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Abstract

Wider availability of sensors and sensing systems has pushed research in
the direction of automatic activity recognition (AR) either for medical or
other personal benefits e.g. wellness or fitness monitoring. Researchers apply
di↵erent AR techniques/algorithms and use a wide range of sensors to dis-
cover home activities. However, it seems that the AR algorithms are purely
technology-driven rather than informing studies on the type and quality of
input required. There is an expectation to over-instrument the environment
or the subjects and then develop AR algorithms, where instead the problem
should be approached from a di↵erent angle i.e. what sensors (type, quality
and quantity) a given algorithm requires to infer particular activities with a
certain confidence? This paper introduces the concept of activity recognition,
its taxonomy and familiarises the reader with sub-classes of sensor-based AR.
Furthermore, it presents an overview of existing health services Telecare and
Telehealth solutions, and introduces the hierarchical taxonomy of human be-
haviour analysis tasks. This work is a result of a systematic literature review
and it presents the reader with a comprehensive set of home-based activi-
ties of daily living (ADL) and sensors proven to recognise these activities.
Apart from reviewing usefulness of various sensing technologies for home-
based AR algorithms, it highlights the problem of technology-driven cycle of
development in this area.
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1. Introduction

In the last two decades sensors have become cheaper, smaller and widely
available, residing at the edge of the Internet. Some such examples are
wearable personal activity (PA) trackers (e.g. Fitbit, Nike+ FuelBand, etc.).
However, the available commercial o↵-the-shelf (COTS) sensors are only ca-
pable of ‘sensing’ a small subset of user activities – mostly outdoor sport
activities (type of activity, distance covered, time taken, etc.) and estima-
tion of additional information such as energy expenditure (either kcal or
self-crafted metrics e.g. Nike’s fuel-points). However, a large part of our
lives, and increasingly so in the advanced age, is spent in the home, yet very
little is known about our activities and behaviour in there.

We are surrounded by a multitude of sensing devices and Mark Weiser’s
vision of ubiquitous computing [120] is starting to materialise in the advances
made in embedded networked systems currently addressed as the Internet of
Things (IoT). The significant increase in devices streaming low-level informa-
tion over the Web presents many new challenges. Whilst many researchers
present this as a big data challenge, we believe that many of the environments
and applications will require to justify the value and process relatively small
data, making this a two-faceted problem requiring to consider the highly dis-
tributed, non-interoperable, small and relatively “lonely” data. E�cient and
accurate activity recognition (AR) algorithms are needed in order to make
sense of this data and provide useful/actionable information and services in
the human activity monitoring context. However, the task of AR is not trivial
and the reality is that not all user activities are recognisable using all avail-
able sensors and algorithms. Often we simply do not know what activities
people do on daily basis. Self-reporting techniques i.e. asking people to log
their own activities, do not always work and there is an increasing need for
automation. If sensorised systems were capable of reporting on all user activ-
ities this would enable researchers to undertake a very broad range of clinical
and longitudinal studies. An analysis of a single activity (e.g. walking) in
isolation is often insu�cient to judge on one person’s physical condition or
to judge on the success of an intervention. Instead, researchers and doctors
are in need to gain a complete picture/profile of a person to observe changes
and relationships that arise over time.

This paper was motivated by the need to answer the question as to what
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are best sensor data and technologies in terms of their capability to support
accurate recognition of a large set of activities of daily living (ADLs), and it
is a result of a systematic literature review focused on works reporting using
such technologies. It mainly focuses on sensor-based and not on the vision-
based AR, however examples are also given from this field. Section 2 gives
motivation for automatic activity recognition, describes the taxonomy of AR
present in the literature, introduces health services, taking the example of the
UK National Health Service (NHS) Telecare and Telehealth solutions, and
provides an insight into subclasses of sensor-based AR. Section 3 introduces
the hierarchical taxonomy of human behaviour analysis tasks and explains
the origin of the dictionary of ADLs used in the analysis. Tasks and sub-tasks
of ADLs are organised hierarchically and each category is analysed separately.
The paper concludes with a discussion (Section 4) which summarises findings
and highlights the problem of technology-driven AR algorithms development.

2. Background

According to the World Health Organization (WHO), between 2015 and
2050 the proportion of the world’s population over 60 years will nearly double
from 12% to 22% [122]. Only in the UK, in 2010 “10 million people were
over 65 years old. The latest projections are for 5.5 million more elderly
people in 20 years’ time and the number will have nearly doubled to around
19 million by 2050” [28]. An ageing population and the increase in chronic
illnesses such as diabetes, obesity, cardiovascular and neurological conditions
have influenced research directing it towards sensor-based solutions. One
of the medical conditions which a↵ects a large proportion of each country’s
population is stroke – a↵ecting 15 million people worldwide each year [124].
With so many elderly citizens and an ageing society, healthcare systems all
over the world are at financial risk. New models of healthcare are needed,
in which technology can be utilised not only to reduce the cost of care but
also to assist elderly citizens’ well-being and in living an independent life.
NHS in England has brought to life 15 Academic Health Sciences Networks
(AHSN) to mainly “deliver measurable gains in health and wellbeing” [112].
The NHS currently faces the problems of: reduced public funding, rising
costs and increased demand; and sees the solution in inverting the current
healthcare system towards personalised and decentralised healthcare [109].
Sensor technology is the main medium through which this patient-centric
healthcare model can be accomplished.
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Figure 1: From Real-World to Activity Recognition via Sensors.

Adaptation of sensor technology in order to satisfy healthcare require-
ments raises many challenges, ranging from the selection of suitable sensors
and their (user) acceptance to finding e�cient and reliable AR algorithms.
How to select the suitable technology? How would a clinician or a researcher
know which sensor is fit for a given purpose, bearing in mind some pre-
determined constraints (e.g. cost, privacy constraints)?

A sensor measures a single real-world parameter/variable and turns it
into an analogue or digital signal. A single measurement may be useful for
simple applications (e.g. temperature monitoring in the o�ce) and may be
su�cient to discover very simple events (e.g. fire in the o�ce), but it is
often insu�cient for an automated system that can infer all the activities
taking place in an area of interest. Therefore, a fusion of multiple sensor
readings is often needed for an activity recognition system to reconstruct
what has been captured – as visualised in Fig. 1. There are multiple ways of
approaching AR, described in the reminder of this section. The strength of
the IoT lies in the foundations of the Internet i.e. distribution of resources,
support for common naming schema/ontologies, common access strategies,
and availability of computational resource to mention a few. The challenge
is to locate and fuse the right pieces of (sensor) information together in order
to infer activities of interest at the best quality of information possible.
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2.1. Activity Recognition and Taxonomy

Activity recognition is “the process whereby an actor’s behaviour and
his/her situated environment are monitored and analysed to infer the under-
going activities. It comprises many di↵erent tasks, namely activity modelling,
behaviour and environment monitoring, data processing and pattern recog-
nition” [24]. There are many approaches for delivering AR which have been
classified by various taxonomies – as illustrated by Fig. 2. One classification
is based on the data type the AR system processes and thus there are two
main classes: vision-based AR and sensor-based AR [99, 24]. Vision-based
AR uses visual sensing devices such as camera-based surveillance systems,
or most recently, RGB depth cameras designed for motion-sensing applica-
tions and games such as Asus Xtion PRO LIVE1 or Microsoft Kinect [138]. It
utilises computer vision techniques to analyse video images and extract mean-
ing from them. Aggarwal and Ryoo [1] further classify the vision-based tech-
niques into: single-layered approaches and hierarchical approaches; which are
then classified further into sub- and sub-sub-categories. In computer vision,
single-layered approaches are those that recognise activities directly based
on sequence of images. Hierarchical approaches on the other hand, represent
high-level activities by describing them in terms of a sequence of other simpler
activities i.e. subevents. Thus, these hierarchical approaches are composed
of multiple layers, making them suitable for the analysis of complex activities
[1]. Sensor-based AR exploits sensor network technologies to measure actor’s
motions and their interaction with the environment. Chen and Khalil [24]
further divide the sensor-based AR approaches into: wearable sensor-based
and object-based (also called dense sensing). The former is achieved by at-
taching sensor(s) to an actor under observation – usually inertial measure-
ment units, vital sign monitoring devices and Radio-Frequency Identification
(RFID) tags or readers. On the other hand object-based AR is achieved by
monitoring an actor’s interaction with surrounding objects by either instru-
menting the environment only, or by instrumenting the environment as well
as the actor. This has become possible due to the miniaturisation of sensors,
their low cost and low power consumption, and advancements made in the
field of wireless sensor networks. There are also projects which link across
these categories and analyse sensing data originating from di↵erent sensing
modalities e.g. the SPHERE project [126]. The presented taxonomy is based

1https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/
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Figure 2: Activity recognition taxonomies.

on the means of perceiving the physical environment by the systems i.e.
visual-based and sensor-based AR systems. Another classification is based
on the type of recognition algorithms [24]: machine learning techniques and
logical modelling & reasoning. Both taxonomies are valid and do not contra-
dict each other, as one is based on the type of input and the other on the
type of applied algorithms.

2.2. NHS Telecare and Telehealth Solutions

Sensor solutions are already present in the UK’s NHS. These include
telecare and telehealth systems. Telecare is simply a service which enables
elderly and vulnerable individuals to live a safe and independent life in their
own homes. It involves personal and/or environmental sensors in the home,
which can trigger an alarm and notify a family member, friend, neighbour,
nurse, etc. Examples of these can be:

• A personal alarm in the form of a wristband or a pendant, which is
triggered by pressing a button2,

2http://www.nhs.uk/Planners/Yourhealth/Pages/Telecare.aspx
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• Motion sensors, which reduce the risk of falls by switching on lights in
the house upon discovering movement2,

• Pressure mats that can raise an alarm if a person did not make it back
to bed during nighttime2,

• Portable medicine dispensers prompting patients to take their medica-
tion (ringing/flashing alarm reminder)3,

• Epilepsy sensors3, etc.

Another class of technologies which can be used at home are telehealth
solutions. These are for remote health monitoring, which reduce health ser-
vice’s costs by cutting down on the number of unnecessary face-to-face inter-
actions between patients and healthcare professionals (HCPs). With the aid
of telehealth technologies, home residents can monitor their basic health pa-
rameters such as: blood pressure, blood glucose levels, temperature, weight,
etc. Users are trained on how to take measurements of their vital health
sings, which are then automatically transmitted to the relevant HCP. In
this way HCPs provide an indirect care to their patients, who in turn do
not have to travel to the hospital/GP surgeries. While reducing care costs,
these technological solutions have “potential to make significant health im-
provements and quality of life impacts for people with a high dependency
on the NHS, local GPs, social services and local hospital”3. Both of these
classes of technologies were estimated in 2012 to save UK’s NHS 1.2 billion
GBP over 5 years period4. Moreover, they give peace of mind to patients’
relatives and prevent families from placing their beloved into care homes.
However, these technologies are not ideal as they either require user input
(how can somebody already unconscious press a button?) or are based on
very simplified models of behaviour (what if somebody wakes up in the mid-
dle of the night and decides to watch TV and falls asleep in front of it?).
Moreover, would a person su↵ering from multiple conditions or a complex
condition (e.g. somebody with epilepsy or post stroke) require multiple sys-
tems/sensors (e.g. having to wear multiple pendants/bracelets) to account

3http://3millionlives.co.uk/about-telehealth-and-telecare#what_is_
telecare?

4https://www.gov.uk/government/news/telehealth-and-telecare-could-save-nhs-1-2-
billion
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for all the possible dangers? Is this safe and acceptable from the user per-
spective? More complete solutions, which do not require user intervention
(e.g. pressing a button), are needed to provide a truly safe environment for
independent, technology-assisted living.

2.3. Wearable Sensor-based AR

As various studies have shown [87, 61, 88, 9, 52], body worn sensors can be
very e↵ective for the purpose of activity recognition, however they are not al-
ways acceptable from the subject’s perspective. Moreover, human behaviour
is often influenced by the presence of other humans or by the consciousness
of being watched – of which wearable sensors, if not seamlessly integrated,
can be a strong reminder. Secondly, as pointed out in [24], “many activities
in real world situations involve complex physical motions and complex in-
teractions with the environment. Sensor observations from wearable sensors
alone may not be able to di↵erentiate activities involving simple physical
movements, e.g. making tea and making co↵ee”. Therefore, on one hand
wearable sensor-based solutions achieve high activity recognition rates:

• Bao and Intille, using decision tree classifiers, achieved recognition rates
of between 80% 95% for 20 activities, with the overall recognition rate
of 84.26% [9],

• Parkka et al. conducted a study in which 7 activities (Lie, Row, ExtBike,
Sit/Stand, Run, Nordic walk and Walk) were classified using three dif-
ferent approaches: custom decision tree classifier (total classification
accuracy of 82%), automatically generated decision tree (86%) and ar-
tificial neural network (82%) [87].

On the other hand they violate basic principles of ubiquitous computing
i.e. calmness – technology “which informs but doesn’t demand our focus or
attention” [121] – and comfort.

However, with the progress in miniaturisation of technology, wearable sen-
sors became small and attractive, o↵ering many interesting features. Mainly
due to the o↵ered features, people decide to wear physical activity (PA)
trackers. Successful marketing of these products, o↵ering social media inte-
gration and concepts such as reward badges (e.g. Fitbit), introduced a social
dimension to it. Therefore, many users have decided to adopt technology
that tracks some of their moves irrespective of potential privacy implica-
tions. Whether it’s a watch-like sensor worn on a wrist or AA-battery size

8



Fitbit worn on a wrist or belt, people agree to put these devices on every
day in exchange for the information/activities they record. The major down-
side of these devices is the limited set of features they provide: number of
steps taken, distance walked, energy expenditure (kcal) and sleep duration.
Moreover, the quality of information they provide is usually not satisfactory,
as revealed for example by the following studies: Fitbit Ultra5 is found to
have fair to good accuracy in identifying steeping activity for stroke and TBI
patients [42] with an Intraclass Correlation Coe�cient (ICC) of 0.73, and
for healthy subjects agreement was above 95% [68]. The same study found
Nike+ Fuelband6 to have an ICC of 0.2. In this study the ground-truth for
comparison was collected with a video camera (manual counting of steps) and
was also used to validate the StepWatch Activity Monitor (SAM)7 which is a
gold standard widely used in clinical settings (ICC=0.97). Another study [39]
compared 7 personal activity trackers with two research grade accelerometers
and resulted in similar conclusion but with higher ICC scores. However, all
7 devices scored very poorly for energy expenditure (kcal) estimation with a
highest ICC score of 0.57. Study [59] provided higher agreement scores and
found three devices to be within a 10% equivalence zone around the indirect
colorimetry estimate.

Market for PA trackers is now fairly mature and starts moving in the
direction of smart watches. There are many smart watches on the market
which are not stand-alone devices but rather interface the user with their
smart-phone in a convenient way e.g. Apple Watch8 or Android Wear9. The
advantage of this type of technology is that people wear watches anyway
and hence are not asked to put on yet another device. Moreover, placement
of the watch allows for relatively accurate measurements of pulse and arm
movements. On the downside, battery life of smart-watches often matches
the short lifetime of a smart-phone’s battery. In addition, assessment of
movement from a wrist-based accelerometer results in overestimates. An-
other competitor in the market of commercial products are software apps
for Android and iOS platforms using their built-in accelerometers. However,

5http://help.fitbit.com/articles/en_US/Help_article/
About-the-Fitbit-Ultra

6http://store.nike.com/gb/en_gb/pw/mens-nike-fuelband-se/7puZd4d
7www.orthocareinnovations.com/uploads/files/Grants\%20Guidance.doc
8http://www.apple.com/uk/watch/
9http://www.android.com/wear/
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studies such as [46] revealed rather poor validity of an iPhone Moves app
with an error rate of 27.28%.

2.4. Object-based AR

Object-based AR, even though nowadays financially a↵ordable, is very
laborious in terms of setting up the environment. Labelling of everyday life
objects, such as mugs, boxes with tea, co↵ee, milk, etc.; imposes a huge
overhead and workload to the system administrator, when one of the most
desirable feature of AR sensor-based systems is their low maintenance factor
and ability to operate unsupervised. Moreover, if there are many subjects
in the monitored environment, it becomes hard to infer who the subject of
the action was. The authors of [53] use Dynamic Bayesian Network (DBN)
framework for AR from interactions with objects. In their setup, a nurse
performs a drip injection procedure and the purpose of the system is to pre-
vent the cause of medical accidents and incidents. Again, this is an example
of how intrusive the technology can be made by researchers. In their lab
setup, the nurse had an RFID reader attached to her hand and all the ob-
jects she interacted with were tagged with RFID tags – some of them carried
multiple tags to allow for precise detection of interaction. In [67] hybrid
discriminative/generative approach with hidden Markov model (HMM) is
used for object-based AR. Authors of this work however, did not attach sen-
sors to various objects, but prototyped a wristband type device consisting
of: camera, microphone, accelerometer, illuminometer and digital compass.
Moreover, they claim that these sensors can be embedded into a wristwatch,
which would solve the problem of users having to wear uncomfortable sensors.
The basis for AR recognition is formed by the visual feature extraction. The
biggest downside of this approach (and of other vision-based approaches)
is the use of camera, which invades user privacy and drains battery very
quickly as images are continuously sent over the air to the host PC. As with
every machine-learning approach, this HMM approach to AR requires train-
ing data, which has to be “acquired in each user’s environment because these
sensor data are environment dependent” [67]. Moreover, the training data
needs to be annotated, which is a tedious task. Therefore, these AR systems
usually do not perform well straight out of the laboratory. Training data is
hard to acquire and hence these solutions are not very scalable.

The Ambient Kitchen in the Culture Lab, Newcastle University is yet an-
other example of dense sensing. The sensor infrastructure (made up of 3-axis
accelerometers) is integrated into a number of kitchen utensils: knives, pots
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and lids, frying pans, a peeler, a grater, a measuring cup, a sieve, a spoon, a
spatula, a ladle, a whisk and a chopping board [118]. Despite the fact that
such setup provides an accurate and fine-grained level of information, de-
ployment of such systems in people homes is rather laborious and expensive.
Moreover, in multi-resident environments some form of localisation is needed
to di↵erentiate between di↵erent occupants.

3. Suitability of Sensing Technologies for ADL

3.1. Hierarchical Taxonomy of Human Behaviour Analysis Tasks

The adopted taxonomy of Human Behaviour Analysis (HBA) tasks builds
up on the work presented in [22]. It is a result of a collaborative e↵ort
between researchers working on the SPHERE [126] project. Fig. 3 represents
this classification in the form of a pyramid with the following HBA tasks:
physiology, pose, motion, action, activity and behaviour. The time duration
and the complexity of HBA tasks grow with each pyramid level. In this
taxonomy, at the bottom sits physiology. Physiological signals such as EEG,
ECG, blood pressure and temperature are typically measured in millisecond
intervals. Next in the hierarchy is pose, also known as posture and it refers
to the arrangement of every part of the body. At the next level is motion,
which is the movement of the entire body or part of the body, not necessarily
with intent nor a complete action. “At the action level, human motion is not
only detected, but also recognised in order to establish what a person is doing
or with which objects the person is interacting” [22]. A sequence of actions
performed in some order can be classified as activities. Activities are usually
intentional, even though humans can perform them without much attention
or thought and have duration of seconds, minutes or even hours. Examples
of these can be: watching TV, working or eating. At the top of the pyramid
sits behaviour i.e. how people do an activity relative to their pattern over
time or norm across some population.

3.2. Dictionary of Activities of Daily Living

The dictionary of activities of daily living (ADL) has been compiled dur-
ing the SPHERE project meetings between researchers from Bristol, Reading
and Southampton universities and clinicians. The result of this collaborative
e↵ort has been extended for completeness mainly with activities found in
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Figure 3: SPHERE Hierarchical Taxonomy for People

the Compendium of Physical Activities10. It does not capture all possible
tasks which can be performed in the home environment but focuses on the
most important ones or rather most relevant in the clinical context. The
dictionary of ADLs has been hierarchically organised into tasks and their
sub-tasks, which are classified into one of the HBA tasks captured in Fig. 3.
No model is fully complete and hence the intention is to extend this model
whenever necessary.

3.3. Suitability of Sensing Technologies for Home AR

Tables presented in this section identify which sensors are capable of cap-
turing/sensing information required to recognise each of the sub-tasks. They
have been colour-coded to indicate how achievable AR of a particular ADL
is with the given sensor. Therefore, green colour in the table marks studies
which have successfully recognised a particular home activity. Yellow de-
notes likely or achievable with the named technology. Orange means that we

10https://sites.google.com/site/compendiumofphysicalactivities/Activity-
Categories/home-activity
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anticipate that AR can be achieved for the particular activity. Red marks
di�cult or impossible with existing technology. The list of all abbreviations
and terms used in this table together with their meaning are shown in Ta-
ble 1. Numbers in parenthesis next to sub-task names refer to the SPHERE
hierarchical taxonomy in Fig. 3. Physiology, pose, motion, action, activity
and behaviour have been coded with numbers -1, 0, 1, 2, 3 and 4 respec-
tively. The last column represents anticipated solutions, which is more of
an informed guide on the types of technology suitable for the recognition of
a particular activity. Moreover, it is worth adding that cameras or Kinect
sensors do not imply recording of audio but only deal with video footages.
Since using cameras in some locations (e.g. bathrooms) raises ethical and pri-
vacy concerns, certain activities in the ‘Video’ column are marked as ‘privacy
issues’. Interestingly, some studies revealed that people find audio recording
more intrusive than video [81].

Studies included in the analysis range from lab-based to free-living sce-
narios and focus on home-bound ADLs and not on outdoor activities. Some
studies over-instrumented test subjects with far too many sensors [129], which
might be acceptable in short-term lab experiments but not in free-living en-
vironments. Research tools/sensors are useful to prove a given concept but
to be applicable (and ubiquitous) to people’s lives they need to take di↵erent
shape, more compelling and comfortable to the user.

PA trackers (including smart-watches) and smart-phone apps, although
very popular, have been excluded in this analysis, since they only provide a
very limited set of information e.g. number of steps taken, distance walked,
energy expenditure (kcal) and sleep duration. Moreover, as documented by
numerous studies and as discussed in Section 2.3, the quality of information
is usually not satisfactory. It is anticipated that as technology develops both
PA trackers and software apps for smart-phones will become more accurate.

The activity recognition confidence factors have been purposely left out,
as these are often subjective and/or relative to the specific models of sensors
(and not their general type) used in the study. These figures wouldn’t be
truly representative of the current state-of-the-art as better quality sensors
enter the market every day. For example, if some activity was recognisable
with a Kinect sensor (with relatively high precision and recall) it is likely that
with the new Kinect 2 sensor the precision and recall would be even greater.
Moreover, AR algorithms/methods used in the reviewed studies have also
been left out as the review was carried out at the hardware level (sensors)
and not at the algorithmic level in order to identify which sensors are capable
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Table 1: List of abbreviations and terms
Term Meaning

A Accelerometer (AU , AB , AT , A4 – uni-, bi-, tri-, four-axial)
AG Accelerometer and Gyroscope
AGC Accelerometer, Gyroscope and Compass
ALT Altimeter
BAR Barometric pressure sensor
C Compass

Dense
sensing

Concept in which all objects the subject is likely to interact with are
equipped with tags capable of wirelessly reporting the use of that object
(usually a simple motion sensor)

DFAR Device-Free radio-based Activity Recognition system
ECM Electricity Monitoring e.g. [32]
EMG Electromyogram
eWatch Dual-axes accel., light, temperature sensor and microphone
G Gyroscope

ICC
Intelligent Calorie Counter (2xmonolithic IC accelerometers +
piezoresistive pressure sensor)

Intelligent
Floors

Relates to the concept of using tactile sensor arrays embedded in the
house flooring e.g.[108],[78]

Kin Microsoft’s Kinect motion sensing device
MSP Mobile Sensing Platform
MTx Mote consisting of accelerometer, gyroscope and magnetometer
MTx
3-DOF

Mote consisting of AT , GT and tri-axial magnetometer

PROX Proximity sensors
RTLS Real Time Location System
SF APPS Apps usage monitoring (software) e.g. PC, tablet, smart-phone
SP Smart Phone
SpO2 Pulse Oximetry sensor
W-ECG Wearable Electrocardiogram
WISP Wireless Identification and Sensing Platform (UHF RFID + A)

of recognising a given activity. Knowledge captured in this form identifies the
utility of various sensors and can inform answers to the following questions:

• Which sensors are capable of recognising the most activities?

• Which sensors are fit for the recognition of a particular activity?

• What are the alternatives for recognising a particular activity under
imposed restrictions (e.g. camera cannot be used for privacy reasons)?
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• Which activities are di�cult to recognise or have not been targeted by
researchers yet?

Most importantly, the analysis presented here can be used by non-technical
users, such as clinicians to understand the capabilities of various technologies,
and for example, make an informed decision on sensor selection for their own
studies. Another group of users who would benefit from such information
are doctors. In the future, when obstacles such as sensors interoperability
issues (plug&play ability of COTS sensors is achieved) are overcome, we
envisage doctors/clinical consultants to be able to ‘prescribe’ sensors to indi-
vidual users based on their needs, while taking into account their preferences
and other selection criteria (such as price, privacy restrictions, obtrusiveness,
etc.). Since the current healthcare model is unsustainable with the ageing
society, doctors or some technically oriented consultants will need to know
what sensors can deliver the information they are after.

Figure 4: Categories of ADL.

The following sub-sections provide an overview of sensing technologies
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suitable for the recognition of activities which are sub-tasks of categories
found in Fig. 4. Sub-tasks of Locomotion, Transitions and Posture in Sec-
tion 3.3.1 all relate to basic human movement and are often recognised using
inertial measurement units e.g. accelerometers and gyroscopes. On the other
hand, activities found under Social Interaction and Communication tasks
(Section 3.3.2) tend to be recognised via use of EMG sensors which can de-
tect person’s speech. These sub-tasks are of particular interest to clinicians,
especially in the context of people living on their own and those with mental
illnesses and disorders such as depression. Similarly to these, sub-tasks of
Leisure in Section 3.3.3 are good indicators of person’s mood and levels of
interaction with ambient space. Recognition of activities listed under A Spe-
cific Exercise in Section 3.3.4 is important not only for subjects undergoing
physical rehabilitation but also for healthy individuals – as a way of mon-
itoring their general fitness. Recently, the focus of researchers has shifted
towards assessing quality of movement, as incorrectly performed exercises
can do more harm than good. Sub-tasks of Hygiene, Grooming, Cleaning
and Laundry presented in Sections 3.3.5-3.3.6 have not received much atten-
tion, yet are very important for AAL scenarios as they have direct influence
on subject’s health e.g. living in an untidy environment or poor hygiene.
From the technological point of view, recognition of sub-tasks listed in Sec-
tion 3.3.7 i.e. Physiological, Health Condition and Healthcare, is challenging
as it involves sophisticated sensors which can be intrusive and power-hungry.
Nevertheless, these sub-tasks e.g. Breathing or Sweating are highly indica-
tive of subject’s health and are of great importance to AAL systems, which
are enabled to act pro-actively when vital signs become worrying. Activi-
ties classified under Meal prep., Dishwashing, Eating and Drinking tasks in
Section 3.3.8 involve complex motions and tend to be recognisable in heavily
instrumented environments and via use of body-worn accelerometers. The
final sub-tasks analysed in this article are those categorised under Home
Management, Sleep and Work. While the former tasks are of less impor-
tance, Sleep and Work are important factors in anybody’s life.

3.3.1. Locomotion, Transitions and Posture
Sub-tasks of Locomotion, Transitions and Posture is the most researched

area of ADLs and hence Table 2 does not include anticipated solutions.
Since these activities are related to an individual’s movement, accelerom-
eters (mostly tri-axial) are the most popular means for collecting required
information. A fair proportion of studies still over-instrument subjects with
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far too many sensors despite strong evidence that one tri-axial accelerometer
is su�cient. In Table 2 some work did not report accurately on the measured
sub-tasks. In situations where target activities such as running were not ex-
plicitly defined [113, 131] it was assumed that authors meant Running and
not Running(treadmill) (found in Table 5) since involvement of a treadmill
has not been mentioned. Although the two running categories relate to the
same concept, it is worth noting that running on a treadmill is di↵erent from
free running due to the treadmill setting the pace – as opposed to self-selected
pace. In cases where researchers only measured one-way transitions e.g. sit-
ting down [119], the study has been included in the table under bi-directional
sub-tasks, in this case Sit to Stand, Stand to Sit.

Table 2: Locomotion, Transitions and Posture Sub-tasks

Sub-
task

On-body (accelerometer) Other Sensors & Software Video

Move-
ment(1)

3xAT [25];AT [74],[25]; 2xAB [66];
4xAU [20], 5xAU [21]

RFID[125](arm);
W-ECG[89](arm); SP[135]

Kin, Cam

Walking
(2)

AT [37],[110],[100],[85],[74],[56],[130],
[104],[2],[45],[98],[103],[60],[47],[131],
[119],[31],[70]; 2xAT [71];
AB [107],[97]; 5xAB [69],[9];
AU [93]; 3xAU [117],[10]; 4xAU [40];
5xAU [21]

active/passive DFAR[105];
eWatch[76],[77];
W-ECG[89];
7xMicaZ(AB)[128];
AT+G[58]; SP’s
accelerometer[135],[51],[14];
ICC[84]; tri-axial
MTx[134]; AB + ambient
sensors[116]; AB+G[80];
AB+G+C[61]; MSP[26];
sEMG+8xAT [102];
AT+SpO2[113]

Cam[41];
Cam+
2xAT [111]

Run-
ning(2)

AT [131],[110],[119],[31]
eWatch[76],[77];
AT+SpO2[113]

Cam[41]

Jump-
ing(2)

AT [119],[31]
TelosB[43];
AT+SpO2[113]; 5xMTx
3-DOF[3]

Stairs(2)

AT [104],[110],[85],[98],[103],[60],[47];
2xAT [71]; AB [107],[97];
5xAB [69],[9];
3xAU [117];4xAU [20];5xAU [21]

W-ECG[89];
7xMicaZ(AB)[128];
AT+G[58]; ICC[84];
5xMTx 3-DOF[3]

Using
Eleva-
tor(3)

ECM[32]; MSP[26];
5xMTx 3-DOF[3]
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Walk
Through
Doors(2)

PIR[123], Break beam[36]

Leaving
the
House(2)

RFID[125]

Sit to
Stand,
Stand
to Sit(2)

AT [13],[100],[62],[74],[56],[130],[2],
[69],[47],[37],[119]; G[79]; 3xAU [10]

WISP[96];TelosB[43];
sEMG+8xAT [102];
AB+G[80]

Sit to
Lie, Lie
to Sit(2)

AT [74],[100],[56],[130]
TelosB[43];
sEMG+8xAT [102]

Stand
to Lie,
Lie to
Stand(2)

AT [2],[47]

Stand-
ing(0)

AT [74],[100],[110],[62],[130],[2],[45],
[98],[60],[47],[131],[119],[31],[70];
9xAT [129]; multiple AT [44];
AB [107],[97]; 2xAB [66],[30];
3xAB [132]; 5xAB [69],[9];
2xAU [6];3xAU [117];4xAU [20][40],
5xAU [21];

active/passive DFAR[105];
eWatch[76],[77];
7xMicaZ(AB)[128];
SP[136],[135]; WISP[96];
MTx[134]; AB+G[80];
AB+Ambient
Sensors[116]; MSP[26];
AT+SpO2[113]; 5xMTx
3-DOF[3]

Kin[8];
Cam[29],
[54],[75];
grey
Cam[49];
Cam+
2xAT [111]

Sit-
ting(0)

AT [74],[100],[110],[62],[130],[2],[45],
[60],[47],[131],[31],[70]; 9xAT [129];
AB [107],[97]; 2xAB [66],[30];
3xAB [132]; 5xAB [69],[9];
2xAU [6];3xAU [117];4xAU [20][40],
5xAU [21]

eWatch[76],[77];
W-ECG[89];
7xMicaZ(AB)[128];
SP[136],[135]; MTx[134];
AB+G[80]; AB+Ambient
Sensors[116]; MSP[26];
sEMG+8xAT [102];
AT+SpO2[113]; 5xMTx
3-DOF[3]

Kin[8],[90];
Cam[29],
[54],[75],
[41]; grey
Cam[49];
Cam+
2xAT [111]

Ly-
ing(0)

AT [37],[100],[62],[74],[56],[130],[2],
[45],[60],[47],[31]; multiple AT [44];
2xAB [66],[30]; 3xAB [132];
5xAB [69],[9]; 2xAU [6];3xAU [117];
4xAU [20][40]; 5xAU [21];

active/passive DFAR[105];
7xMicaZ(AB)[128];
SP[136],[135]; WISP[96];
MTx[134]; AB+G[80];
AT+SpO2[113]; 5xMTx
3-DOF[3]

Kin[90];
Cam[29],
[54],[75],
[41]; grey
Cam[49]

Evidence found in the literature suggest that for the recognition of all
the activities presented in the above table, apart from Using Elevator, Walk
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Through Doors and Leaving the House, a single tri-axial accelerometer is suf-
ficient. The main advantage of such wearable technology is the fact that it
is widely available and relatively cheap. Accelerometers have already found
their way into smart-phones and smart-watches. The fast-growing market
of activity trackers provides evidence for high acceptability of such unob-
trusive wrist-worn devices. Their main drawback is usually a short battery
life, although some projects report their accelerometers to run for months
on a single coin-cell battery [38]. Other solutions in this space, such as in-
strumenting subjects with multiple accelerometers or other devices, are more
suited for lab settings rather than for AAL spaces.

3.3.2. Social Interaction and Communication
Since discovery of sub-tasks of Social Interaction and Communication

presented in Table 3 involves monitoring surrounding environment, accelerom-
eters are not suited for this. Recognition of various sub-tasks of Social Inter-
action requires either audio (body-worn or ambient) or EMG sensors around
subject’s neck and some means of localisation. Knowledge of subject’s talk-
ing/silence and his location in relation to other people allow to di↵erentiate
between verbal and non-verbal interactions. Sub-tasks of Communication are
harder to address since nowadays people communicate in many di↵erent ways
(SMS, Social Media, Email, etc.) via many di↵erent media e.g. smart-phone,
tablet, PC, smart-TV. Since all these devices are programmable, AR can be
achieved via appropriate software applications. However, doing so (and also
using video recognition for this purpose) is very intrusive and disrespectful
of user privacy.

Table 3: Social Interaction and Communication Sub-tasks

Sub-task
On-
body
accel.

Other Sensors & Software Video
Anticipated
solutions

Verbal Activity
with Nobody
Present(3)

EMG sensor around neck[48] +
indoor localisation

+ audio
feed

Indoor
localisation
+ audio

Verbal
Interaction
with Another
(present)(3)

EMG sensor around neck[48] +
indoor localisation

+ audio
feed

Indoor loc.
+ audio
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Non-Verbal
Interaction
with Another
(present)(3)

EMG sensor around neck[48] +
indoor localisation

+ audio
feed

Indoor loc.
+ audio

Receive
Visitors(3)

Audio,
intelligent
floors,
indoor
localisation

Phone
(voice)(3)

Dense sensing[92]; ECM[32];
WISP[19]

Web
cams[63]

Audio,
SF APPS

SMS(3)
High res.
cam

SF APPS

Email(3)
High res.
cam

SF APPS,
IP
monitoring

Social Media
(fb, twitter,
IM, etc.)(3)

High res.
cam

SF APPS,
IP
monitoring

Video Calling
(Skype,
Hangouts)(3)

High res.
cam +
audio

SF APPS,
IP
monitoring

Recognition of Social Interaction and Communication sub-tasks is di�-
cult to achieve with a single sensor. In our view, only vision-based approaches
have potential to recognise all of these activities, yet for some may require
audio feeds. Video devices have advantage over other sensors (e.g. EMG
sensors) in the sense that they do not have to be worn by the subject. On
the other hand, the monitored environment has to be heavily instrumented
in order to provide a good coverage area. However, for sub-tasks of Commu-
nication, software apps form a good alternative to video sensors. Since most
of the communication media are programmable, applications can be written
for these in order to monitor speech/payloads, duration, involved parties and
other attributes. However, both video and software applications are invasive
of user privacy and may not be acceptable by some users.

3.3.3. Leisure
Activity recognition of Leisure sub-tasks is not heavily addressed by re-

searchers probably due to the fact that these are non-functional activities
and are perceived to have very little application value. Many AR studies
are done in the context of healthcare and hence tend to focus on functional
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activities and not leisure. However, recognition of sub-tasks listed in Table 4
can be a good indicator of person’s mood and habits. Maintaining a good
balance between work and leisure is very important and hence automatic
recognition of these sub-tasks is important for studies related to mood and
mental health conditions.

Table 4: Leisure Sub-tasks

Sub-task
On-
body
(accel.)

Other Sensors & Software Video
Anticipated
solutions

Playing with
Pets(3)

A, PROX
(worn by pets
and ppl)

Playing Games
(console, PC,
cards, board)(3)

Dense sensing[92]; ECM[32] A

Playing with
Children(3)

A, PROX,
audio

Watching
TV(3)

5xAB [9]
Dense sensing[92];
ECM[32]; WISP[19]

Web
cams[63]

audio

Reading(3) 5xAB [9] Dense sensing[92]; [19]
Web
cams[63]

A + audio

Listening to
Music(3)

Dense sensing[92]; ECM[32]
Audio,
SF APPS

Dancing(3) + audio
Intelligent
floors,
A+audio

Playing Music
(guitar, drums,
etc.)(3)

A+audio,
dense sensing

Meditating(3) A+audio
Knitting/
Sewing(3)

Dense
sensing, A

Browsing
Internet(3)

High
res.
cam

SF APPS; IP
monitoring

Since sub-tasks classified under Leisure e.g. Playing with Pets, Playing
Games, Playing with Children involve complex motions, they are di�cult to
recognise with the aid of body-worn sensors. For the detection of these three
activities, video, accelerometer and proximity sensors are anticipated to be
the suitable technologies. Activities which involve interaction with particu-

21



lar objects e.g. Watching TV, Reading, Listening to Music, Playing Music,
Knitting/Sewing can be addressed by dense sensing technologies. However,
the biggest drawback of such approaches is the large number of sensors re-
quired to be deployed by attaching them to objects of interest. Active RFID
technology can be small and hence embeddable into objects of everyday use,
yet requires some infrastructure and is di�cult to maintain. Is it feasible
to label every single book in the house with a sensor? To date, recogni-
tion of Leisure sub-tasks has not been very well addressed by the research
community.

3.3.4. A Specific Exercise
A Specific Exercise (indoor) category only represents a snapshot of home

exercises since a comprehensive review of sensors capable of supporting all
indoor workouts would constitute a very lengthy review. Specific exercises
are not activities people do without paying much attention to – as this is the
case with many ADLs – and hence receive only limited attention from re-
searchers. However, with increasing access to sensing technologies, clinicians
are more and more interested not in the amount (patients can easily report
on it themselves) but in the quality of exercises/movement. Incorrectly per-
formed exercise can do more damage than good and having technology (and
not physiotherapists) to supervise patients brings huge savings to healthcare
providers.

Table 5: A Specific Exercise Sub-tasks

Sub-task On-body (accel.)
Other Sensors
& Software

Video
Anticipated
solutions

Rowing(3) AT [37] ECM[32] Cam
Dense
sensing

Cycling
(3)

AT [37],[70]; 5xAB [9];
5xAU [21]; 4xAU [40];
3xAU [117];

AB+Ambient
Sensors[116];
SP[14];
5xMTx
3-DOF[3]

Cam
Dense
sensing

Sit Ups
(3)

AT [98] Cam A

Running
(tread-
mill)
(3)

AT [60],[70],[85];
5xAB [9]; AB [97];
5xAU [21];

AB+Ambient
Sensors[116];
SP[14];
5xMTx
3-DOF[3]

Cam[41]
Dense
sensing
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Strength
Training
(3)

5xAB [9]
Dense
sensing

Bending
(3) AT [31],[100];9xAT [129]

Cam[54],[75];
grey cam[49]

A

Stretching
(2)

5xAB [9]
Cam+2xAT [111]

Intelligent
floors, A, G

As with Locomotion, Transitions and Posture, accelerometers are the
leading technology in observing and identifying A Specific Exercise sub-tasks
– as represented in Table 5. Often a single tri-axial accelerometer is su�-
cient, which is highly acceptable from the user point of view. Alternatively,
since each of these exercises involves well-defined motions and often specific
exercise equipment, vision-based approaches are expected to be capable of
detecting these. Also dense sensing is seen as an anticipated solution for
exercises which involve equipment and for other exercises which do not, ac-
celerometers are the only alternative.

3.3.5. Hygiene and Grooming
This category of ADLs has not been comprehensively addressed to date.

Similarly to Social Interaction and Communication, monitoring of sub-tasks
listed in Table 6 is quite intrusive since Hygiene and Grooming activities usu-
ally take place in bathrooms and bedrooms. Although not yet popular, AR of
these sub-tasks is very important for ensuring safe and hygienic independent
living.

Table 6: Hygiene and Grooming Sub-tasks

Sub-task
On-body
(accel.)

Other Sensors &
Software

Video
Anticipated
solutions

Bathing/
Showering(3)

Dense sensing[92];
ECM[12]

Privacy
issues

Water metering,
water contact
sensors

Brushing
Teeth(3)

AT [98],
AT [131];
5xAB [9]

Dense sensing[92];
WISP[19]; MSP[26];
sEMG+8xAT [102]

Privacy
issues

Audio + RTLS,
water metering,
water contact

Washing
Hands(3)

Privacy
issues

Dense sensing (soap
dispenser or taps),
water metering,
audio, A, water
contact
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Washing
Face(3)

Privacy
issues

Dense sensing (soap
dispenser,
face-wash), water
metering, water
contact

Combing/
Brushing
Hair (3)

sEMG+8xAT [102]
Privacy
issues

Dense sensing, A,
audio

Cutting
Nails(3)

Privacy
issues

Audio, A

Make-up(3)
Privacy
issues

A

Dressing(3) sEMG+8xAT [102]
Privacy
issues

A, dense sensing,
PROX

Due to privacy issues, video-based solutions are not appropriate yet are
capable of recognising these sub-tasks. Accelerometers or other single-sensor
solutions are also not frequently present in Table 6. It is anticipated that
heavily instrumented AAL spaces which incorporate water sensors, dense
sensing and an accelerometer worn by the subject can report on the whole
range of Hygiene and Grooming sub-tasks.

3.3.6. Cleaning and Laundry
This is yet another category of ADLs which has not received much at-

tention. Similarly to Hygiene and Grooming, sub-tasks listed in Table 7 are
important in independent living. They are also a good indicator of person’s
physical abilities. AR of these sub-tasks is non-trivial, since individuals per-
form these activities in di↵erent ways and using di↵erent tools.

Table 7: Cleaning and Laundry Sub-tasks

Sub-task On-body (accel.)
Other
Sensors &
Software

Video
Anticipated
solutions

Sweeping(3)
Cam+2xAT [111]

Dense sensing,
A

Vacuuming (3)
AT [98],[131],[85];
5xAB [9]; AU [93] Cam+2xAT [111]

Dense sensing,
A

Mopping(3)
Dense sensing,
A

Cleaning
Windows(3)

WISP[19] A
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Polishing
Floors(3)

Dense sensing,
A

Dusting/
Polishing
Furnitures(3)

Web cams[63] A

Taking Trash
Out(3)

Dense sensing,
PROX,
RTLS+A

Making
Bed(3)

Dense sensing,
A

Changing
Linen(3)

Dense sensing,
A

Laundry(3) AT [85]
Dense
sensing
(RFID)[92]

PROX, ECM,
audio

Fold or Hang
Clothes(3)

5xAB [9] A

Putting Away
Clothes(3)

A, dense
sensing
(wardrobes)

Ironing(3) ECM[32] Web cams[63]
Dense sensing
(iron, ironing
board), A

Except of Vacuuming, Laundry and Fold or Hang Clothes sub-tasks, ac-
celerometers are not the main medium through which Cleaning and Laun-
dry activities are recognised. Again this subset of ADLs has not received
much attention. For activities which involve subject’s interaction with elec-
trical appliances, electricity monitoring constitutes a good solution. For the
recognition of activities which do not involve electrical appliances, yet in-
volve interaction with other objects e.g. cleaning detergents, brush, mop,
etc. dense sensing is a suitable approach. Finally, accelerometers have have
been reported to detect only few Cleaning and Laundry sub-tasks.

3.3.7. Physiological, Health Condition and Healthcare
The recognition of ADLs presented in Table 8 is very challenging since it

involves quite intrusive sensors. Especially monitoring of physiological sig-
nals is di�cult and imposes many challenges such as battery life of sensors
and their placement. Sensors used for this purpose are not re-usable and
only serve one purpose e.g. glucometer sensor. Therefore, in order to moni-
tor all physiological signs one would need to be instrumented with a countless
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number of sensors. From the clinical point of view, continuous monitoring of
physiological signs is crucial, yet not achievable on a long-term unobtrusive
basis in independent living. A very well addressed sub-task of Health Con-
dition is the fall detection in which accelerometers are seen as the suitable
technology.

Table 8: Physiological, Health Condition and Healthcare Sub-tasks

Sub-task
On-body
(accel.)

Other Sensors &
Software

Video
Anticipated
solutions

Breathing
(-1)

Airflow sensor[48];
EMG sensor on
chest[48]

Kin[106],
Cam[86]

Audio, A,
air quality
(CO2)

ECG(-1)

Intelligent garments
with integrated textile
electrodes[27]; ECG
sensor[48]

Cam[86]

Blood
Pressure (-1) Sphygmomanometer[48]
Temperature
(-1)

Body temp. sensor[48]
Thermal
Cam

Glucose (-1) Glucometer sensor[48]

WC(-1)

Dense sensing
(RFID)[92]; ECM[12];
Uroflowmeter[34];
WISP[96]

Privacy
Issues

Water
level, heat
sensors,
A+RTLS

Fever/
Infection(-1)

Body temperature
sensor[48]

Thermal
camera

Sweating(-1)
Galvanic skin response
sensor (GCR)[48]

Thermal
camera

Shaking(-1) Cam A

Cough(2)
Audio-based cough
detector[15]

+audio Audio, A

Fall(2)

A4[33];
AT [17],[11],
[57],[73],[65],[55],
[16],[74],[56],[130],
[137],[119];
AB [82];
2xAB [23];
G[18]; AG[64]

Floor vibration-based
sensor[4]; array of
acoustic sensors[94];
Tilt sensor +
piezoelectronic A +
vibration sensor[83];
tri-axial MTx[134];
AT+GT [50],[127];
multiple AT [44];
AT+BAR[114]

Kin[72],[90];
Cam[101],
[7],[41]

IR,
pressure
sensor,
audio
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Taking
Medication
(3)

Dense sensing
(RFID)[92]; WISP[19]

Smoking(3)
Air quality[35]; aerosol
detector [115]

It is not easy to see what the anticipated solutions for monitoring phys-
iological signs are. Apart from the technologies listed in the Other Sensors
& Software in Table 8 only sophisticated vision-based systems are capable
of detecting most of these sub-tasks – with the exception of Blood Pressure
and Glucose. Alternatively, intelligent garments with integrated textile elec-
trodes and sensors could be used, yet there is lack of suitable technology
and its biggest drawbacks are large energy consumption and hygiene issues
(these garments would have to either be waterproof or consist of replaceable
elements).

3.3.8. Meal prep., Dishwashing, Eating and Drinking
These categories of ADL are of great interest to researchers and clinicians,

yet are di�cult to recognise. Sub-tasks listed in Table 9, especially Cooking
and Food Preparation involve many complex motions which di↵er across the
whole population. People have di↵erent skills, styles, tools and preferences
and hence AR involves multiple sensors e.g. heavily instrumented in sen-
sors ambient kitchen [91] and is di�cult to achieve with body-worn sensors.
Proximity sensors and electricity monitoring provide alternative ways for
measuring these two activities. However, solutions adopted by researchers in
this space and the anticipated ones rely on heavily instrumenting the kitchen
– something which is neither convenient nor easy to maintain. Eating and
Drinking, as Table 9 suggests, are easier to recognise and have very high
value in nutritional studies. Since eating and drinking is crucial to survive
and has large impact on our health, a fair number of studies have addressed it
already, including video-based AR. Due to this fact, there are no anticipated
solutions for these two sub-tasks, as there is a wide-range of acceptable, from
the user point of view, approaches already present in the literature. Dish-
washing sub-task, whether manual or done by a dishwasher, can be detected
using a single tri-axial accelerometer [85] or with the aid of RFID sensors
[92]. Viable solutions include video-based AR, water metering (universal) or
electricity monitoring (for dishwasher’s use).
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Table 9: Meal prep., Dishwashing, Eating and Drinking Sub-tasks

Sub-task
On-
body
(accel.)

Other Sensors & Software Video
Anticipated
solutions

Food
Prepara-
tion(3)

ambient kitchen[91];
sEMG+8xAT [102]

Dense sensing

Cooking(3) ECM[12]; ambient kitchen[91]
PROX, audio,
gas or ECM
(cooker)

Dishwash-
ing(3)

AT [85] Dense sensing(RFID)[92]
Water metering,
ECM
(dishwasher)

Eating(3)
5xAB [9]

Ear-attached mic.(chewing)[5];
surface EMG+mic (swallowing
detection)[5]; dense sensing
(RFID)[88],[92]; AGC[5],[133];
WISP[19]

Web
cams[63]

Drinking(3)
5xAB [9]

Dense sensing (RFID)[88],[92];
AGC[5],[133]

Web
cams[63]

3.3.9. Home Management, Sleep and Work
Out of all the activities listed in Table 10, Sleep and Work are the most

important in the context of healthy living. Sleep monitoring is something
already fairly well-addressed by commercial products such as Fitbit or di↵er-
ent smart watches. For AR of these two sub-tasks, accelerometers are again
the suitable and most frequently used technology. For Sleeping/Lying there
is a handful of alternatives e.g. pressure sensors in or under the bed or a
body-worn altimeter or a tilt sensor. Working, if using a computer or other
programmable device, can be detected via use of software apps and for other
types of work video-based AR forms a good alternative. Downsides of using
both these technologies have already been listed in earlier sections.

Table 10: Home Management, Sleep and Work Sub-tasks

Sub-task On-body (accel.)
Other
Sensors &
Software

Video
Anticipated
solutions

Open/Shut
Door(2)

Door
contact[95]

Dense sensing,
audio

Putting Away
Groceries(3)

Dense sensing
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Water Plants(3) WISP[19]
PROX, dense
sensing

Using Electrical
Appliance(3)

ECM[32] Dense sensing

Sleeping/
Lying(3)

AT [110] WISP[19]
Pressure sensors,
ALT, tilt sensor, A

Waking Up(3) A

Working (desk,
PC)(3)

AT [131](PC),
[85](PC);
AU [93](PC);
5xAB [9]

High res.
cam

SF APPS (PC)

Home Management activities have not received much attention from the
research community, which is understandable as AR of sub-tasks such as
Open/Shut Door, Water Plants or Putting Away Groceries is of little clinical
value. Yet, apart from technologies listed in Table 10, it can be accomplished
with use of video cameras or dense sensing. Using Electrical Appliance(s) is
virtually impossible to detect for a wide range of devices using accelerometers
or other body-worn sensors. The most suitable, yet di�cult to maintain,
technology currently available is electricity monitoring or other dense sensing
approaches.

4. Discussion

Is it possible for one sensor technology to discover all of the home ac-
tivities with 100% accuracy? Can this sensor technology be used in both
single-occupancy and multi-occupancy homes? The results of the systematic
literature review presented in this paper show that an a�rmative answer
cannot be given for any of the reviewed sensor technologies when used on
their own. Video sensors and accelerometers have the highest potential but
with the current state-of-the-art they are not capable of recognising the full
range of activities without even considering the practicalities of using these
technologies, as they are not suited for every part of the house. Cameras
would not be acceptable in areas such as bathrooms and bedrooms; for prac-
tical reasons accelerometers cannot be given to every visitor who is not living
in the house. The conclusion is that currently no single sensor/sensing tech-
nology can discover all home-based ADLs. Accelerometer-based wearable
sensors are promising, yet need some contextual information to di↵erenti-
ate between activities such as preparing tea and co↵ee. The solution to the
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problem lies in multi-modal IoT sensor systems that take into account basic
principles of ubiquitous computing. It is important to design smart-spaces in
such a way as to avoid over-instrumentation of both the space and subjects
with redundant sensors. Fundamentally, whilst in this paper we focused only
on IoT data collected in home environments, the question remains on how
to establish the value of the IoT data (and, therefore, the accepted value
of the IoT infrastructure required to acquire and make this data available)
even before the data is used to infer some information. The SPHERE [126]
project is addressing this question by carrying out quantitative evaluation of
which sources of data provide best impact, according to defined metrics, on
known AR algorithms.

Figure 5: Ambient Intelligence.

Ambient intelligence requires input from sensors and at least some means
of activity recognition – as captured in Fig. 5. Sensor systems are not very
useful without AR algorithms. Some people may argue that human input
is required or at least some background/contextual information about hu-
mans being monitored (age, medical conditions, habits, etc.). Some means
of networking and software to run on sensor nodes is also essential, as is the
semantic schema for the inferred activities. However, at minimum, sensors
and AR algorithms are needed for an AmI space. Simplifying the prob-
lem down to these two elements allows focusing on relationships between
these two factors. AR algorithms require sensor data as inputs, and in turn
sensors produce data so that it can be reasoned over by (AR) software. Re-
searchers in this space take one of the three approaches to make this link.
For their AR algorithms they either make use of available sensor data reposi-
tories/functioning real-time sensor system, simulation software, or they need
to build the sensing infrastructure as a part of their project. This poses
some interesting questions, e.g. are there any specific requirements imposed
by the AR algorithms or is this purely technology-driven? Does the qual-
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ity of available video data drive the selection or development of video-based
AR algorithms? Do some algorithms perform badly due to the low-quality
of data? What is the sensitivity of AR algorithms on certain sensor data
sources?

The review presented in previous section is ADL-centric and list studies
in which AR succeeded via use of the named sensor technology. For loosely
coupled sensor systems, data generated by sensors often drives an AR al-
gorithms’ e�ciency and performance. Complex sensor systems are usually
developed by a collaborative group of researchers with di↵erent specialisa-
tions. This review also informs researchers working on AR algorithms on
the types of sensors they should consider in their studies for recognising par-
ticular home activities. On the other hand, it would be beneficial if this
group provided information about the quality of the data required for their
AR algorithms to recognise each of the home activities and on sensitivity
of their algorithms on certain (sensor) data sources. Such dialogue between
the two fields of research would significantly ease the development of ambi-
ent spaces and provide better justified technological support to longitudinal
studies undertaken in this space. It would allow for breaking the cycle of
technology-driven AR algorithm development and focusing on the scientific
advancements in the field. Moreover, careful sensor selection prior to deploy-
ment would result in minimising the number of sensors while maximising
the number of recognisable activities and the quality of AR. Apart from the
above, other selection criteria can be applied in order to reduce cost or to
mitigate privacy concerns.
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Ladha, C., Ladha, K., Plötz, T., Olivier, P., et al., 2012. The ambient
kitchen: a pervasive sensing environment for situated services.

[92] Philipose, M., Fishkin, K. P., Perkowitz, M., Patterson, D. J., Fox, D.,
Kautz, H., Hahnel, D., 2004. Inferring activities from interactions with
objects. Pervasive Computing, IEEE 3 (4), 50–57.

[93] Pober, D. M., Staudenmayer, J., Raphael, C., Freedson, P. S., et al.,
2006. Development of novel techniques to classify physical activity
mode using accelerometers. Medicine and science in sports and exercise
38 (9), 1626.

[94] Popescu, M., Li, Y., Skubic, M., Rantz, M., 2008. An acoustic fall
detector system that uses sound height information to reduce the false
alarm rate. In: Engineering in Medicine and Biology Society, 2008.
EMBS 2008. 30th Annual International Conference of the IEEE. IEEE,
pp. 4628–4631.

[95] Proto-PIC, 2015. Magnetic contact switch (door sensor).
URL http://proto-pic.co.uk/magnetic-contact-switch-door-sensor/

[96] Ranasinghe, D. C., Shinmoto Torres, R., Wickramasinghe, A., 2013.
Automated activity recognition and monitoring of elderly using wireless
sensors: research challenges. In: Advances in Sensors and Interfaces
(IWASI), 2013 5th IEEE International Workshop on. IEEE, pp. 224–
227.

[97] Randell, C., Muller, H., 2000. Context awareness by analysing ac-
celerometer data. In: Wearable Computers, The Fourth International
Symposium on. IEEE, pp. 175–176.

[98] Ravi, N., Dandekar, N., Mysore, P., Littman, M. L., 2005. Activity
recognition from accelerometer data. In: AAAI. Vol. 5. pp. 1541–1546.

[99] Riboni, D., Bettini, C., 2009. Context-aware activity recognition
through a combination of ontological and statistical reasoning. In:
Ubiquitous Intelligence and Computing. Springer, pp. 39–53.

42



[100] Rodriguez-Martin, D., Sama, A., Perez-Lopez, C., Catala, A.,
Cabestany, J., Rodriguez-Molinero, A., 2013. Svm-based posture iden-
tification with a single waist-located triaxial accelerometer. Expert Sys-
tems with Applications 40 (18), 7203–7211.

[101] Rougier, C., Meunier, J., 2005. Demo: Fall detection using 3d head
trajectory extracted from a single camera video sequence. Journal of
Telemedicine and Telecare 11 (4), 37–42.

[102] Roy, S. H., Cheng, M., Chang, S.-S., Moore, J., De Luca, G., Nawab,
S., De Luca, C. J., 2009. A combined semg and accelerometer sys-
tem for monitoring functional activity in stroke. Neural Systems and
Rehabilitation Engineering, IEEE Transactions on 17 (6), 585–594.

[103] Sekine, M., Tamura, T., Akay, M., Fujimoto, T., Togawa, T., Fukui, Y.,
2002. Discrimination of walking patterns using wavelet-based fractal
analysis. Neural Systems and Rehabilitation Engineering, IEEE Trans-
actions on 10 (3), 188–196.

[104] Sekine, M., Tamura, T., Togawa, T., Fukui, Y., 2000. Classification
of waist-acceleration signals in a continuous walking record. Medical
engineering & physics 22 (4), 285–291.

[105] Sigg, S., Scholz, M., Shi, S., Ji, Y., Beigl, M., 2014. Rf-sensing of activ-
ities from non-cooperative subjects in device-free recognition systems
using ambient and local signals. Mobile Computing, IEEE Transactions
on 13 (4), 907–920.

[106] Soleimani, V., Mirmehdi, M., Damen, D., Hannuna, S., Camplani,
M., Viner, J., Dodd, J., Oct 2015. Remote pulmonary function testing
using a depth sensor. In: Biomedical Circuits and Systems Conference
(BioCAS), 2015 IEEE. pp. 1–4.

[107] Song, K.-T., Wang, Y.-Q., 2005. Remote activity monitoring of the
elderly using a two-axis accelerometer. In: Proceedings of the CACS
Automatic Control Conference. pp. 18–19.

[108] Speeter, T. H., Dec. 26 1995. Intelligent work surfaces. US Patent
5,479,528.

43



[109] Sundstrom, L., 2014. West of england acadademic health sciences net-
work. University of Bristol, SPHERE Seminar.

[110] Suzuki, S., Mitsukura, Y., Igarashi, H., Kobayashi, H., Harashima, F.,
2012. Activity recognition for children using self-organizing map. In:
RO-MAN, 2012 IEEE. IEEE, pp. 653–658.

[111] Tao, L., Burghardt, T., Hannuna, S., Camplani, M., Paiement, A.,
Damen, D., Mirmehdi, M., Craddock, I., 2015. A comparative home
activity monitoring study using visual and inertial sensors. In: 17th In-
ternational Conference on E-Health Networking, Application and Ser-
vices (IEEE HealthCom). IEEE.

[112] The West of England AHSN, 2015. Our Values and Goals.
URL http://www.weahsn.net/about-us/goals-values/

[113] Thiemjarus, S., 2010. A device-orientation independent method for ac-
tivity recognition. In: Body Sensor Networks (BSN), 2010 International
Conference on. IEEE, pp. 19–23.

[114] Tolkiehn, M., Atallah, L., Lo, B., Yang, G.-Z., 2011. Direction sensitive
fall detection using a triaxial accelerometer and a barometric pressure
sensor. In: Engineering in Medicine and Biology Society, EMBC, 2011
Annual International Conference of the IEEE. IEEE, pp. 369–372.

[115] TSI, 2015. Sidepak personal aerosol monitor am510.
URL http://www.tsi.com/sidepak-personal-aerosol-monitor-am510/

[116] Van Laerhoven, K., Cakmakci, O., 2000. What shall we teach our
pants? In: Wearable Computers, The Fourth International Sympo-
sium on. IEEE, pp. 77–83.

[117] Veltink, P. H., Bussmann, H. J., De Vries, W., Martens, W. L.,
Van Lummel, R. C., 1996. Detection of static and dynamic activi-
ties using uniaxial accelerometers. Rehabilitation Engineering, IEEE
Transactions on 4 (4), 375–385.

[118] Wagner, J., van Halteren, A., Hoonhout, J., Plötz, T., Pham, C.,
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