT 81.97 83.38

KNN 82.05 82.18

6
DT 80.1 80.83

KNN 79.08 79.30

7
DT 80.61 80.62

KNN 77.74 78.68

2

1
DT 69.26 67.38

KNN 63.61 63.94

4
DT 74.37 73.06

KNN 65.52 67.01

6
DT 75.28 73.12

KNN 66.0 67.8

7
DT 75.46 73.06

KNN 66.0 67.93

Table 4.1: F1-scores of DT and KNN for several window sizes in overlapping (O) and nonoverlap-
ping (NO) windowing – Subject-independent CV – FS3.

In general, compared to Experiment 1 for both datasets, the performance of all classifiers in

all feature sets decreased which may be due to the overestimation of subject-dependent CV. In

other words, subject-independent CV removes the performance improvement resulting from using

overlapping windows in Experiment 1 which resulted from the overestimation of subject-dependent

CV. This experiment shows that the performance advantage of overlapping windows in the litera-

ture is due to the use of subject-dependent CV and in case of using subject-independent CV, this

method does not offer any benefit to the performance of HAR systems. Hence, we can reach to

the same recognition performance by using non-overlapping windows. Considering the resource-

intensity of overlapping windowing compared to non-overlapping one, this is an important conclu-

sion since through that we can save a lot of resources (energy, time, etc) which is a desirable feature

in HAR (Lara & Labrador, 2012).

Experiment 3: Subject-independent CV and new hyperparameters

One may claim that the results of Experiment 2 are due to the specific set of hyperparameters

used in the classifiers. Thus, to investigate that, we reproduced Experiment 2 with a new set of

hyperparameters for the KNN and DT classifiers.
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(a) FS1 (b) FS2

(c) FS3

Figure 4.3: Experiment 2 – Subject-independent CV – Dataset 1.

We selected new hyperparameter values such that (1) overfitting or underfitting does not occur,

and (2) the new values are as different as possible from those in the previous experiments. Ta-

ble 4.2 compares the selected values for hyperparameters of DT and KNN in Experiment 2 and

Experiment 3.

Dataset 1. Results are shown in Figure 4.5. As in the previous experiments, the F1-scores obtained

with overlapping and with non-overlapping windows are comparable. For DT, using overlapping

windows decreases the performance in all feature sets, by about 1%. As for KNN, using overlapping

windowing reduces the F1-score by about 4% in FS1 and FS2, and increases it by 1% in FS3.

Dataset 2. Figure 4.6 shows our results for this dataset. The trend is similar to the previous ex-

perirments, i.e., F1-scores obtained with overlapping and with non-overlapping windowing are very

similar. Qualitatively, such differences for both classifiers remain lower than 1% in all feature sets.
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(a) FS1 (b) FS2

(c) FS3

Figure 4.4: Experiment 2 – Subject-independent CV – Dataset 2.

In conclusion, overlapping windowing does not provide any performance improvement com-

pared to non-overlapping windowing with our new set of hyperparameters, which confirms the

findings of Experiment 2.

4.2 Activity-specific evaluation

The global evaluation presented previously is useful to have a general view of the effect of

windowing techniques in HAR systems. However, it is also interesting to particularize this study

to each specific activity. Thus, in this section, we analyze the impact of overlapping and non-

overlapping windowing for each activity.
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Classifier Hyperparameter Experiment 2 Experiment 3
KNN K (n neighbors) 3 6

DT
Criterion Gini Entropy

max depth None 20
max features 1 0.7

Table 4.2: The hyperparameters values for KNN and DT in Experiment 2 and Experiment 3. When
max depth is set to None, the decision tree is expanded until all leaves are pure (Pedregosa et al.,
2011).

Experiment 4: Subject-independent CV per activity

As shown by Experiment 2, overlapping and non-overlapping windowing techniques only lead

to minor performance differences when evaluated with subject-independent CV. In this experiment,

we investigate how this result particularize to specific activities. The presented data is the same as

in Experiment 2, but the classification performance is now detailed for each activity. For brevity,

we only focus on feature set FS3. In all figures, activities are shown with the labels reported in

Tables 3.1 (Dataset 1) and Tables 3.2 (Dataset 2).

Dataset 1. In Figure 4.7, the activity-specific F1-scores distributions achieved for all classifiers,

window sizes and windowing approaches are presented. As expected from the results shown in 4.3(c),

the differences between overlapping and non-overlapping windowing for all activities are slow. In

general, the performances of the majority of the activities drop (by 5% on average) when overlap-

ping windowing is used instead of non-overlapping windowing. However, using DT (Figure 4.7(a)),

some activities such as Heels (27), Rotation on knees (30), Trunk Twist (10), Knees (altering) (26),

Knees Bending (28), Rowing (31) and Jump rope (8) show a small performance improvement by

overlapping windowing. As for KNN (Figure 4.7(b)), performance reductions resulting from the

use of overlapping windowing are higher than for DT. As an example, using overlapping drops the

performance of activity Repetitive forward stretching (17) by 11%. This may be due to the nature

of KNN (Cover et al., 1967), for which a small change in the dataset may have a large impact on the

performance. Similar to DT, the performance for some activities also improves when overlapping

windows are used, but by less than 2%. As can be seen in Figure 4.7(c) and Figure 4.7(d), the

performance of all activities for NB and NCC are almost the same.

Dataset 2. Similar to Dataset 1, the activity-specific F1-score distributions obtained for this dataset
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(a) FS1 (b) FS2

(c) FS3

Figure 4.5: Experiment 3 – Subject-independent CV – Dataset 1.

for the two scenarios are similar. For this dataset, using overlapping windowing with KNN and

DT slightly enhances the F1-score of the majority of activities in comparison to non-overlapping

windowing, by 4% on average. The highest improvements are observed for activities Lawnmower

(right) (21), Lateral Raise (19) and Seated Back Fly (31) for DT and Wall Ball (40), Seated Back

Fly (31) and Power Boat pose (26) for KNN. Similar to Dataset 1, the performance of NB and NCC

for all activities in both scenarios are almost the same.

This experiment shows that using overlapping windowing with subject-independent validation

can impact the recognition performance of HAR systems for diverse activities differently. In spite of

being mostly minor, for the activities in this study, overlapping windowing reduces the recognition

accuracy of most activities and only a few of them show improvement. Moreover, the impact of

overlapping windowing may be subject to the dataset, i.e., using overlapping windowing may impact
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(a) FS1 (b) FS2

(c) FS3

Figure 4.6: Experiment 3 – Subject-independent CV – Dataset 2.

the performance of the system in recognizing a single activity in a different way. Running is a good

example here. Using overlapping windowing reduces the F1-score of the system for this activity in

Dataset 1, but it improves that in Dataset 2.

In summary, the recognition accuracy for most of the activities investigated in this study is quite

comparable between the two scenarios with overlapping and non-overlapping windows.

Experiment 5: More discriminative features and neural-network classifier

In this experiment, we evaluate the effectiveness of non-overlapping windows using more dis-

criminative time-domain features and a custom fine-tuned classifier. Namely, we target the HAR

framework presented in Sarbishei (2019). The approach in Sarbishei (2019) utilizes configurable

time-domain histogram features and a single hidden layer neural network classifier. It has been
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shown that the framework can outperform KNN classifiers as well as many other time-domain fea-

tures explored by previous work. The framework in Sarbishei (2019) allows for a segmentation with

a configurable sliding window. It presents results on subject independent CV using Dataset 2 and

a 5s overlapping window sliding at 200ms steps. Here, we conduct a similar experiment, but with

a non-overlapping window size of 5s. To provide a fair comparison, we use the same experimental

setup compared to Sarbishei (2019), which is presented next.

We use time-domain histogram features, i.e., 120 bins in total, where 20 bins are assigned

uniformly to each individual sensor axis. The accelerometer full-scale range has been set to ±2g,

while the gyroscope full-scale range has been set to ±512dps. The single-hidden-layer neural

network classifier consists of 120 input neurons, 60 hidden neurons and 7 output neurons targeting

6 activities and one noise class representing all other activities and the no activity periods. The

Sigmoid (Softmax) trigger function has been used for the hidden (output) layer. Training the neural

network has been done in Tensorflow 1.12.0 using a batch size of 32, and the AdamOptimizer

algorithm. The number of epochs is chosen, such that the overall number of data points that are

fed to the neural network for training becomes identical compared to the experiment in Sarbishei

(2019), i.e., similar training time.

The normalized confusion matrix for both overlapping and non-overlapping windows under a

subject-independent CV process is shown in Table 4.3. The rows refer to the true activities, while the

columns correspond to the predicted ones. Each entry in the confusion matrix has two values, where

the top value refers to the scenario with overlapping windows, while the bottom value corresponds

to the scenario with non-overlapping windows. The results indicate that the use of overlapping

windows provides minor improvements on recognition accuracy compared to the non-overlapping

windows under subject independent cross validation, even when discriminative features and a well-

trained neural network classifier are utilized.
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(a) DT

(b) KNN

(c) NB

(d) NCC

Figure 4.7: Experiment 4 – Subject-independent CV – Dataset 1.
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(a) DT

(b) KNN

(c) NB

(d) NCC

Figure 4.8: Experiment 4 – Subject-independent CV – Dataset 2.
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Activities Noise (Others) Curl Triceps Run Elliptical JumpJacks Kettlebell

Noise (Others)
0.99407
0.9928

0.00094
0.00103

0.00091
0.00099

0.00209
0.00286

0.00127
0.00129

0.00026
0.00028

0.00045
0.00074

Curl
0.1426
0.1369

0.85082
0.8492

0.00659
0.0139

0
0

0
0

0
0

0
0

Triceps
0.17235
0.19643

0.00451
0.00487

0.82315
0.7987

0
0

0
0

0
0

0
0

Run
0.20903
0.20127

0
0

0
0

0.78668
0.79237

0.00429
0.00565

0
0

0
0.00071

Elliptical
0.16742
0.16265

0
0

0
0

0.00916
0.03113

0.82342
0.80622

0
0

0
0

JumpJacks
0.20147
0.23729

0
0

0
0

0
0

0
0

0.79853
0.76271

0
0

Kettlebell
0.18938
0.21484

0.00287
0

0
0

0
0

0
0

0
0

0.80775
0.78516

Table 4.3: Normalized confusion matrix for Experiment 5, i.e., six activities and one noise class rep-
resenting all other activities and no activity periods from Dataset 2 under subject independent cross
validation. Rows are true activities, and columns are predicted ones. Each entry has two values,
where the top (bottom) value refers to the scenario with overlapping (non-overlapping) windows.

4.3 Summary

In this chapter, we show the results of five different experiments about the impact of using over-

lapping and nonoverlapping windowing techniques with two different system evaluation methods.

In general, the results show that using nonoverlapping windowing, we can achieve the same activity

recognition performance. Moreover, the results of Experiments 3 and 5 confirm that our hypothesis

is true for different hyperparameters and classifiers. In the next chapter, we discuss the results and

conclude the thesis by summarizing our work and offering remarks on possible future works.
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Chapter 5

Discussion and conclusion

5.1 Discussion

As can be seen by comparing the results of Experiment 1 and 2 for non-overlapping window-

ing, using Subject independent CV instead of Subject-dependent CV reduces the F1-score of KNN

and DT by 10% and 11% on average for Datasets 1 and 2 respectively, which is substantial. It

confirms that samples drawn from the same subject cannot be considered independent. In an ARP

setup, Subject dependent CV overestimates the classification performance and should, therefore,

be avoided. The detrimental effect of subject-dependent CV is even larger when overlapping time

windows are used. In this case, as can be seen by comparing the results of Experiments 1 and 2

for overlapping windowing, Subject-independent CV reduces the F1-score of KNN and DT by 16%

and 21% on average for Dataset 1 and 2 respectively. This further confirms that within-subject

dependencies between time windows account for a significant part of the performance measured

through Subject-dependent CV. Furthermore, for overlapping windows, the performance difference

between subject-dependent CV and subject independent CV increases with the window size. This

is consistent with our previous comments, as the amount of overlap between overlapping windows,

and therefore their correlation, also increases with the window size.

Comparing the results for overlapping and non-overlapping windowing in Figure 4.1 and Fig-

ure 4.2 shows that when using Subject-dependent CV, overlapping windowing can improve the
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recognition power of the classifiers, which coincides with the general idea that overlapping win-

dowing improves the performance of HAR systems (Janidarmian et al., 2014, 2017). However,

our results confirm that such improvement comes from the increasing correlation among test and

train folds due to the underlying problems of Subject-dependent CV in HAR systems. In contrast,

when using Subject independent CV, the impact of using overlapping windows is minor to neg-

ligible, as can be seen in Figure 4.3 and Figure 4.4. This is in contradiction with the common

argument that overlapping windows improve classification performance by bringing more data to

the classifier. However, it also confirms our hypothesis that the performance increase coming from

overlapping windows is, in fact, coming from the extra correlation between time windows, when

Subject-dependent CV is used.

Experiment 3 showed that this conclusion also holds when using a different set of hyperparam-

eters, which improves the generalizability of our result.

The results of Experiment 4 show that the impact of overlapping windowing with subject inde-

pendent CV can be different per activity. In other words, overlapping windowing for some activities

such as Trunk Twist and Lateral Raise improves the recognition performances and for others like

Repetitive forward stretching and Heels not. However, such changes remain negligible for most

activities and using this technique in HAR seems to be non-beneficial.

Experiment 5 explored the use of more discriminative features with a neural-network model,

and the results similarly suggest that the use of overlapping windows does not provide major per-

formance improvements.

Finally, Table 5.1 shows the data size and required time for segmentation and training in over-

lapping and non-overlapping windowing techniques with subject independent CV for two datasets.

Segmenting using overlapping windows is almost twice longer than with non-overlapping windows,

which is significant. Similarly, training on the data windowed by overlapping windows technique

takes 4 times of non-overlapping one. As for storage, the size of segmented data by overlapping

sliding windows technique is almost 9 times of data produced by non-overlapping one for both

datasets. In spite of such increase in size and computation, this technique does not improve the

performance of the classifiers when used with Subject independent CV.

45



Dataset Raw size (GB)
Nonoverlapping windowing Overlapping windowing
Segmentation Training

time
(day)

Segmentation
Training time (day)

- -
Time

(Hour)
Size(GB) Time (Hour) Size (GB)

1 2.4 6.0 2.3 1.0 11.0 21 4.0
2 3.4 12.0 5.8 2.0 20.0 51 8.0

Table 5.1: Overlapping windowing vs. nonoverlapping windowing required resources - Subject
independent CV

5.2 Conclusion

We conclude that the suggested use of overlapping sliding windows in HAR systems is associ-

ated with underlying limitations of subject-dependent CV. When subject-independent CV is used,

overlapping sliding windows do not improve the performance of HAR systems but still require

substantially more resources than non-overlapping windows.

Our results show that the performance of all classifiers drops when subject-independent CV is

used rather than subject-dependent CV. One possible way to address this problem would be to use

features that are more common among subjects with different characteristics. Thus, in our future

work, we will design such features and investigate their impact on the performance of HAR systems.

This would enable building more generalized systems with a limited number of subjects.
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