1,892 research outputs found

    Low-latency handshake join

    Full text link

    On the design of an energy-efficient low-latency integrated protocol for distributed mobile sensor networks

    Get PDF
    Self organizing, wireless sensors networks are an emergent and challenging technology that is attracting large attention in the sensing and monitoring community. Impressive progress has been done in recent years even if we need to assume that an optimal protocol for every kind of sensor network applications can not exist. As a result it is necessary to optimize the protocol for certain scenarios. In many applications for instance latency is a crucial factor in addition to energy consumption. MERLIN performs its best in such WSNs where there is the need to reduce the latency while ensuring that energy consumption is kept to a minimum. By means of that, the low latency characteristic of MERLIN can be used as a trade off to extend node lifetimes. The performance in terms of energy consumption and latency is optimized by acting on the slot length. MERLIN is designed specifically to integrate routing, MAC and localization protocols together. Furthermore it can support data queries which is a typical application for WSNs. The MERLIN protocol eliminates the necessity to have any explicit handshake mechanism among nodes. Furthermore, the reliability is improved using multiple path message propagation in combination with an overhearing mechanism. The protocol divides the network into subsets where nodes are grouped in time zones. As a result MERLIN also shows a good scalability by utilizing an appropriate scheduling mechanism in combination with a contention period

    Elastic circuits

    Get PDF
    Elasticity in circuits and systems provides tolerance to variations in computation and communication delays. This paper presents a comprehensive overview of elastic circuits for those designers who are mainly familiar with synchronous design. Elasticity can be implemented both synchronously and asynchronously, although it was traditionally more often associated with asynchronous circuits. This paper shows that synchronous and asynchronous elastic circuits can be designed, analyzed, and optimized using similar techniques. Thus, choices between synchronous and asynchronous implementations are localized and deferred until late in the design process.Peer ReviewedPostprint (published version

    Quality-Driven Disorder Handling for M-way Sliding Window Stream Joins

    Full text link
    Sliding window join is one of the most important operators for stream applications. To produce high quality join results, a stream processing system must deal with the ubiquitous disorder within input streams which is caused by network delay, asynchronous source clocks, etc. Disorder handling involves an inevitable tradeoff between the latency and the quality of produced join results. To meet different requirements of stream applications, it is desirable to provide a user-configurable result-latency vs. result-quality tradeoff. Existing disorder handling approaches either do not provide such configurability, or support only user-specified latency constraints. In this work, we advocate the idea of quality-driven disorder handling, and propose a buffer-based disorder handling approach for sliding window joins, which minimizes sizes of input-sorting buffers, thus the result latency, while respecting user-specified result-quality requirements. The core of our approach is an analytical model which directly captures the relationship between sizes of input buffers and the produced result quality. Our approach is generic. It supports m-way sliding window joins with arbitrary join conditions. Experiments on real-world and synthetic datasets show that, compared to the state of the art, our approach can reduce the result latency incurred by disorder handling by up to 95% while providing the same level of result quality.Comment: 12 pages, 11 figures, IEEE ICDE 201

    Elastic systems

    Get PDF
    Elastic systems provide tolerance to the variations in computation and communication delays. The incorporation of elasticity opens new opportunities for optimization using new correct-by-construction transformations that cannot be applied to rigid non-elastic systems. The basics of synchronous and asynchronous elastic systems will be reviewed. A set of behavior-preserving transformations will be presented: retiming, recycling, early evaluation, variable-latency units and speculative execution. The application of these transformations for performance and power optimization will be discussed. Finally, a novel framework for microarchitectural exploration will be introduced, showing that the optimal pipelining of a circuit can be automatically obtained by using the previous transformations.Peer ReviewedPostprint (published version
    corecore