2,504 research outputs found

    Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection

    Get PDF
    Palladium (Pd) has received attention as an ideal hydrogen sensor material due to its properties such as high sensitivity and selectivity to hydrogen gas, fast response, and operability at room temperature. Interestingly, various Pd nanostructures that have been realized by recent developments in nanotechnologies are known to show better performance than bulk Pd. This review highlights the characteristic properties, issues, and their possible solutions of hydrogen sensors based on the low-dimensional Pd nanostructures with more emphasis on Pd thin films and Pd nanowires. The finite size effects, relative strengths and weaknesses of the respective Pd nanostructures are discussed in terms of performance, manufacturability, and practical applicability

    Nano Layers of 2D Graphene Versus Graphene Oxides for Sensing Hydrogen Gas

    Get PDF
    Hydrogen is one of the most useful but dangerous gases because of its broad combustion range and small ignition temperature. Currently, there is a great need for hydrogen detectors with selectivity, high sensitivity and reliable operations in view of its safe production, storage, transportation and other applications. In this regard, nano thin films of two dimensional materials like graphene, graphene oxide (GO) and reduced graphene oxide (rGO) have immense promise because their material attributes can be exceptionally tuned to achieve the desired characteristics. Also graphene oxide and reduced graphene oxide serve as potential sensing hosts due to the presence of functional groups on their surfaces. In this chapter, an attempt has been made to compare the work done in the field of hydrogen sensors using pure graphene and graphene derivatives such as graphene oxide and reduced graphene oxide. The response parameters like sensitivity, stability, selectivity, response time, recovery time, detection limit, linearity, dynamic range, and working temperatures for various graphene based sensors have been elaborately compared. Finally, a conclusion and future outlook on nano scale thin film of graphene and graphene oxides for gas sensing have been briefly discussed

    Nanostructures in hydrogen peroxide sensing

    Get PDF
    In recent years, several devices have been developed for the direct measurement of hydrogen peroxide (H2O2 ), a key compound in biological processes and an important chemical reagent in industrial applications. Classical enzymatic biosensors for H2O2 have been recently outclassed by electrochemical sensors that take advantage of material properties in the nano range. Electrodes with metal nanoparticles (NPs) such as Pt, Au, Pd and Ag have been widely used, often in combination with organic and inorganic molecules to improve the sensing capabilities. In this review, we present an overview of nanomaterials, molecules, polymers, and transduction methods used in the optimization of electrochemical sensors for H2O2 sensing. The different devices are compared on the basis of the sensitivity values, the limit of detection (LOD) and the linear range of application reported in the literature. The review aims to provide an overview of the advantages associated with different nanostructures to assess which one best suits a target application.Fil: Trujillo, Ricardo Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Barraza, Daniela Estefanía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Zamora, Martín Lucas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; ArgentinaFil: Cattani Scholz, Anna. Universitat Technical Zu Munich; AlemaniaFil: Madrid, Rossana Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Bioingeniería. Laboratorio de Medios e Interfases; Argentin

    Graphene-Based Junction Devices for Hydrogen Sensors

    Get PDF
    Graphene is quite a robust material for sensing hydrogen and other gases at room temperature as well as at elevated temperatures with high efficiency. This chapter deals with different junction devices based on graphene for hydrogen sensing. Graphene has excellent electronic attributes that make it suitable for gas sensor devices. However, till date, the research on graphene-based junction devices is not many. In this chapter, we present different types of graphene junction devices suitable for hydrogen sensing. Hydrogen sensor response of these junctions is analyzed, and the sensing mechanism is presented. The temperature- and atmosphere-dependent inversion of n-type to p-type conductivity in graphene is highlighted for hydrogen sensing. Moreover, the two dimensional nature of graphene makes it very convenient for device miniaturization. This chapter provides relevant information on the growth of graphene, the fabrication of different graphene junction devices, and hydrogen sensor applications. Also, the sensor-related concerns such as cross-sensitivity, signal drift, stability, and interference of humidity during hydrogen sensing are thoroughly discussed in this chapter

    Hydrogen Sensor Application of Anodic Titanium Oxide Nanostructures

    Get PDF
    Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.Siirretty Doriast

    Suspended 1D metal oxide nanostructure-based gas sensor

    Get PDF
    Department of Materials Science and EngineeringWe developed a novel batch fabrication technology for the ultralow-power-consumption metal oxide gas sensing platform consisting of a suspended glassy carbon heating nanostructure and hierarchical metal oxide nanostructures forests fabricated by the carbon-micro electromechanical systems (carbon-MEMS) and selective nanowire growth process. We have developed a new manufacturing process for suspended glass carbon nanostructures such as single nanowire, nano-mesh and nano-membranes fabricated using carbon-MEMS consisting of the UV-lithography and the polymer pyrolysis processes. We designed a gas sensing platform consisting of suspended glassy carbon heating nanostructures and suspended hierarchical metal oxide nanostructure forests for the sensing part. Glassy carbon structure produced by the carbon-MEMS has many advantages such as high thermal & chemical stabilities, good hardness, and good thermal & electrical characteristics. The electrical conductivity of glassy carbon nanostructures has been increased more than three times by using rapid thermal annealing (RTA) process owing to the inferior heating property of glassy carbon nano-heater in the electrical conductivity. In order to divide the suspended glassy carbon nano-heater and the suspended hierarchical metal oxide nanostructures forests, the insulating layer of HfO2 materials is a high dielectric constant and is deposited uniformly using a atomic layer deposition (ALD) process on a suspended glassy carbon nano-heater. Suspended hierarchical metal oxide nanostructures forests were grown circumferentially on the suspended HfO2/glassy carbon nano-heater using a hydrothermal method consisting of the seed deposition and the growth processes. For selective metal oxide seed layer deposition process, a short-time exposed polymer patterning process was performed using the positive photoresist. After the polymer patterning process, a metal oxide seed layer is deposited using the rf-sputtering system, followed by a metal oxide nanostructure growth process. The distinguishing architecture of a suspended hierarchical metal oxide nanostructures forests/HfO2/glassy carbon nanostructure ensures efficient mass transport to the metal oxide nanostructure detection point of the gas analyte, resulting in highly sensitive gas detection. In the absence of an external heating system, the ultralow-power-consumption gas sensing platform of a suspended hierarchical metal oxide nanostructures forests/HfO2/glassy carbon nanostructure has excellent the gas sensing characteristics.ope

    Hydrogen gas sensing using aluminum doped ZnO metasurface

    Full text link
    Hydrogen sensing is crucial in a wide variety of areas, such as industrial, environmental, energy and biomedical applications. However, engineering a practical, reliable, fast, sensitive and cost-effective hydrogen sensor, is a persistent challenge. Here we demonstrate hydrogen sensing using aluminum-doped zinc oxide (AZO) metasurfaces based on optical read-out. The proposed sensing system consists of highly ordered AZO nanotubes (hollow pillars) standing on a SiO2 layer deposited on a Si wafer. Upon exposure to hydrogen gas, the AZO nanotube system shows a wavelength shift in the minimum reflectance by 13 nm within 10 minutes for a hydrogen concentration of 4%. These AZO nanotubes can also sense the presence of a low concentration (0.7 %) of hydrogen gas within 10 minutes. Its rapid response time even for low concentration, the possibility of large sensing area fabrication with good precision, and high sensitivity at room temperature make these highly ordered nanotube structures a promising miniaturized H2 gas sensor.Comment: 15 pages, 6 figure
    corecore