196 research outputs found

    Data Storage and Dissemination in Pervasive Edge Computing Environments

    Get PDF
    Nowadays, smart mobile devices generate huge amounts of data in all sorts of gatherings. Much of that data has localized and ephemeral interest, but can be of great use if shared among co-located devices. However, mobile devices often experience poor connectivity, leading to availability issues if application storage and logic are fully delegated to a remote cloud infrastructure. In turn, the edge computing paradigm pushes computations and storage beyond the data center, closer to end-user devices where data is generated and consumed. Hence, enabling the execution of certain components of edge-enabled systems directly and cooperatively on edge devices. This thesis focuses on the design and evaluation of resilient and efficient data storage and dissemination solutions for pervasive edge computing environments, operating with or without access to the network infrastructure. In line with this dichotomy, our goal can be divided into two specific scenarios. The first one is related to the absence of network infrastructure and the provision of a transient data storage and dissemination system for networks of co-located mobile devices. The second one relates with the existence of network infrastructure access and the corresponding edge computing capabilities. First, the thesis presents time-aware reactive storage (TARS), a reactive data storage and dissemination model with intrinsic time-awareness, that exploits synergies between the storage substrate and the publish/subscribe paradigm, and allows queries within a specific time scope. Next, it describes in more detail: i) Thyme, a data storage and dis- semination system for wireless edge environments, implementing TARS; ii) Parsley, a flexible and resilient group-based distributed hash table with preemptive peer relocation and a dynamic data sharding mechanism; and iii) Thyme GardenBed, a framework for data storage and dissemination across multi-region edge networks, that makes use of both device-to-device and edge interactions. The developed solutions present low overheads, while providing adequate response times for interactive usage and low energy consumption, proving to be practical in a variety of situations. They also display good load balancing and fault tolerance properties.Resumo Hoje em dia, os dispositivos móveis inteligentes geram grandes quantidades de dados em todos os tipos de aglomerações de pessoas. Muitos desses dados têm interesse loca- lizado e efêmero, mas podem ser de grande utilidade se partilhados entre dispositivos co-localizados. No entanto, os dispositivos móveis muitas vezes experienciam fraca co- nectividade, levando a problemas de disponibilidade se o armazenamento e a lógica das aplicações forem totalmente delegados numa infraestrutura remota na nuvem. Por sua vez, o paradigma de computação na periferia da rede leva as computações e o armazena- mento para além dos centros de dados, para mais perto dos dispositivos dos utilizadores finais onde os dados são gerados e consumidos. Assim, permitindo a execução de certos componentes de sistemas direta e cooperativamente em dispositivos na periferia da rede. Esta tese foca-se no desenho e avaliação de soluções resilientes e eficientes para arma- zenamento e disseminação de dados em ambientes pervasivos de computação na periferia da rede, operando com ou sem acesso à infraestrutura de rede. Em linha com esta dico- tomia, o nosso objetivo pode ser dividido em dois cenários específicos. O primeiro está relacionado com a ausência de infraestrutura de rede e o fornecimento de um sistema efêmero de armazenamento e disseminação de dados para redes de dispositivos móveis co-localizados. O segundo diz respeito à existência de acesso à infraestrutura de rede e aos recursos de computação na periferia da rede correspondentes. Primeiramente, a tese apresenta armazenamento reativo ciente do tempo (ARCT), um modelo reativo de armazenamento e disseminação de dados com percepção intrínseca do tempo, que explora sinergias entre o substrato de armazenamento e o paradigma pu- blicação/subscrição, e permite consultas num escopo de tempo específico. De seguida, descreve em mais detalhe: i) Thyme, um sistema de armazenamento e disseminação de dados para ambientes sem fios na periferia da rede, que implementa ARCT; ii) Pars- ley, uma tabela de dispersão distribuída flexível e resiliente baseada em grupos, com realocação preventiva de nós e um mecanismo de particionamento dinâmico de dados; e iii) Thyme GardenBed, um sistema para armazenamento e disseminação de dados em redes multi-regionais na periferia da rede, que faz uso de interações entre dispositivos e com a periferia da rede. As soluções desenvolvidas apresentam baixos custos, proporcionando tempos de res- posta adequados para uso interativo e baixo consumo de energia, demonstrando serem práticas nas mais diversas situações. Estas soluções também exibem boas propriedades de balanceamento de carga e tolerância a faltas

    Medium Access Control in Energy Harvesting - Wireless Sensor Networks

    Get PDF

    Reinforcement Learning in Self Organizing Cellular Networks

    Get PDF
    Self-organization is a key feature as cellular networks densify and become more heterogeneous, through the additional small cells such as pico and femtocells. Self- organizing networks (SONs) can perform self-configuration, self-optimization, and self-healing. These operations can cover basic tasks such as the configuration of a newly installed base station, resource management, and fault management in the network. In other words, SONs attempt to minimize human intervention where they use measurements from the network to minimize the cost of installation, configuration, and maintenance of the network. In fact, SONs aim to bring two main factors in play: intelligence and autonomous adaptability. One of the main requirements for achieving such goals is to learn from sensory data and signal measurements in networks. Therefore, machine learning techniques can play a major role in processing underutilized sensory data to enhance the performance of SONs. In the first part of this dissertation, we focus on reinforcement learning as a viable approach for learning from signal measurements. We develop a general framework in heterogeneous cellular networks agnostic to the learning approach. We design multiple reward functions and study different effects of the reward function, Markov state model, learning rate, and cooperation methods on the performance of reinforcement learning in cellular networks. Further, we look into the optimality of reinforcement learning solutions and provide insights into how to achieve optimal solutions. In the second part of the dissertation, we propose a novel architecture based on spatial indexing for system-evaluation of heterogeneous 5G cellular networks. We develop an open-source platform based on the proposed architecture that can be used to study large scale directional cellular networks. The proposed platform is used for generating training data sets of accurate signal-to-interference-plus-noise-ratio (SINR) values in millimeter-wave communications for machine learning purposes. Then, with taking advantage of the developed platform, we look into dense millimeter-wave networks as one of the key technologies in 5G cellular networks. We focus on topology management of millimeter-wave backhaul networks and study and provide multiple insights on the evaluation and selection of proper performance metrics in dense millimeter-wave networks. Finally, we finish this part by proposing a self-organizing solution to achieve k-connectivity via reinforcement learning in the topology management of wireless networks

    On the Impact of Energy Harvesting on Wireless Sensor Network Security

    Get PDF

    Next-Generation Public Safety Systems Based on Autonomous Vehicles and Opportunistic Communications

    Get PDF
    An emergency scenario is characterized by the unpredictability of the environment conditions and by the scarcity of the available communication infrastructures. After a natural or human disaster, the main public and private infrastructures are partially damaged or totally destroyed. These infrastructures include roads, bridges, water supplies, electrical grids, telecommunications and so on. In these conditions, the first rescue operations executed by the public safety organizations can be very difficult, due to the unpredictability of the disaster area environment and the lack in the communications systems. The aim of this work is to introduce next-generation public safety systems where the main focus is the use of unmanned vehicles that are able to exploit the self-organizing characteristics of such autonomous systems. With the proposed public safety systems, a team of autonomous vehicles will be able to overcome the hazardous environments of a post disaster scenario by introducing a temporary dynamic network infrastructure which enables the first responders to cooperate and to communicate with the victims involved. Furthermore, given the pervasive penetration of smart end-user devices, the emergence of spontaneous networks could constitute promising solutions to implement emergency communication systems. With these systems the survivors will be able to self-organize in a communication network that allows them to send alerts and information messages towards the rescue teams, even in absence of communication infrastructures

    A Framework for Dynamic Traffic Monitoring Using Vehicular Ad-Hoc Networks

    Get PDF
    Traffic management centers (TMCs) need high-quality data regarding the status of roadways for monitoring and delivering up-to-date traffic conditions to the traveling public. Currently this data is measured at static points on the roadway using technologies that have significant maintenance requirements. To obtain an accurate picture of traffic on any road section at any time requires a real-time probe of vehicles traveling in that section. We envision a near-term future where network communication devices are commonly included in new vehicles. These devices will allow vehicles to form vehicular networks allowing communication among themselves, other vehicles, and roadside units (RSUs) to improve driver safety, provide enhanced monitoring to TMCs, and deliver real-time traffic conditions to drivers. In this dissertation, we contribute and develop a framework for dynamic trafficmonitoring (DTMon) using vehicular networks. We introduce RSUs called task organizers (TOs) that can communicate with equipped vehicles and with a TMC. These TOs can be programmed by the TMC to task vehicles with performing traffic measurements over various sections of the roadway. Measurement points for TOs, or virtual strips, can be changed dynamically, placed anywhere within several kilometers of the TO, and used to measure wide areas of the roadway network. This is a vast improvement over current technology. We analyze the ability of a TO, or multiple TOs, to monitor high-quality traffic datain various traffic conditions (e.g., free flow traffic, transient flow traffic, traffic with congestion, etc.). We show that DTMon can accurately monitor speed and travel times in both free-flow and traffic with transient congestion. For some types of data, the percentage of equipped vehicles, or the market penetration rate, affects the quality of data gathered. Thus, we investigate methods for mitigating the effects of low penetration rate as well as low traffic density on data quality using DTMon. This includes studying the deployment of multiple TOs in a region and the use of oncoming traffic to help bridge gaps in connectivity. We show that DTMon can have a large impact on traffic monitoring. Traffic engineers can take advantage of the programmability of TOs, giving them the ability to measure traffic at any point within several km of a TO. Most real-time traffic maps measure traffic at midpoint of roads between interchanges and the use of this framework would allow for virtual strips to be placed at various locations in between interchanges, providing fine-grained measurements to TMCs. In addition, the measurement points can be adjusted as traffic conditions change. An important application of this is end-of-queue management. Traffic engineers are very interested in deliver timely information to drivers approaching congestion endpoints to improve safety. We show the ability of DTMon in detecting the end of the queue during congestion

    Development of Energy-efficient Algorithms for Wireless Sensor Networks

    Get PDF
    corecore