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ABSTRACT

Self-organization is a key feature as cellular networks densify and become more 

heterogeneous, through the additional small cells such as pico and femtocells. Self-

organizing networks (SONs) can perform self-configuration, self-optimization, and 

self-healing. These operations can cover basic tasks such as the configuration of a 

newly installed base station, resource management, and fault management in the 

network. In other words, SONs attempt to minimize human intervention where they 

use measurements from the network to minimize the cost of installation, configuration, 

and maintenance of the network. In fact, SONs aim to bring two main factors 

in play: intelligence and autonomous adaptability. One of the main requirements 

for achieving such goals is to learn from sensory data and signal measurements in 

networks. Therefore, machine learning techniques can play a major role in processing 

underutilized sensory data to enhance the performance of SONs.

In the first part of this dissertation, we focus on reinforcement learning as a viable 

approach for learning from signal measurements. We develop a general framework in 

heterogeneous cellular networks agnostic to the learning approach. We design multiple 

reward functions and study different effects of the reward function, Markov state 

model, learning rate, and cooperation methods on the performance of reinforcement 

learning in cellular networks. Further, we look into the optimality of reinforcement 

learning solutions and provide insights into how to achieve optimal solutions.

In the second part of the dissertation, we propose a novel architecture based on
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spatial indexing for system-evaluation of heterogeneous 5G cellular networks. We

develop an open-source platform based on the proposed architecture that can be used

to study large scale directional cellular networks. The proposed platform is used for

generating training data sets of accurate signal-to-interference-plus-noise-ratio (SINR)

values in millimeter-wave communications for machine learning purposes. Then,

with taking advantage of the developed platform, we look into dense millimeter-wave

networks as one of the key technologies in 5G cellular networks. We focus on topology

management of millimeter-wave backhaul networks and study and provide multiple

insights on the evaluation and selection of proper performance metrics in dense

millimeter-wave networks. Finally, we finish this part by proposing a self-organizing

solution to achieve k-connectivity via reinforcement learning in the topology manage-

ment of wireless networks.
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Chapter 1

INTRODUCTION

Self-organizing network (SON) technology minimizes the cost of running a mobile

network by eliminating manual configuration of network elements at the time of

deployment, through dynamic optimization and troubleshooting during operation.

Further, SON improves network performance, customer experience, and reduces the

cost of mobile operator services. SON started as an approach to improve performance

of cellular radio access network (RAN) deployment and optimization in 2008. How-

ever, its focus is gradually extending beyond RAN to managing the core network as

well. Largely driven by the increasing complexity of new wireless network generation

(5G), multi-RAN, densification, and spectrum heterogeneity, global investments in

SON technology are expected to grow. By the end of 2022, the research estimates

that SON will account for a market worth 5.5 Billion dollars [1].

One of the new developments in SON is increasing its capabilities in self-learning

through artificial intelligence techniques. Self-learning is considered to be critical

to address 5G requirements. Reinforcement learning [2] is one of the most used

approaches from machine learning to make self-learning algorithms viable in SON.

This dissertation focuses on developing frameworks, algorithms, and platforms to

integrate reinforcement learning methods into algorithms designed for cellular net-

works. This chapter reviews some of the technologies of 5G, features of SON, and
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reasons of interest in reinforcement learning. Then, the challenges of developing

a reinforcement learning algorithm are described. Finally, the contributions of the

dissertation are detailed.

1.1 The Road to 5G

5G is expected to provide multiple folds of data capacity, higher security and better

QoS in the next decade. Many new technologies will rely on 5G such as Virtual reality

(VR), augmented reality (AR), streaming services such as Chromecast or SanDisk,

and connected cars such as OnStar or Autonet. To realize such a vision, three key

technologies are under development: millimeter wave (mmWave) communications,

massive multiple-input multiple-output (MIMO), and ultra-densificiation [3].

To achieve higher rates promised for 5G there is just one way: Going up in

frequency. The mmWave frequency range between 30-300 GHz is almost unused and

can provide bandwidth on the range of GHz for communication. However, to be able

to use mmWave frequencies, new technologies needed to be developed at link-level

and new algorithms need to be designed at the system-level.

Severe path loss at mmWave frequencies was a barrier to not consider it for

wireless communication for a long time. However, thanks to the short wavelength

at mmWave frequencies, directivity can be achieved by using a large number of

antennas at transmitters and receivers to mitigate severe path loss [4]. MmWave

has been considered for short-range communications (such as Wi-Fi connections).

Further, cost-efficient mmWave communication in cellular networks is promised in

a few years. Three beamforming architectures have been proposed for mmWave

systems: digital [4], analog [5], and hybrid [6]. Hybrid beamforming is achieved with
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different architectures such as: (i) hybrid beamforming with phase-shifters [6], (ii)

hybrid beamforming with lens antennas [7], and (iii) hybrid beamforming with recon-

figurable microelectromechanical systems (MEMS) integrated antennas [8]. Ahmadi

et. al. have developed new architecture (RA-MIMO) based on lens antennas to

generate multiple independent beams simultaneously using a single RF chain [9–11].

RA-MIMO is used to combat small-scale fading and shadowing in mmWave bands.

Further, multiple new antenna designs to steer the beam at mmWave frequencies are

proposed at [12–14].

At the system-level, one of the basic while effective ways to increase the capacity of

a cellular network is to make cells smaller. Cell shrinking results in reusing frequency

spectrum across a geographical area and less competition for users over resources.

Technically there is no limitation on reducing the cell size, even until the point in

which each access point just services one user [3]. In general, ultra densification is one

main technology to achieve higher data rates. Densification is achieved using nested

cells which is the use of low-range small base stations to provide better coverage or

higher capacity for the users. These small cells can be picocells (range below 100m),

or femtocells (Wi-Fi range). Meanwhile, achieving the full potential of densification

to improve the spectral efficiency of access links runs into the significant bottleneck

of efficient backhauling.

Wired and wireless technologies can be used as backhaul solutions. Wired tech-

nologies such as fiber or xDSL have the advantage of high throughput, high relia-

bility, and low latency. However, wired solutions have high expenses and situational

impracticality in providing backhaul to a large number of small cells [15]. On the

contrary, wireless technology is a potential solution to provide a cost-efficient and

scalable backhaul support when a wired solution is impractical [16, 17]. Wireless
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backhaul technologies can operate at Sub6GHz or mmWave bands. Sub6GHz wireless

backhaul has the advantage of non-line-of-sight (NLoS) transmission with the disad-

vantage of co-channel interference and variable delay. In contrast, thanks to a large

spectrum, high directional transmission, and low delay of line-of-sight (LoS) links,

mmWave communications can be modeled as pseudo-wired communications without

interference [18]. Therefore, mmWave communications are suitable candidates for the

backhaul of dense small cells.

Considering the above, 5G will be heterogeneous on the access and backhaul

networks. Further, the number of nodes in a 5G network will increase in multiple

folds. As 5G gets more complex, network management procedures need to evolve

as well. In the following, we look into the SON as a viable solution for 5G network

management.

1.2 Self-Organizing Networks

As 5G networks get more complex, the management of such a system becomes a

challenge. In wireless networks, many network elements and associated parameters

are manually configured. Planning, commissioning, configuration, and management

of these parameters are essential for efficient and reliable network operation. Manual

tuning has limitations such as:

• Specialized expertise must be maintained to tune network parameters.

• The existing manual process is time-consuming and error-prone.

• Manual tuning results in long delays in response to the often rapidly-changing

network topologies and operating conditions.
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• Manual tuning results in sub-optimal network performance.

Considering the above, the big picture vision for the management of large cellular

networks raised some questions: Could future networks become intelligent and orga-

nize their operations autonomously? What is the definition of intelligence/learning?

How do existing nodes adapt their operating parameters when a new node is added

(removed) to (from) the network? Such discussion was the introduction of the SON

concept in cellular networks.

SON has been discussed and defined in many parts of the literature. Here, we

bring our favorite definitions:

• SONs are intelligent systems which learn from environment and adapt to

statistical variations [19].

• A phenomenon in which nodes work cooperatively in response to changes in

the environment in order to achieve certain goals [20].

• A set of entities that obtain a global system behavior as a result of local

interactions without central control [21].

In cellular networks, SON refers to scalable, stable, and agile mobile network

automation to minimize human intervention with three main features: (i)

scalability: bounded complexity with respect to network size, (ii) stability: transition

from current state to desired state in limited time, and (iii) agility: transition

should not be sluggish! In cellular networks, SON aims for improving the network

performance while reducing capital and operational expenditures (CAPEX/OPEX).

Self-organization is a key feature as cellular networks densify and become more

heterogeneous, through the additional small cells such as pico and femtocells. SON’s



6

operations are defined at the deployment phase (self-configuration), optimization

phase (self-optimization), and maintenance phase (self-healing) [22]. These operations

can cover basic tasks such as the configuration of a newly installed base station,

resource management, and fault management in the network [23].

1.3 SON Requirements and Reinforcement Learning

One of the requirements of self-organization in cellular networks is open-loop com-

munication. This means that a transmitter has only access to a channel quality

indicator (CQI) signal received from its related receiver. CQI can be translated

into signal-to-interference-plus-noise-ration (SINR). Hence, on a high-level definition,

many problems in SON can be translated to making the transmitter intelligent enough

to configure/adapt itself based on SINR measurements. Further, intelligence can be

defined as learning a function/map from measurements (data samples) to a required

parameter. For instance, if pi stands for transmit power for the (i − 1)th SINR

measurement (γi−1), self-learning as a power control problem can be defined as follows.

Definition 1. For a given dataset (γi, pi)
m
i=1 drawn from fixed and unknown distri-

bution ρ (Γ,P), find a function f such that

f (γi−1) = pi, i = 1, ...,m. (1.1)

The above definition relates to the concept of statistical learning or more com-

monly known as machine learning.

The problem in Definition 1 has the following challenges:
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• All signal measurements are not available at the transmitter at once. Hence,

the data set needs to be acquired during interaction with the receiver (or

environment).

• Correct outputs are unknown. In supervised learning algorithms, the correct

label (pi) for input (γi−1) is known. However, here there is no model of the

network at the transmitter and calculation of correct transmit power potentially

ends in a non-convex problem depending on channel coefficients.

• The transmitter needs to adapt the mapping function continuously due to the

changes in wireless channels.

Considering the above challenges, reinforcement learning (RL) is a promising

approach to attack the problem. RL is a branch of machine learning that concerns

with finding an optimal policy to interact with an unknown environment. In RL, the

environment is defined as a Markov decision process (MDP) and policy is defined as a

mapping between the MDP states and the actions taken at those states [24]. In each

time step, t, an agent takes an action (at) and receives a reward (Rt) and transits

to a new state (st) in interaction with the environment. The goal of the RL is to

maximize the total received reward by interacting with the environment. In Fig. 1.1,

the agent, environment, and their interaction are illustrated.

We can define a learning model comprised of the following elements:

• Agent: which is the transmitter in our problem.

• Environment: the channel, receiver, and all other communication devices af-

fecting the desired link SINR.

• S: state space, a finite set of environment states.
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Environment

Agent

action
at

Reward
Rt

State
st

Figure 1.1: Agent and environment interaction in RL

• A: action space, a finite set of actions.

• r: S→ R, a reward function.

And the goal of RL is to find a policy (Π) in a stochastic MDP that maximizes the

cumulative received reward

maximize
Π

E [R|Π] (1.2a)

where R =
∞∑
i=0

ri. (1.2b)

Q-learning is a RL method that finds an optimal action-selection policy for a finite

MDP with dynamic programming [25]. Q-learning learns an action-value function

called Q-function (Q (s, a)) which ultimately gives the value of taking an action a in

state s. The Q-function provides the agent with the optimal policy. One of the main

features of Q-learning is that it is model-free, which means no information from the

environment is known a priori by the agent. This model fits our problem very well,

in which the transmitter (for instance a new small base station) can be considered

as an agent which is deployed in the cellular network (environment) with no prior

information.
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The one-step Q-learning update rule is

Q(st, at)← (1− α)Q(st, at) + αmax
a

(rt + γQ(st+1, a)), (1.3)

where rt is the received reward, st is the state, at is the action at time step t, 0 ≤ γ ≤ 1

is the discount factor, and α is the learning rate. Algorithm 1 specifies the Q-learning

in procedural form [2].

Algorithm 1 Q-Learning algorithm

1: Initialize Q(st, at) arbitrarily
2: Initialize st
3: for all episodes do
4: for all steps of episode do
5: Choose at from set of actions
6: Take action at, observe Rt, st+1

7: Q(st, at)← (1− α)Q(st, at) + αmaxa(rt + γQ(st+1, a))

8: st ← st+1;
9: end for

10: end for

1.4 Challenges

Designing an RL algorithm in many situations is not conventional. Prof. Sutton in

his book [2], mentions that selecting the state sets and actions varies from one task to

another and such representation methods are more of an art than science. Generally,

the challenges of designing an RL algorithm can be categorized as follows.

• Defining state and action set based on the problem definitions and context of

the environment.
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• Designing reward functions that satisfy multiple constraints of an optimization

problem.

• Cooperation and coordination method definitions in multi-agent problems.

• Finding proper bounds for sample complexity or the number of samples needed

to achieve close to optimal solutions.

• Investigating optimality of an RL solution after designing an algorithm.

Another challenge in machine learning-based algorithms is generating accurate

data sets that are close to reality in a simulation environment. Furthermore, the

implementation of multi-agent RL algorithms in large networks becomes a challenge.

We faced this problem in mmWave backhaul networks, where hundreds of nodes

(agents) need to interact with each other.

In this dissertation, we focus on the above challenges on the access and backhaul

of cellular networks. The summary of the contributions of this dissertation is in the

following.

1.5 Summary of Contributions

In the first part of this dissertation, we focus on reinforcement learning as a viable

approach for learning from signal measurements. We develop a general framework in

heterogeneous cellular networks agnostic to the learning approach. We design multiple

reward functions and study different effects of reward function, Markov state model,

learning rate, and cooperation methods on the performance of reinforcement learning

in cellular networks. Further, we look into optimality of reinforcement learning

solutions and provide insights of how to achieve optimal solutions.
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In the second part of the dissertation, we propose a novel technique based on

spatial indexing for system-evaluation of heterogeneous 5G cellular networks. Further,

we develop an open-source platform that can be used to study large scale directional

cellular networks. The proposed platform is used for generating training data sets

of accurate signal-to-interference-plus-noise-ratio (SINR) values in millimeter-wave

communications. Then, with taking advantage of the developed platform, we look into

dense millimeter wave networks as one of the key technologies in 5G cellular networks.

We focus on topology management of millimeter wave backhaul networks and study

and provide multiple insights on evaluation and selection of proper performance

metrics in dense millimeter wave networks. Finally, we finish this part by proposing a

self-organizing solution to achieve k-connectivity in topology management of wireless

networks.

We summarize our contributions in this dissertation as follows.

? Chapter 2: Reinforcement Learning for Self Organization and Power Control of

Heterogeneous Networks

1. We propose a framework that is agnostic to the choice of learning method

but also connects the required RL analogies to wireless communications.

The proposed framework models a multi-agent network with a single MDP

that contains the joint action of the all the agents as its action set. Next, we

introduce MDP factorization methods to provide a distributed and scalable

architecture for the proposed framework. The proposed framework is used

to benchmark the performance of different learning rates, Markov state

models, or reward functions in two-tier wireless networks.
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2. We present a systematic approach for designing a reward function based

on the optimization problem and the nature of RL. In fact, due to scarcity

of resources in a dense network, we propose some properties for a reward

function to maximize sum transmission rate of the network while consid-

ering minimum requirements of all users. The procedure is simple and

general and the designed reward function is in the shape of low complexity

polynomials. Further, the designed reward function results in increasing

the achievable sum transmission rate of the network while consuming

considerably less power compared to greedy based algorithms.

3. We propose Q-DPA as an application of the proposed framework to per-

form distributed power allocation in a dense femtocell network. Q-DPA

uses the factorization method to derive independent and cooperative learn-

ing from the optimal solution. Q-DPA uses local signal measurements at

the femtocells to train the FBSs in order to: (i) maximize the transmission

rate of femtocells, (ii) achieve minimum required QoS for all femtocell

users with a high probability, and (iii) maintain the QoS of macrocell

users in a densely deployed femtocell network. In addition, we determine

the minimum number of samples that is required to achieve an ε-optimal

policy in Q-DPA as its sample complexity.

4. We introduce four different learning configurations based on different com-

binations of independent/cooperative learning and Markov state models.

We conduct extensive simulations to quantify the effect of different learning

configurations on the performance of the network. Simulations show that

the proposed Q-DPA algorithm can decrease power usage and as a result

reduce the interference to the macrocell user.
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– This work was published in [26,27].

? Chapter 3: Power Allocation in Interference-Limited Networks via Coordinated

Learning

1. We model the whole small cell network as a Markov decision process

(MDP) with the small base stations (SBSs) being represented as the agents

of the MDP. Then, we define a coordination graph according to the inter-

ference model of the network. The global MDP is factorized to local ones

and the value function of the MDP is approximated by a linear combination

of local value functions.

2. Each SBS uses a model-free reinforcement learning approach, i.e., Q-learning.

Q-learning is used to update the SBS’s local value function. Subsequently,

we leverage the ability of SBSs to communicate over the backhaul network

to build a simple message passing structure to select a transmit power

action based on the variable elimination method.

3. Finally, we propose a distributed algorithm which finds an optimal joint

power allocation to maximize the sum transmission rate.

– This work was published in [28].

? Chapter 4: Spatial Indexing for System-Level Evaluation of 5G Heterogeneous

Cellular Networks

1. We propose a multi-level inheritance based structure to be able to store

different nodes of a HetNet on a single geometry tree. The proposed

structure is polymorphic in a sense that different levels of a node can

be accessed via dynamic casting.



14

2. We focus on potentials of spatial indexing in accelerating the simulation

of directional communications. We introduce different spatial queries and

show that spatial indexing significantly accelerates simulation time in or-

ders of magnitude when it comes to location-based searches over azimuth,

and elevation as well as its traditional usage in searches over distance.

– This work is submitted for possible publication in [29].

? Chapter 5: Topology Management in Millimeter Wave Wireless Backhaul in 5G

Cellular Networks

1. We focus on the effect of selecting signal-to-noise-ratio (SNR) vs signal-to-

interference-plus-noise-ratio (SINR) as mmWave link quality performance

in dense mmWave networks. In fact, in directional communications, the

links are sometimes assumed to be interference-free, and the SNR metric is

used in simulations. Here, we show that despite the fact that in directional

communications, the interference-free assumption is reasonable, however,

in cases of occurrence of interference, SNR is not a valid metric and SINR

should be considered to make a correct decision.

2. We design a self-organizing algorithm based on reinforcement learning to

achieve k-connectivity in a backhaul network. Redundancy in a back-

haul network is one of the requirements of a fail-safe topology, and k-

connectivity is a key performance factor in topology management. Hence,

we use Q-learning to design a transmission range control algorithm to

achieve k-connectivity in a backhaul network.
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1.6 Dissertation Organization

We organize the remainder of this dissertation as follows. In Chapter 2, we present a

learning framework for power control problem in a two-tier HetNet. In Chapter 3 a

coordinated learning method based on message-passing is proposed to achieve optimal

power control in an interference-limited network. Chapter 4, designs a new architec-

ture for system-level evaluation of large 5G HetNets. Chapter 5 focuses on mmWave

wireless backhauling and proposes a multi-agent based topology management solution

to achieve k-connectivity in backhaul networks. Finally, Chapter 6 concludes the

dissertation and discusses potential future works based on this dissertation.



16

Chapter 2

REINFORCEMENT LEARNING FOR POWER CONTROL

OF TWO-TIER HETEROGENEOUS NETWORKS

Self-organizing networks (SONs) can help manage the severe interference in dense

heterogeneous networks (HetNets). Given their need to automatically configure

power and other settings, machine learning is a promising tool for data-driven de-

cision making in SONs. In this chapter, a HetNet is modeled as a dense two-tier

network with conventional macrocells overlaid with denser small cells (e.g. femto

or pico cells). First, a distributed framework based on multi-agent Markov decision

process is proposed that models the power optimization problem in the network.

Second, we present a systematic approach for designing a reward function based on

the optimization problem. Third, we introduce Q-learning based distributed power

allocation algorithm (Q-DPA) as a self-organizing mechanism that enables ongoing

transmit power adaptation as new small cells are added to the network. Further,

the sample complexity of the Q-DPA algorithm to achieve ε-optimality with high

probability is provided. We demonstrate, at density of several thousands femtocells

per km2, the required quality of service of a macrocell user can be maintained via

the proper selection of independent or cooperative learning and appropriate Markov

state models. This work was published in [26,27].
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2.1 Introduction

Self-organization is a key feature as cellular networks densify and become more

heterogeneous, through the additional small cells such as pico and femtocells [30–34].

Self-organizing networks (SONs) can perform self-configuration, self-optimization and

self-healing. These operations can cover basic tasks such as configuration of a newly

installed base station (BS), resource management, and fault management in the

network [35]. In other words, SONs attempt to minimize human intervention where

they use measurements from the network to minimize the cost of installation, con-

figuration and maintenance of the network. In fact SONs bring two main factors in

play: intelligence and autonomous adaptability [30, 31]. Therefore, machine learning

techniques can play a major role in processing underutilized sensory data to enhance

the performance of SONs [36,37].

One of the main responsibilities of SONs is to configure the transmit power at

various small BSs to manage interference. In fact, a small BS needs to configure its

transmit power before joining the network (as self-configuration). Subsequently, it

needs to dynamically control its transmit power during its operation in the network

(as self-optimization). To address these two issues, we consider a macrocell network

overlaid with small cells and focus on autonomous distributed power control, which

is a key element of self-organization since it improves network throughput [38–42]

and minimizes energy usage [43–45]. We rely on local measurements, such as signal-

to-interference-plus-noise ratio (SINR), and the use of machine learning to develop a

SON framework that can continually improve the above performance metrics.
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2.1.1 Related Work

In wireless communications, dynamic power control with the use of machine learning

has been implemented via reinforcement learning (RL). In this context, RL is an area

of machine learning that attempts to optimize a BS’s transmit power to achieve a

certain goal such as throughput maximization. One of the main advantages of RL with

respect to supervised learning methods is its training phase, in which there is no need

for correct input/output data. In fact, RL operates by applying the experience that it

has gained through interacting with the network [2]. RL methods have been applied

in the field of wireless communications in areas such as resource management [46–

51], energy harvesting [52], interference mitigation [53], and opportunistic spectrum

access [54,55]. A comprehensive review of RL applications in wireless communications

can be found in [56].

Q-learning is a model-free RL method [25]. The model-free feature of Q-learning

makes it a proper method for scenarios in which the statistics of the network con-

tinuously change. Further, Q-learning has low computational complexity and can

be implemented by BSs in a distributed manner [26]. Therefore, Q-learning can

bring scalability, robustness, and computational efficiency to large networks. However,

designing a proper reward function which accelerates the learning process and avoids

false learning or unlearning phenomena [57] is not trivial. Therefore, to solve an

optimization problem, an appropriate reward function for Q-learning needs to be

determined.

In this regard, the works in [46–51] have proposed different reward functions

to optimize power allocation between femtocell base stations (FBSs). The method

in [46] uses independent Q-learning in a cognitive radio system to set the transmit
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power of secondary BSs in a digital television system. The solution in [46] ensures

that the minimum quality of service (QoS) for the primary user is met by applying

Q-learning and using the SINR as a metric. However, the approach in [46] does

not take the QoS of the secondary users into considerations. The work in [47]

uses cooperative Q-learning to maximize the sum transmission rate of the femtocell

users while keeping the transmission rate of macrocell users near a certain threshold.

Further, the authors in [48] have used the proximity of FBSs to a macrocell user

as a factor in the reward function. This results in a fair power allocation scheme

in the network. Their proposed reward function keeps the transmission rate of the

macrocell user above a certain threshold while maximizing the sum transmission

rate of FBSs. However, by not considering a minimum threshold for the FBSs’

rates, the approach in [48] fails to support some FBSs as the density of the network

(and consequently interference) increases. The authors in [49] model the cross-tier

interference management problem as a non-cooperative game between femtocells and

the macrocell. In [49], femtocells use the average SINR measurement to enhance their

individual performances while maintaining the QoS of the macrocell user. In [50], the

authors attempt to improve the transmission rate of cell-edge users while keeping the

fairness between the macrocell and the femtocell users by applying a round robin

approach. The work in [51] minimizes power usage in a Long Term Evolution (LTE)

enterprise femtocell network by applying an exponential reward function without the

requirement to achieve fairness amongst the femtocells in the network.

In the above works, the reward functions do not apply to dense networks. That is

to say, first, there is no minimum threshold for the achievable rate of the femtocells.

Second, the reward functions are designed to limit the macrocell user rate to its

required QoS and not more than that. This property encourages an FBS to use more
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power to increase its own rate by assuming that the caused interference just affects the

macrocell user. However, the neighbor femtocells suffer from this decision and overall

the sum rate of the network decreases. Further, they do not provide a generalized

framework for modeling a HetNet as a multi-agent RL network or a procedure to

design a reward function which meets the QoS requirements of the network. In this

chapter, we focus on dense networks and try to provide a general solution to the

above challenges.

2.1.2 Contributions

We propose a learning framework based on multi-agent Markov decision process

(MDP). By considering an FBS as an agent, the proposed framework enables FBSs to

join and adapt to a dense network autonomously. Due to unplanned and dense deploy-

ment of femtocells, providing the required QoS to all the users in the network becomes

an important issue. Therefore, we design a reward function that trains the FBSs to

achieve this goal. Furthermore, we introduce a Q-learning based distributed power

allocation approach (Q-DPA) as an application of the proposed framework.Q-DPA

uses the proposed reward function to maximize the transmission rate of femtocells

while prioritizing the QoS of the macrocell user. More specifically the contributions

of the paper can be summarized as:

1. We propose a framework that is agnostic to the choice of learning method

but also connects the required RL analogies to wireless communications. The

proposed framework models a multi-agent network with a single MDP that

contains the joint action of the all the agents as its action set. Next, we introduce

MDP factorization methods to provide a distributed and scalable architecture

for the proposed framework. The proposed framework is used to benchmark
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the performance of different learning rates, Markov state models, or reward

functions in two-tier wireless networks.

2. We present a systematic approach for designing a reward function based on

the optimization problem and the nature of RL. In fact, due to scarcity of

resources in a dense network, we propose some properties for a reward function

to maximize sum transmission rate of the network while considering minimum

requirements of all users. The procedure is simple and general and the designed

reward function is in the shape of low complexity polynomials. Further, the

designed reward function results in increasing the achievable sum transmission

rate of the network while consuming considerably less power compared to greedy

based algorithms.

3. We propose Q-DPA as an application of the proposed framework to perform

distributed power allocation in a dense femtocell network. Q-DPA uses the

factorization method to derive independent and cooperative learning from the

optimal solution. Q-DPA uses local signal measurements at the femtocells to

train the FBSs in order to: (i) maximize the transmission rate of femtocells, (ii)

achieve minimum required QoS for all femtocell users with a high probability,

and (iii) maintain the QoS of macrocell user in a densely deployed femtocell

network. In addition, we determine the minimum number of samples that is

required to achieve an ε-optimal policy in Q-DPA as its sample complexity.

4. We introduce four different learning configurations based on different combi-

nations of independent/cooperative learning and Markov state models. We

conduct extensive simulations to quantify the effect of different learning con-

figurations on the performance of the network. Simulations show that the
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proposed Q-DPA algorithm can decrease power usage and as a result reduce

the interference to the macrocell user.

The chapter is organized as follows. In Section 5.2, the system model is presented.

Section 2.3 introduces the optimization problem and presents the existing challenges

in solving this problem. Section 2.4 presents the proposed learning framework which

models a two-tier femtocell network with a multi-agent MDP. Section 2.5.1 presents

the Q-DPA algorithm as an application of the proposed framework. Section 3.6

presents the simulation results while Section 3.7 concludes the chapter.

Notation: Lower case, boldface lower case, and calligraphic symbols represent

scalars, vectors, and sets, respectively. For a real-valued function Q : Z → R, ‖Q‖

denotes the max norm, i.e., ‖Q‖ = max
z∈Z

|Q (z)|. Ex [·], Ex [·|·], and ∂f
∂x

denote the

expectation, the conditional expectation, and the partial derivation with respect to

x, respectively. Further, Pr (·|·) and |·| denote the conditional probability and absolute

value operators, respectively.

2.2 Downlink System Model

Consider the downlink of a single cell of a HetNet operating over a set S = {1, ..., S}

of S orthogonal subbands. In the cell a single macro base station (MBS) is deployed.

The MBS serves one macrocell user equipment (MUE) over each subband while

guaranteeing this user a minimum average SINR over each subband which is denoted

by Γ0. A set of FBSs are deployed in area of coverage of the macrocell. Each FBS

selects a random subband and serves one femtocell user equipment (FUE). We assume

that overall, on each subband s ∈ S, a set K = {1, ..., K} of K FBSs are operating.

Each FBS guarantees a minimum average SINR denoted by Γk to its related FUE.
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Figure 2.1: Macrocell and femtocells operating over the same frequency band.

We consider a dense network in which the density results in both cross-tier and co-tier

interference. Therefore, in order to control the interference-level and provide the users

with their required minimum SINR, we focus on power allocation in the downlink of

the femtocell network. Uplink results can be obtained in a similar fashion but are not

included for brevity. The overall network configuration is presented in Fig. 2.1. We

focus on one subband, meanwhile the proposed solution can be extended to a case in

which each FBS supports multiple users on different subbands.

We denote the MBS-MUE pair by the index 0 and the FBS-FUE pairs by the

index k from the set K. In the downlink, the received signal at the MUE operating

over subband s includes interference from the femtocells and thermal noise. Hence,

the SINR at the MUE operating over subband s ∈ S, γ0, is calculated as

γ0 =
p0|h0,0|2∑

k∈K

pk|hk,0|2︸ ︷︷ ︸
femtocells’ interference

+N0

, (2.1)

where p0 denotes the power transmitted by the MBS and h0,0 denotes the channel

gain from the MBS to the MUE. Further, the power transmitted by the kth FBS is
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denoted by pk and the channel gain from the kth FBS to the MUE is denoted by hk,0.

Finally, N0 denotes the variance of the additive white Gaussian noise. Similarly, the

SINR at the kth FUE operating over subband s ∈ S, γk, is obtained as

γk =
pk|hk,k|2

p0|h0,k|2︸ ︷︷ ︸
macrocell’s interference

+
∑

j∈K\{k}

pj|hj,k|2︸ ︷︷ ︸
femtocells’ interference

+Nk

, (2.2)

where hk,k denotes the channel gain between the kth FBS and the kth FUE, h0,k

denotes the channel gain between the MBS and the kth FUE, pj denotes the transmit

power of the jth FBS, hj,k is the channel gain between the jth FBS and the kth FUE,

and Nk is the variance of the additive white Gaussian noise. Finally, the transmission

rates, normalized by the transmission bandwidth, at the MUE and the FUE operating

over subband s ∈ S, i.e., r0 and rk, respectively, are expressed as r0 = log2 (1 + γ0)

and rk = log2 (1 + γk) , k ∈ K.

2.3 Problem Formulation

Each FBS has the objective of maximizing its transmission rate while ensuring that

the SINR of the MUE is above the required threshold, i.e., Γ0. Denoting p =

{p1, ..., pK} as the vector of the transmit powers of the K FBSs operating over the

subband s ∈ S, the power allocation problem is presented in (2.3). In (2.3), pmax

defines the maximum available transmit power at each FBS. The objective (2.3a)

is to maximize the sum transmission rate of the FUEs. Constraint (3.4b) refers to

the power limitation of every FBS. Constraints (2.3c) and (2.3d) ensure that the

minimum SINR requirement is satisfied for the MUE and the FUEs. The addition
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of constraint (2.3d) to the optimization problem is one of the differences between the

proposed approach in this paper and that of [46–51].

maximize
p

∑
k∈K

log2 (1 + γk) (2.3a)

subject to 0 ≤ pk ≤ pmax, k ∈ K, (2.3b)

γ0 ≥ Γ0, (2.3c)

γk ≥ Γk, k ∈ K, (2.3d)

Considering (2.2), it can be concluded that the optimization in (2.3) is a non-

convex problem for dense networks. This follows from the SINR expression in (2.2)

and the objective function (2.3a). More specifically, the interference term due to

the neighboring femtocells in the denominator of (2.2) ensures that the optimization

problem in (2.3) is not convex [58]. This interference term may be ignored in low

density networks but cannot be ignored in dense networks consisting of a large

number of femtocells [59]. However, non-convextiy is not the only challenge of

the above problem. In fact, many iterative algorithms are developed to solve the

above optimization problem with excellent performance. However, their algorithms

contains expensive computations such as matrix inversion and bisection or singular

value decomposition in each iteration which makes their real-time implementation

challenging [60]. Besides, the kth FBS is only aware of its own transmit power, pk,

and does not know the transmit powers of the remaining FBSs. Therefore, the idea

here is to treat the given problem as a black-box and try to learn the relation between

the transmit power and the resulting transmission rate gradually by interacting with

the network and simple computations.
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To realize self-organization, each FBS should be able to operate autonomously.

This means an FBS should be able to connect to the network at anytime and to contin-

uously adapt its transmit power to achieve its objectives. Therefore, our optimization

problem requires a self-adaptive solution. The steps for achieving self-adaptation can

be summarized as: (i) the FBS measures the interference level at its related FUEs,

(ii) determines the maximum transmit power to support its FUEs while not greatly

degrading the performance of other users in the network. In the next section, the

required framework to solve this problem will be presented.

2.4 The Proposed Learning Framework

Here, first we model a multi-agent network as an MDP. Then the required definitions,

evaluation methods, and factorization of the MDP to develop a distributed learning

framework are explained. Subsequently, the femtocell network is modeled as a multi-

agent MDP and the proposed learning framework is developed.

2.4.1 Multi-Agent MDP and Policy Evaluation

A single-agent MDP comprises an agent, an environment, an action set, and a state

set. The agent can transition between different states by choosing different actions.

The trace of actions that is taken by the agent is called its policy. With each

transition, the agent will receive a reward from the environment, as a consequence of

its action, and will save the discounted summation of rewards as a cumulative reward.

The agent will continue its behavior with the goal of maximizing the cumulative

reward and the value of cumulative reward evaluates the chosen policy. The discount

property increases the impact of recent rewards and decreases the effect of later ones.
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If the number of transitions is limited, the non-discounted summation of rewards can

be used as well.

A multi-agent MDP consists of a set, K, of K agents. The agents select actions

to move between different states of the model to maximize the cumulative reward

received by all the agents. Here, we again formulate the network of agents as one

MDP, e.g., we define the action set as the joint action set of all the agents. Therefore,

the multi-agent MDP framework is defined with a tuple as (A,X , P r,R) with the

following definitions.

• A is the joint set of all the agents’ actions. An agent k selects its action a

from its action set Ak, i.e., ak ∈ Ak. The joint action set is represented as

A = A1 × · · · × AK , with a ∈ A as a single joint action.

• The state of the system is defined with a set of random variables. Each random

variable is represented by Xi with i = 1, ..., n, and the state set is represented as

X = {X1, X2, ..., Xn}, where x ∈ X denotes a single state of the system. Each

random variable reflects a specific feature of the network.

• The transition probability function, Pr (x, a,x′), represents the probability of

taking joint action a at state x and ending in state x′. In other words, the tran-

sition probability function defines the environment which agents are interacting

with.

• R (x, a) is the reward function such that its value is the received reward by the

agents for taking joint action a at state x.

We define π : X → A as the policy function, where π (x) is the joint action that

is taken at the state x. In order to evaluate the policy π (x), a value function Vπ (x)
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and an action-value function Qπ (x, a) are defined. The value of the policy π in state

x′ ∈ X is defined as [2]

Vπ (x′) = Eπ

[
∞∑
t=0

βtR(t+1)
∣∣x(0) = x′

]
, (2.4)

in which β ∈ (0, 1] is a discount factor, R(t+1) is the received reward at time step

t+ 1, and x(0) is the initial state. The action-value function, Qπ (x, a), represents the

value of the policy π for taking joint action a at state x and then following policy π

for subsequent iterations. According to [2], the relation between the value function

and the action-value function is given by

Qπ (x, a) = R (x, a) + β
∑
x′∈X

Pr (x′|x, a)Vπ (x′) . (2.5)

For the ease of notation, we will use V and Q for the value function and the action-

value function of policy π, respectively. Further, we use the term Q-function to refer

to the action-value function. The optimal value of state x is the maximum value

that can be reached by following any policy and starting at this state. An optimal

value function V ∗, which gives an optimal policy π∗, satisfies the Bellman optimality

equation as [2]

V ∗ (x) = max
a

Q∗ (x, a) , (2.6)

where Q∗ (x, a) is an optimal Q-function under policy π∗. The general solution

for (2.6) is to start from an arbitrary policy and using the generalized policy iteration

(GPI) [2] method to iteratively evaluate and improve the chosen policy to achieve

an optimal policy. If the agents have a priori information of the environment, i.e.,
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Pr (x, a,x′) is known to the agents, dynamic programming is the solution for (2.6).

However, the environment is unknown in most practical applications. Hence, we rely

on reinforcement learning (RL) to derive an optimal Q-function. RL uses temporal-

difference to provide a real-time solution for the GPI method [2]. As a result, in

Section 2.5.1, we use Q-learning, as a specific method of RL, to solve (2.6).

2.4.2 Factored MDP

To this point, we defined the Q-function over the joint state-action space of all the

agents, i.e., X ×A. We refer to this Q-function as the global Q-function. According

to [25], Q-learning finds the optimal solution to a single MDP with probability

one. However, in large MDPs, due to exponential increase in the size of the joint

state-action space with respect to the number of agents, the solution to the problem

becomes intractable. To resolve this issue, we use factored MDPs as a decomposition

technique for large MDPs. The idea in factored MDPs is that many large MDPs are

generated by systems with many parts that are weakly interconnected. Each part

has its associated state variables and the state space can be factored into subsets

accordingly. The definition of the subsets affects the optimality of the solution [61],

and investigating the optimal factorization method helps with understanding the

optimality of multi-agent RL solutions [28]. In [62] power control of a multi-hop

network is modeled as an MDP and the state set is factorized into multiple subsets

each referring to a single hop. The authors in [63] show that the subsets can be defined

based on the local knowledge of the agents from the environment. Meanwhile, we aim

to distribute the power control to the nodes of the network. Therefore, due to the

definition of the problem in Section 2.3 and the fact that each FBS is only aware of

its own power, we use the assumption in [63] and define the individual action set of
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the agents, i.e., Ak, as the subsets of the joint action set. Consequently, the resultant

Q-function for the kth agent is defined as Qk (xk, ak), in which ak ∈ Ak, xk ∈ Xk is

the state vector of the kth agent, and Xk, k ∈ K, are the subsets of the global state

set of the system, i.e., X .

In factored MDPs, We assume that the reward function is factored based on the

subsets, i.e.,

R (x, a) =
∑
k∈K

Rk (xk, ak) , (2.7)

where, Rk (xk, ak) is the local reward function of the kth agent. Moreover, we also

assume that the transition probabilities are factored, i.e., for the kth subsystem we

have

Pr (x′k|x, a) = Pr (x′k|xk, ak) ,

(x, a) ∈ X ×A, (xk, ak) ∈ Xk ×Ak, x′k ∈ Xk.
(2.8)

The value function for the global MDP is given by

V (x) = E

[
∞∑
t=0

βtR(t+1) (x, a)

]

= E

[
∞∑
t=0

βt
∑
k∈K

R
(t+1)
k (xk, ak)

]

=
∑
k∈K

Vk (xk) ,

(2.9)

where, Vk (xk) is the value function of the kth agent. Therefore, the derived policy has

the value function equal to the linear combination of local value functions. Further,

according to (3.6), for each agent k ∈ K
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Qk (xk, ak) = Rk (xk, ak) + β
∑
x′
k

Pr (x′k|xk, ak)Vk (x′k) , (2.10)

and for the global Q-function

Q (x, a) = R (x, a) + β
∑
x′∈X

Pr (x′|x, a) V (x′)

=
∑
k∈K

Rk (xk, ak) + β
∑
x′∈X

Pr (x′|x, a)
∑
k∈K

Vk (xk)

=
∑
k∈K

Rk (xk, ak) + β
∑
k∈K

∑
x′
k∈Xk

Pr (x′k|x, a)Vk (xk)

=
∑
k∈K

Rk (xk, ak) + β
∑
k∈K

∑
x′∈Xk

Pr (x′k|xk, ak)Vk (xk)

=
∑
k∈K

Qk (xk, ak) .

(2.11)

Therefore, based on the assumptions in (2.7) and (2.8), the global Q-function can

be approximated with the linear combination of local Q-functions. Further, (2.11)

results in a distributed and scalable architecture for the framework.

2.4.3 Femtocell Network as Multi-Agent MDP

In a wireless communication system, the resource management policy is equivalent to

the policy function in an MDP. To integrate the femtocell network in a multi-agent

MDP, we define the followings according to Fig. 2.2.

• Environment: From the view point of an FBS, the environment is comprised

of the macrocell and all other femtocells.

• Agent: Each FBS is an independent agent in the MDP. In this paper, the terms

of agent and FBS are used interchangeably. An agent has three objectives: (i)
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Figure 2.2: The proposed learning framework: the environment from the point of view
of an agent (FBS), and its interaction with the environment in the learning procedure.
Context defines the data needed to derive the state of the agent. Measurement refers to
calculations needed to derive the reward of the agent.

improving its sum transmission rate, (ii) guaranteeing the required SINR for its

user (i.e., Γk), and (iii) meeting the required SINR for the MUE.

• Action set (Ak): The transmit power level is the action of an FBS. The kth

FBS chooses its transmit power from the set Ak which covers the space between

pmin and pmax. pmin and pmax denote the minimum and maximum transmit

power of the FBS, respectively. In general, the FBS has no knowledge of the

environment and it chooses its actions with the same probability in the training

mode. Therefore, equal step sizes of ∆p are chosen between pmin and pmax to

construct the set Ak.
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• State set (Xk): State set directly affects the performance of the MUE and the

FUEs. To this end, we define four variables to represent the state of the network.

The state set variables are defined based on the constraints of the optimization

problem in (2.3). We define the variables X1 and X2 as indicators of the

performance of the FUE and the MUE. On the other hand, the relative location

of an FBS with respect to the MUE and the MBS is important and affects the

interference power at the MUE caused by the FBS, and the interference power

at the FBS causes by the MBS. Therefore, we define X3 as an indicator of

the interference imposed on the MUE by the FBS, and X4 as an indicator

of interference imposed on the femtocell by the MBS. The state variables are

defined as

– X1 ∈ {0, 1}: The value of X1 indicates whether the FBS is supporting

its FUE with the required minimum SINR or not. X1 is defined as X1 =

1{γk≥Γk}.

– X2 ∈ {0, 1}: The value of X2 indicates whether the MUE is being sup-

ported with its required minimum SINR or not. X2 is defined as X2 =

1{γ0≥Γ0}.

– X3 ∈ {0, 1, 2, ..., N1}: The value of X3 defines the location of the FBS

compared to N1 concentric rings around the MUE. The radius of rings are

d1, d2, ..., dN1 .

– X4 ∈ {0, 1, 2, ..., N2}: The value of X4 defines the location of the FBS

compared to N2 concentric rings around the MBS. The radius of rings are

d′1, d′2, ..., d′N2
.
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The kth FBS calculates γk based on the channel equality indicator (CQI)

received from its related FUE to assess X1. The MBS is aware of the SINR

of the MUE user, i.e., γ0, and the relative location of the FBS concerning itself

and the MUE. Therefore, the FBS obtains the required information to asses the

X2, X3, and X4 variables via backhaul and feedback from the MBS.

Here, we defined the state variables as a function of each FBS’s SINR and

location. Therefore, in high SINR regime, the state of FBSs can be assumed to

be independent of each other.

In Section 3.6, we will examine different possible state sets to investigate the

effect of the above state variables on the performance of the network.

2.5 Q-DPA, Reward Function, and Sample Complexity

In this section, we present Q-DPA, which is an application of the proposed framework.

Q-DPA details the learning method, the learning rate, and the training procedure.

Then, the proposed reward function is defined. Finally, the required sample complex-

ity for the training is derived.

2.5.1 Q-learning Based Distributed Power Allocation (Q-DPA)

To solve the Bellman equation in (2.6), we use Q-learning. The reasoning for choosing

the RL method and advantages of Q-learning are explained in Sections 2.4.1 and 2.1.1,

respectively. The Q-learning update rule to evaluate a policy for the global Q-function

can be represented as (2.12)
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Q(x(t), a(t))←Q(x(t), a(t))+

α(t) (x, a)

R(t+1)
(
x(t), a(t)

)
+ βmax

a′
Q(x(t+1), a′)︸ ︷︷ ︸

(M)

−Q(x(t), a(t))

 ,

(2.12)

where a′ ∈ A, α(t) (x, a) denotes the learning rate at time step t, and x(t+1) is the new

state of the network [25]. The term M is the maximum value of the global Q-function

that is available at the new state x(t+1). After each iteration, the FBSs will receive

the delayed reward R(t+1)
(
x(t), a(t)

)
and then the global Q-function will be updated

according to (2.12).

In the prior works [46–48,50,51], a constant learning rate was used for Q-learning

to solve the required optimization problems. However, according to [64], in finite

number of iterations, the performance of Q-learning can be improved by applying a

decaying learning rate. Therefore, we use the following learning rate

α(t) (x, a) =
1

[1 + t (x, a)]
, (2.13)

in which t (x, a) refers to the number of times, until time step t, that the state-action

pair (x, a) is visited. It is worth mentioning that, by using the above learning rate,

we need to keep track of the number of times each state-action pair has been visited

during training, which requires more memory. Therefore, at the cost of more memory,

a better performance can be achieved.

There are two alternatives available for the training of new FBSs as they join the

network, they can use independent learning or cooperative learning. In independent

learning, each FBS tries to maximize its own Q-function. In other words, using the

factorization method in Section 2.4.2, the term M in (2.12) is approximated as
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M = max
a′

∑
k∈K

Qk(x
(t+1)
k , a′k) ≈

∑
k∈K

max
a′k

Qk

(
x

(t+1)
k , a′k

)
. (2.14)

In cooperative learning, the FBSs share their local Q-functions and will assume

that the FBSs with the same state make the same decision. Hence, term M is

approximated as

M = max
a′

∑
k∈K

Qk(x
(t+1)
k , a′k) ≈ max

a′k

∑
k∈K′

Qk

(
x

(t+1)
k , a′k

)
, (2.15)

where K′ is the set of FBSs with the same state x
(t+1)
k . Cooperative Q-learning may

result in a higher cumulative reward [65]. However, cooperation will result in the same

policy for FBSs with the same state and additional overhead since the Q-functions

between FBSs need to be shared over the backhaul network. The local update rule

for the kth FBS can be derived from (2.12) as in (2.16)

Qk(x
(t)
k , a

(t)
k )←Qk(x

(t)
k , a

(t)
k )+

α(t)
(
R(t+1)

(
x

(t)
k , a

(t)
k

)
+ βQk

(
x

(t+1)
k , a∗k

)
−Qk(x

(t)
k , a

(t)
k )
)
,

(2.16)

where, R(t+1)
(
x

(t)
k , a

(t)
k

)
is the reward of the kth FBS, and a∗k is defined as

arg max
a′k

Qk

(
x

(t+1)
k , a′k

)
, (2.17)

and

arg max
a′k

∑
k∈K′

Qk

(
x

(t+1)
k , a′k

)
, (2.18)

for independent and cooperative learning, respectively.
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In this paper, a tabular representation is used for the Q-function in which the

rows of the table refer to the states and the columns refer to the actions of an agent.

Generally, for large state spaces, neural networks are more efficient to use as Q-

functions, however, part of this work is focused on the effect of state space variables.

Therefore, we avoid large number of state variables. On the other hand, we provide

exhaustive search solution to investigate the optimality of our solution which is not

possible for large state spaces.

The training for an FBS happens over L frames. In the beginning of each frame,

the FBS chooses an action, i.e., transmit power. Then, the FBS sends a frame to the

intended FUE. The FUE feeds back the required measurements such as CQI so the

FBS can estimate the SINR at the FUE, and calculate the reward based on (2.24).

Finally, the FBS updates its Q-table according to (2.16).

Due to limited number of training frames, each FBS needs to select its actions

in a way that covers most of the action space and improves the policy at the same

time. Therefore, the FBS chooses the actions with a combination of exploration and

exploitation, known as an e-greedy exploration. In the e-greedy method, the FBS acts

greedily with probability 1− e (i.e., exploiting) and randomly with probability e (i.e.,

exploring). In exploitation, the FBS selects an action that has the maximum value

in the current state in its own Q-table (independent learning) or in the summation

of Q-tables (cooperative learning). In exploring, the FBS selects an action randomly

to cover action space and avoid biasing to a local maximum. In [2], it is shown that

for a limited number of iterations the e-greedy policy results in a closer final value to

the optimal value compared to only exploiting or exploring.

It is worth mentioning that the overhead of sharing Q-tables depends on the

definition of the state model Xk according to Section 2.4.3. For instance, assuming
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the largest possible state model as Xk = {X1, X2, X3, X4}. The variables X3 and

X4 depend on the location of the FBS and are fixed during training. Therefore, one

training FBS uses four rows of its Q-table and just needs the same rows from other

FBSs. Hence, if the number of active FBSs is |K|, the number of messages to the

FBS in each training frame is 4× (|K| − 1), each of size |Ak|.

2.5.2 Proposed Reward Function

The design of the reward function is essential because it directly impacts the objectives

of the FBS. Generally, there has not existed a quantitative approach to designing the

reward function. Here, we present a systematic approach for deriving the reward

function based on the nature of the optimization problem under consideration. Then,

we compare the behavior of the designed reward function to the ones in [46–48].

The reward function for the kth FBS is represented as Rk. According to the

Section 2.4.3, the kth FBS has knowledge of the minimum required SINR for the

MUE, i.e. Γ0, and minimum required SINR for its related FUE, i.e. Γk. Also, after

taking an action in each step, the kth FBS has access to the rate of the MUE, i.e. r0

and the rate of its related FUE, i.e. rk. Therefore, Rk is considered as a function of

the above four variables as Rk : (r0, rk,Γ0,Γk)→ R.

In order to design the appropriate reward function, we need to estimate the

progress of the kth FBS toward the goals of the optimization problem. Based on

the input arguments to the reward function, we define two progress estimators, one

for the MUE as (r0 − log2 (1 + Γ0)) and one for the kth FUE as (rk − log2 (1 + Γk)).

To reduce computational complexity, we define the reward function as a polynomial

function of the defined progress estimators as
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Rk = (r0 − log2 (1 + Γ0))k1 + (rk − log2 (1 + Γk))
k2 + C, (2.19)

where, k1 and k2 are integers and C ∈ R is a constant referred to as the bias of the

reward function.

The constant bias, C, in the reward function has two effects on the learning

algorithm: (i) The final value of the states for a given policy π, and (ii) the behavior

of the agent in the beginning of the learning process as follows:

1. Effect of bias on the final value of the states: Assume the reward function,

R1 = f (·), and the reward function R2 = f (·) +C, C ∈ R. We define the value

of state x for a given policy π using R1 as V1 (x) and the value of the state x

for the same policy using R2 as V2 (x). According to (2.4), we have

V2 (x) = Eπ

[
∞∑
t=0

βt
(
f (t+1) (·) + C

)]

= Eπ

[
∞∑
t=0

βtf (t+1) (·)

]
+ C

∞∑
t=0

βt

= V1 (x) +
C

1− β
.

(2.20)

Therefore, bias of the reward function adds the constant value C
1−β to the value

of the states. However, all the states are affected the same after the convergence

of the algorithm.

2. Effect of bias in the beginning of the learning process: This effect is studied

using the action-value function of an agent, i.e., the Q-function. Assume that

the Q-function of the agent is initialized with zero values and the reward function

is defined as R = f (·) + C. Further let us consider the first transition of the
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agent from state x′ to state x′′ happens by taking action a at time step t, i.e.,

x(t) = x′ and x(t+1) = x′′. The update rule at time step t is given by (2.16) as

in (2.21)

Q(x′, a)← Q(x′, a) + α(t) (x′, a)
(
R (x′, a) + β max

a′
Q (x′′, a′)−Q(x′, a)

)
← α(t) (x′, a)

(
f (·) + β max

a′
Q (x′′, a′)

)
+ α(t) (x′, a)C︸ ︷︷ ︸

(A)

.

(2.21)

According to the above, after the first transition from the state x′ to the state

x′′, the Q-value for the state x′ is biased by the term (A). If (A > 0), the value

of the state x′ increases and if (A < 0), the value of the state x′ decreases.

Therefore, the already visited states will be more or less attractive to the agent

in the beginning of the learning process as long as the agent has not explored

the state-space enough.

The change of behavior of the agent in the learning process can be used to bias the

agent towards the desired actions or states. However, in basic Q-learning the agent

has no knowledge in prior about the environment. Therefore, we select the bias equal

to zero, C = 0, and define the reward function as follows.

Definition 2. The reward function for the kth FBS, Rk : (r0, rk,Γ0,Γk) → R, is a

continuous and differentiable function on R2 defined as (2.22)

Rk (r0, rk,Γ0,Γk) = (r0 − log2 (1 + Γ0))k1 + (rk − log2 (1 + Γk))
k2 , (2.22)

where k1 and k2 are integers.
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The objective of the FBS is to maximize its transmission rate. On the other hand,

high transmission rate for the MUE is a priority for the FBS. Therefore, Rk should

have the following property

∂Rk

∂ri
≥ 0, i = 0, k. (2.23)

The above property implies that higher transmission rate for the FBS or the MUE

results in higher reward. Hence, considering Definition 2, we design a reward function

that motivates the FBSs to increase rk and r0 as much as possible even more than

the required rate as follow

Rk = (r0 − log2 (1 + Γ0))2m−1 + (rk − log2 (1 + Γk))
2m−1 , (2.24)

wherem is an integer. The above reward function considers the minimum rate require-

ments of the FUE and the MUE, while encourages the FBS to increase transmission

rate of both.

To further understand the proposed reward function, we discuss reward functions

that are used by [46–48]. We refer to the designed reward function in [46] as quadratic,

in [47] as exponential, and in [48] as proximity reward functions. The quadratic reward

function is designed based on a conservative approach. In fact, the FBS is enforced

to select actions that result in transmission rate close to the minimum requirement.

Therefore, higher or lower rate than the minimum requirement results in a same

amount of reward. The behavior of the quadratic reward function can be explained

as follow
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∂Rk

∂ri
× (ri − log2 (1 + Γi)) ≤ 0, i = 0, k. (2.25)

The above property implies that if the rate of the FBS or the MUE is higher than the

minimum requirement, the actions that increase the rate will decrease the reward.

Hence, this property is against increasing sum transmission rate of the network. The

exponential and proximity reward functions have the property in (2.23) for the rate

of the FBS, and the property in (2.25) for the rate of the MUE. In another words,

they satisfy the following properties

∂Rk

∂r0

× (r0 − log2 (1 + Γ0)) ≤ 0,

∂Rk

∂rk
≥ 0.

(2.26)

As the density of the FBSs increases, the above properties result in increasing transmit

power to achieve higher individual rate for a FUE while introducing higher interfer-

ence for the MUE and other neighbor FUEs. In fact, as increasing the FUE rate is

rewarded, taking actions that result in increasing the MUE rate decreases the reward.

However, the FBS should have the option of decreasing its transmit power to increase

the rate of the MUE. This behavior is important since it causes an FBS to produce

less interference for its neighboring femtocells. Therefore, we give equal opportunity

for increasing the rate of the MUE or the FUE.

The value of reward functions for different FBSs is different, however they have the

same behavior. Here, we plot the value of the four reward functions that are discussed

above. The plots refers to the proposed (Fig. 2.3(a)), quadratic (Fig. 2.3(b)), expo-

nential (Fig. 2.3(c)), and proximity (Fig. 2.3(d)) reward functions. The important

information that can be obtained from these plots are the maximal points of the
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(a) (b)

(c) (d)

Figure 2.3: Reward functions: (a) Proposed reward function with m = 2, (b) Quadratic
reward function with zero maximum at (4.0, 0.5), (c) Exponential reward function, (d)
Proximity reward function.

reward functions, behavior of the reward functions around minimum requirements,

and behavior of the reward functions by increasing rk or r0. The proposed reward

function in Fig. 2.3(a) shows pushing the FBS to select transmit power levels that

increase both rk and r0, while other reward functions have their maximum around

the minimum rate requirements.
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2.5.3 Sample Complexity

In each training frame, Q-DPA collects one sample from the environment represented

as the state-action pair in the Q-function. Sample complexity is defined as the

minimum number of samples that is required to train the Q-function to achieve an

ε-optimal policy. For ε > 0 and δ ∈ (0, 1], π is an ε-optimal policy if [66]

Pr (‖Q∗ −Qπ‖ < ε) ≥ 1− δ. (2.27)

The sample complexity depends on the exploration policy that is generating the

samples. In Q-DPA, e-greedy policy is used as the exploration policy. However,

e-greedy policy depends on the Q-function of the agent which is being updated. In

fact, the distribution of e-greedy policy is unknown. Here, we provide a general bound

on the sample complexity of Q-learning.

Proposition 1. Assume Rmax is the maximum of the reward function for an agent

and Q(T ) is the action-value for state-action pair (x, a) after T iterations. Then, with

probability at least 1− δ, we have

‖Q∗ −Q(T )‖ ≤ 2Rmax

(1− β)

[
β

T (1− β)
+

√
2

T
ln

2|X |.|A|
δ

]
. (2.28)

Proof. See Appendix A.1.

This proposition proves the stability of Q-learning and helps us to provide a

minimum number of iterations to achieve ε > 0 error with respect to Q∗ with

probability 1− δ for each state-action pair. By assuming the right term of the above

inequality as ε, the following Corollary is concluded.
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Figure 2.4: Dense urban scenario with a dual strip apartment block located at distance
of 350 m of the MBS; FUEs are randomly located inside each apartment.

Corollary 1. For any ε > 0, after

T = Ω

(
8R2

max

ε2 (1− β)2 ln
2|X |.|Ak|

δ

)
(2.29)

number of iterations, Q(T ) reaches ε-optimality with probability at least 1− δ.

2.6 Simulation Results

The objective of this section is to validate the performance of the Q-DPA algorithm

with different learning configurations in a dense urban scenario. We first introduce

the simulation setup and parameters. Then, we introduce four different learning

configurations and we analyze the trade-offs between them. Finally, we investigate the

performance of the Q-DPA with different reward functions introduced in Section 2.5.2.

For the sake of simplicity, we use the notation IL as independent learning and CL as

cooperative learning.
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Table 2.1: Urban dual strip pathloss model

Link PL(dB)

MBS to MUE 15.3 + 37.6 log10R ,

MBS to FUE 15.3 + 37.6 log10R+ Low ,

FBS to FUE (same apt strip) 56.76 + 20 log10R+ 0.7d2D,indoor ,

FBS to FUE (different apt strip) max(15.3 + 37.6 log10R,
38.46 + 20 log10R) + 18.3 + 0.7d2D,indoor + Low.

Table 2.2: Simulation Parameters

parameters Value parameters Value

Frame time 2 ms d′1, d
′
2, d
′
3 50, 150, 400 m

Thermal noise -174 dBm/Hz d1, d2, d3 17.5, 22.5, 45 m
Traffic model Fullbuffer

Q-DPA parameters Value parameters Value

Training period (iterations) L T × |X |.|Ak| pmin 5 dBm
Learning parameter β 0.9 pmax 15 dBm
Exploratory probability (e) 10% ∆p 1 dBm

2.6.1 Simulation Setup

We use a dense urban scenario as the setup of the simulation as illustrated in Fig. 2.4.

We consider one macrocell with radius 350 m which supports multiple MUEs. The

MBS assigns a subband to each MUE. Each MUE is located within a block of

apartments and each block contains two strip of apartments. Each strip has five

apartments of size 10 m×10 m. There is one FBS located in the middle of each

apartment which supports an FUE within a 5 m distance. We assume that the FUEs

are always inside the apartments. The FBSs are closed-access, therefore, the MUE

is not able to connect to any FBS, however, it receives interference from the FBSs

working on the same subband as itself.

Here, we assume that the MUE and all the FBSs work on the same sub-carriers to
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consider the worst case scenario (high interference scenario). However, the extension

of the simulation to the multi-carrier scenario is straight forward but does not affect

our investigations. We assume the block of apartments is located on the edge of the

macrocell, i.e., 350 m distance from the MBS, and the MUE is assumed to be in

between the two strip of apartments.

In these simulations, in order to initiate the state variables X3 and X4 in Sec-

tion 2.4.3, the number of rings around the MBS and the MUE are assumed to be

three (N1 = N2 = 3). Although, as the density increases, more rings with smaller

diameters can be used to more clearly distinguish between the FBSs.

It is assumed that the FBSs and the MBS operate at f = 2.0 GHz. The MBS

allocates 33 dBm as its transmit power, and the FBSs choose their transmit power

from a range of 5 dBm to 15 dBm with power steps of 1 dB. In order to model

the pathloss, we use the urban dual strip model from 3GPP TR 36.814 [67]. The

pathloss model of different links are provided in Table 2.1. In Table 2.1, R is the

distance between a transmitter and a receiver in meters, Low is the wall penetration

loss which is set to 20 dB [67]. d2D,indoor is the 2-dimensional distance. We assume

that the apartments are single floor, therefore, d2D,indoor ≈ R. The fourth row of the

pathloss models is used for the links between the FBSs and the MUE.

The minimum SINR requirements for the MUE and the FUEs are defined based

on the required rate needed to support their corresponding user. In our simulations,

the minimum required transmission rate to meet the QoS of the MUE is assumed to

be 4 (b/s/Hz), i.e., log2(1 + Γ0) = 4 (b/s/Hz). Moreover, for the FUEs the minimum

required rate is set to 0.5 (b/s/Hz), i.e, log2(1 + Γk) = 0.5 (b/s/Hz), k ∈ K. It is

worth mentioning that by knowing the media access control (MAC) layer parameters,

the values of the required rates can be calculated using [68, Eqs. (20) and (21)].
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To perform Q-learning, the minimum number of required frames, i.e., L, is calcu-

lated based on achieving 90% optimality, with probability of at least 0.9, i.e., δ = 0.1.

The simulation parameters are given in Table 2.2. The value of the Q-learning

parameters are selected according to our simulations and references [46–51].

The simulation starts with one femtocell. The FBS starts running Q-DPA in

Section 2.5.1 using IL. After convergence, the next FBS is added to the network.

The new FBS runs Q-DPA, while the other FBS is already trained, and will just

act greedy to choose its transmit power. After convergence of the second FBS, the

next one is added to the network, and so on. We represent all the results versus

the number of active femtocells in the system, from one to ten. Considering the size

of the apartment block, and the assumption that all femtocells operate on the same

frequency range, the density of deployment varies approximately from 600 FBS/km2

to 6000 FBS/km2.

2.6.2 Performance of Q-DPA

Here, we show the simulation results of distributed power allocation with Q-DPA.

First, we define two different state sets. The sets are defined as X1 = {X1, X3, X4}

and X2 = {X2, X3, X4}. In both sets, FBSs are aware of their relative location to the

MUE and the MBS due to the presence of X3 and X4, respectively. The state set X1

gives knowledge of the status of the FUE to the FBS, and the state set X2 provides

knowledge of the status of the MUE to the FBS.

In order to understand the effect of independent and cooperative learning, and

the effect of different state sets, we use four different learning configurations as:

independent learning with each of the two state sets as IL+X1 and IL+X2, and

cooperative learning with each of the two state sets as CL+X1 and CL+X2. The
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Figure 2.5: Performance of different learning configurations: (a) transmission rate of the
MUE, (b) sum transmission rate of the FUEs, (c) sum transmit power of the FBSs.

results are compared with greedy approach in which each FBS chooses maximum

transmit power. The simulation results are shown in three figures as: transmission

rate of the MUE (Fig. 2.5(a)), sum transmission rate of the FUEs (Fig. 2.5(b)), and

sum transmit power of the FBSs (Fig. 2.5(c)).

According to Fig. 2.5(c), in the greedy algorithm, each FBS uses the maximum

available power for transmission. Therefore, the greedy method introduces maximum

interference for the MUE and has the lowest MUE transmission rate in Fig. 2.5(a).
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On the other hand, despite using maximum power, the greedy algorithm does not

achieve highest transmission rate for the FUEs either (Fig. 2.5(b)). This is again due

to the high level of interference.

The state set X2 provides knowledge of MUE’s QoS status to the learning FBSs.

Therefore, as we see in Fig. 2.5(a), the performance of IL with X2 is higher than the

ones with X1. This statement is true for CL too. We can see the reverse of this

conclusion in the FUEs’ sum transmission rate in Fig. 2.5(b). The performance of

IL with X1 is higher than IL with X2. This is because the FBSs are aware of the

status of the FUE, therefore, they consider actions that result in the state variable

X1 = 1{γk≥Γk} to be 1. This is true in comparison of the states in CL too. In

conclusion, the state set X1 works in favor of femtocells and the state set X2 benefits

the MUE.

We conclude from the simulation results that IL and CL present different trade-

offs. More specifically, IL supports a higher sum transmission rate for the FBSs and

a lower transmission rate for the MUE, while CL can support a higher transmission

rate for the MUE at the cost of an overall lower sum transmission rate for the FBSs.

From a power consumption point of view, IL results in a higher power consumption

when compared to that of CL. In general, IL trains an FBS to be selfish compared

to CL. IL can be very useful when there is no means of communication between the

agents. On the other hand, CL trains an FBS to be more considerate about other

FBSs at the cost of communication overhead.

In Table 2.3, we have compared the performance of the four learning configura-

tions. In each column, number 1 is used as a metric to refer to the highest performance

achieved and number 4 is used to refer to the lowest performance observed. The first

column represents the summation of transmit powers of FBSs, the second column
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Table 2.3: Performance of different learning configurations. 1 is the best, and 4 is the
worst.

Learning configuration
∑
pk

∑
rk r0

IL+X1 4 1 4

CL+X1 3 3 3

IL+X2 2 2 2

CL+X2 1 4 1

indicates the summation of transmission rates of the FUEs, and the third column

denotes the transmission rate of the MUE.

2.6.3 Reward Function Performance

Here, we compare the performance of the four reward functions discussed in Sec-

tion 2.5.2. Since the objective is to maximize the sum transmission rate of the

FUEs, according to Table 2.3, we choose the combination IL+X1 as the learning

configuration. The performance of the reward functions are provided as the MUE

transmission rate (Fig. 2.6(a)), sum transmission rate of the FUEs (Fig. 2.6(b)), and

sum transmission power of the FBSs (Fig. 2.6(c)). In each figure, the solution of the

optimization problem with exhaustive search and the performance of greedy method

are provided. The exhaustive search provides us with the highest achievable sum

transmission rate for the network. The quadratic, exponential, and proximity reward

functions result in fast decaying of MUE transmission rate, while the proposed reward

function results in a much slower decrease of the rate for the MUE. The proposed

reward function manages to achieve a higher sum transmission rate compared to that

of the other three reward functions as well. Fig. 2.6(c) indicates that the proposed

reward function reduces the sum transmitted power at the FBSs which in turn could
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Figure 2.6: Performance of the proposed reward function compared to quadratic, exponen-
tial and proximity reward functions: (a) transmission rate of the MUE, (b) sum transmission
rate of the FUEs, (c) sum transmit power of the FBSs.

result in lower levels of interference at the FUEs. In comparison with the exhaustive

search solution as the optimal solution, there is a gap of performance. For instance

according to Fig. 2.6(c), for eight number of FBSs, the proposed reward function uses

an average of 50 mWatt less sum transmit power than the optimal solution. However,

as we see in Fig. 2.6(b) and Fig. 2.6(a), by using more power, the sum transmission

rate can be improved and the transmission rate of the MUE can be decreased to

the level of exhaustive solution without violating its minimum required rate. In our
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future works, we wish to cover this gap by using neural networks as the function

approximator of the learning method.

2.7 Conclusion

In this chapter, we proposed a learning framework for a two-tier femtocell network.

The framework enables addition of a new femtocell to the network, while the femtocell

trains itself to adapt its transmit power to support its serving user while protecting

the macrocell user. On the other hand, the proposed method as a distributed

approach can solve the power optimization problem in dense HetNets, while sig-

nificantly reducing power usage. The proposed framework is generic and motivates

the design of machine learning based SONs for management schemes in femtocell

networks. Besides, the framework can be used as a bench test for evaluating the

performance of different learning configurations such as Markov state models, reward

functions and learning rates. Further, the proposed framework can be applied to

other interference-limited networks such as cognitive radio networks as well.



54

Chapter 3

POWER ALLOCATION IN INTERFERENCE-LIMITED

NETWORKS VIA COORDINATED LEARNING

In Chapter 2, we focused on transmit power control in a two-tier HetNet and modeled

the whole network as a single Markov decision problem (MDP). With introduction of

independent and cooperative learning, the MDP was factorized into local Q-functions.

However, there was a performance gap between the independent/cooperative learning

and the exhaustive search. In this chapter, we focus on transmit power control in

an interference-limited network of small base stations (SBSs). We follow the same

procedure and define a global Q-function relating to the whole network. However, in

order to fill the performance gap, we feed the interference model of the network to the

factorization process. In fact, we investigate the effect of accurate MDP factorization

on the optimality of the solution. The proposed method leverages coordination

through simple message passing between SBSs to achieve an optimal joint power

allocation. Simulation results show the optimality of the proposed method for a

two-user case. This work was published in [28].
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3.1 Introduction

Supporting the expected cellular traffic growth is one of the main tasks for the next

generation (a.k.a “5G”) wireless cellular networks and densification is one of the

main technologies to achieve such growth [3]. A key driver for densification will

be deployment of small base stations (SBSs) [69]. The SBSs might be mounted by

users in a plug-and-play fashion, and their backhaul may be supported by broadband

connections. The user-mounted feature, introduces unplanned deployment of SBSs,

which may result in unavoidable co-channel interference. In a dense network, in

which the architecture of the network changes sporadically, a self-organizing method

is a viable solution to manage the network resources.

One of the requirements of algorithms designed for self-organizing networks (SONs)

is working under open loop communication conditions. This means transmitter has

access to the signal-to-interference-plus-noise ratio (SINR) values while does not have

access to the channel state information (CSI). In fact, radio measurements such as

SINR, are part of the Big data in cellular networks [36]. In this regard, one of the

main advantages of multi-agent reinforcement learning (MARL) solutions is to utilize

the measured SINR values. Generally most of the classic optimization solutions are

based on channel coefficients. Thus, the prior methods require full CSI to find the

solution while the MARL methods only need access to existing radio measurements,

i.e., the measured SINR values. To this end, cooperative MARL methods have been

used in resource management of communication networks [27, 70–72]. However, the

existing MARL approaches in communication network management do not address

the optimality of their cooperation methods. This is an important research topic to

address since finding the optimal joint power allocation is directly impacted by the
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nature of the cooperation approach. In this chapter, we focus on an interference-

limited network. We propose a factorization method to achieve optimal solution in

transmit power control to maximize sum transmission rate of the system.

3.1.1 Related Work

The problem of power allocation in an interference-limited network has been inves-

tigated widely in the literature. In [73] and [74], the optimal power allocation for

a two-user interference channel is derived for sum and individual power constraints,

respectively. In [75] a more general solution is proposed for multi-transmitter systems

with individual power constraints. The solution depends on the SINR value. In high

SINR regime, the optimal solution is derived through transforming the problem into

a geometric programming (GP) problem, while in the low SINR regime, a heuristic

solution based on solving multiple GPs is used. It is important to note that all of

these prior approaches are based on interior point methods. Hence, they require a

centralized network management approach which may be impossible in dense net-

works. In [75], a distributed method based on decomposing the optimization problem

into local problems is proposed. The solution is based on message-passing and applies

to high SINR case with full CSI. Nonetheless, in a dense plug-and-play network, with

a changing architecture, the assumptions of high SINR and the availability of full CSI

at all nodes may not hold.

3.1.2 Contributions

In this chapter, we find an optimal joint power allocation solution via coordination be-

tween deployed SBSs. To address the optimality of the MARL approach, we model the

whole system as a Markov decision process (MDP) with the SBSs being represented
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as the agents of the MDP. Then, we define a coordination graph according to the

interference model of the network. Subsequently, MDP is factorized to local ones and

the value function of the MDP is approximated by a linear combination of local value

functions. As we mentioned before, in order to remove the need for access to CSI, and

develop an adaptable algorithm that handles a changing network architecture, each

SBS uses a model-free reinforcement learning approach, i.e., Q-learning. Q-learning

is used to update the SBS’s local value function. Subsequently, we leverage the

ability of SBSs to communicate over the backhaul network to build a simple message

passing structure to select a transmit power action based on the variable elimination

method. Finally, we propose a distributed algorithm which finds an optimal joint

power allocation to maximize the sum transmission rate.

This chapter is organized as follows. In Section 5.2, the system model is presented.

Section 3.3 first introduces the optimization problem, then analyzes the convexity of

the problem. Section 3.4 presents the general framework of the proposed solution.

Section 3.5 outlines the proposed power allocation scheme while Section 3.6 presents

simulation results. Finally, Section 3.7 concludes the chapter.

3.2 System Model

We consider downlink transmission in a dense deployment of N SBSs. We assumed

each SBS supports one user equipment (UE), and all SBSs share the same frequency

resource block. This system can represent a single cluster of a large network, which

uses different frequency in each cluster to avoid interference between clusters. It

is also assumed the SBSs are interconnected via a backhaul network supported by,

for example, a broadband connection. Here, we use the same model of interference
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as [73]. Thus, the received signal at the ith UE, ri is given by

ri =
√
giPidi +

∑
j∈Di

√
giPjβjidj + ni, (3.1)

where gi represents the channel gain between the ith SBS and the UE it is serving,

di is the transmitted signal from the ith SBS, Pi is the transmitted power at the

ith SBS, Di represents the set of interfering SBSs to the ith UE, βji (0 ≤ βji ≤ 1)

for 1 ≤ i ≤ N and j ∈ Di is the ratio of the unintended power of the jth SBS

when measured at the ith UE, and ni is the zero mean additive white Gaussian noise

(AWGN) at the ith UE with variance σ2. According to the signal representation in

(3.1), the SINR at the ith UE, SINRi, can be determined as

SINRi =
giPi∑

j∈Di
giPjβji + σ2

, (3.2)

and the throughput at the ith UE normalized by the transmission bandwidth, Ri, is

calculated as

Ri = log2 (1 + SINRi) . (3.3)

It is worth noting that the proposed solution will use the measured SINR, and does

not need to estimate the values of channel gains.

3.3 Problem Analysis

Let us define P = {P1, P2, ..., PN} as the set containing the transmitted power of

the SBSs. The goal of the optimization is to find the optimal joint power allocation
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between SBSs, P∗ = {P ∗1 , P ∗2 , ..., P ∗N}, that maximizes the total throughput of the

network. The optimization problem (OP1) can be formulated as

maximize
P

N∑
i=1

Ri =
N∑
i=1

log2 (1 + SINRi) , (3.4a)

subject to Pi ≤ Pi,max, i = 1, . . . , N. (3.4b)

Here, the objective function in (3.4a) maximizes the sum throughput of the network.

The constraint (3.4b) refers to the individual power limitation of every SBS.

3.3.1 Problem Analysis

The optimization problem (OP1) is a non-convex optimization problem. Here, first we

will investigate the non-convexity of OP1, and then we will examine the approximate

solutions to the problem in two regimes : (1) high SINR, and low to medium SINR.

Non-Convexity of OP1

The objective function in (3.4a) contains the interference term in the denominator of

SINR term. In a dense network the interference term cannot be ignored [59]. Due to

the presence of the interference term, the objective function (3.4a) is a non-concave

function [58], which leads to non-convexity of the optimization problem.

Approximate Problems

• High SINR : If the condition SINR � 1 holds, which means signal level is

much higher than the interference level, the objective function in OP1 can be

approximated as
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N∑
i=1

log2 (1 + SINRi) =
N∑
i=1

log2(SINRi) = log2(
N∏
i=1

SINRi). (3.5)

By using the above approximation, and representing the objective function and

the constraints using posynomials, OP1 can be represented in the form of geo-

metric programming (GP) problem. GP is a nonlinear, nonconvex optimization

problem which can be transformed into a convex optimization problem and can

be solved in efficient time [75].

• Low to medium SINR : If the SINR value is not much larger than 0dB, the

approximation in (3.5) does not hold. Although by using the posynomial

format, 1 + SINRi can be represented as a ratio of two posynomials. In this

format, the optimization problem falls into a nonconvex class of problems called

Complementary GP [75]. The Complementary GP problems are intractable

NP-hard problems.

As we mentioned before, in both of the above cases, the solutions are based on the

availability of CSI at the transmitters (SBSs). However, the assumption of open-loop

communication which is one of the features of SONs disqualifies availability of CSI at

the transmitter. Hence, SBSs need to select their transmit power just based on the

measured SINR fed back from their assigned users.

3.3.2 Nash Equilibrium and Pareto Optimality

Since the goal of the optimization problem is to maximize the sum throughput of the

network, OP1 can be viewed as a fully cooperative game. A fundamental solution to

a game is the Nash equilibrium [76]. The Nash equilibrium is a joint action in a game,

where deviating from this action when considering the actions of other agents is not
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profitable to the agent taking the action. Any game can have multiple solutions for

the Nash equilibrium. Another concept is the Pareto optimality of a solution. A joint

action is Pareto optimal, if an agent can not gain more performance without reducing

the performance of at least one other agent in the game. In a fully cooperative game,

each Pareto optimal solution is a Nash equilibrium, which can be achieved using

coordination between agents [77].

3.4 Distributed Coordinated Q-learning

In this section, the proposed optimal solution based on the Markov decision process

(MDP) is presented. Then, the dimensionality issues of the optimal solution will

be investigated. The dimensionality is important since it affects the tractability of

the problem. Next, we use the coordination method introduced by [78] to solve the

problem in a distributed fashion. We show that the resulting method, provides a joint

solution for the MDP via message passing between the agents of the network.

3.4.1 Optimal Solution via Q-learning

Consider a system with N agents, where each agent j selects its actions from its action

set, Aj. Further, X = {X1, X2, ..., Xn} is the set of state variables which define the

state of the system. Let us denote x ⊂ X to represent a single state of the system.

In a fully cooperative game, we look for an optimal joint solution that is a Pareto

optimal Nash equilibrium. One obvious solution to this problem is to model the whole

system as a large MDP with its action set representing the joint action set of all the

agents in the system. We consider A as the joint action set of all the agents, and

a ⊂ A as a single joint action of this set.



62

The MDP framework will be modeled as (X,A, P r,R), where X denotes the finite

set of states of the system, A is a finite set of joint actions, Pr is the transition model

which represents the probability of taking action a at state x and ending up in state

x′, Pr (x, a, x′), and R is the immediate reward received by taking action a at state

x, R (x, a).

A policy, π : X → A, for an MDP is defined as a function which shows at state

x, action π (x) will be taken. In order to evaluate a policy, a value function V (x),

is defined which defines the value of policy at each state. In order to compute the

value function for a given policy, we need to calculate the action-value function, also

known as Q-function, defined as follows

Q (x, a) = R (x, a) + γ
∑
x′

Pr (x′|x, a)V (x′) , (3.6)

in which γ ∈ [0, 1] is a discount factor. The optimal value at state x is the maximum

value that can be reached by taking any action at this state. The optimal value

function V ∗, which gives the optimal policy π∗, satisfies the Bellman operation as

follows [2]

V ∗ (x) = max
a

Q∗ (x, a) . (3.7)

Q-learning is a model-free reinforcement learning, which solves the Bellman equa-

tion through direct observations without knowledge of the transition model. In

Q-learning, the agent observers the state, x, takes an action, a, receives a reward, R,

and ends in a next state, x′. Then, it will update its Q-function as follows
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Q (x, a) = Q (x, a) + α[R (x, a) + γmax
a′

Q (x′, a′)−Q (x, a)], (3.8)

where, α is the learning rate of the algorithm. If any action-state pair is repeatedly

visited, the Q-function will converge to the optimal value [25].

One issue with this method is that the size of the joint action set is exponential

with respect to the number of agents. If there are N agents in the network, and each

one has |A| number of actions as the size of their action set, the size of the joint

action set, |A|, will be |A|N . The exponential size of the joint action set makes the

computation of the Q-function expensive and in most cases intractable.

3.4.2 Factored MDP

In most cases, for both representational and computational advantages, the state

and action sets of an MDP can be factored into subsets based on the structure of

the problem [61]. In large MDPs, the global Q-function can be approximated by

the linear combination of local Q-functions, i.e. Q =
∑

j Qj(aj) [78]. The jth local

Q-function, Qj, has the joint action set which is a subset of the global joint action

set, A. Here, we will define the joint action set of Qj by Scope [Qj ] ⊂ A for which aj

is a joint action of this set.

In a communication network, each SBS plays the role of an agent in the multi-agent

network. The action of SBS j, is the transmit power, Pj, that is used to transmit its

signal to the intended user. From this point, an agent in a communication network,

refers to the SBS. Generally, in wireless communication systems, each access point

receives interference from specific local access points. Therefore, the approximation of

global Q-function by linear combination of local Q-functions, applies to interference-

limited communication networks. In cellular networks, the interferers can be all the
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neighbor transmitters working on the same frequency band. However, in some cases,

we can assume that there is a dominant interferer which allows us to neglect the

interference from other neighbors. In this chapter, we follow the assumption of a

dominant interferer for each receiver.

3.4.3 Decomposition of Global Q-function

The decomposition of the global Q-function, relies on the dependencies between

the agents of the network. These dependencies can be represented by coordination

graphs (CGs) [78]. Generally, there are two decomposition methods: agent-based

and edge-based. The agent-based decomposition provides a suitable architecture

for a distributed system with exact solution, while the edge-based decomposition

is recommended for coordination graphs with densely connected nodes [79] and pro-

vides suboptimal solution. Here, we choose the agent-based decomposition since we

are focused on achieving the optimal solution. Further, considering the dominant

interferer assumption mentioned in 3.4.2, the coordination graph would be sparse

and suitable for agent-based decomposition.

A1

A2

A4

A3

Q1

Q4Q2

Q3

Figure 3.1: Coordination graph.
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Figure 3.2: Message passing.
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In a wireless network, the Scope [Qj ] for agent j, is determined based on the

interference model of the system, which is related to set D in (3.1). In order to be

able to explain the proposed solution, we pick an example as in Fig. 3.1, in which four

agents interfere with each other. Assume that agent A1, receives interference from

A2 and A3, and A4 receives its interference from A2 and A3. Based on this model,

the coordination graph of the system is shown in Fig. 3.1. Each edge between agents,

shows a dependency between the two agents.

Here, we assume that all agents have the same state x, hence, Q (x, a) is written as

Q (a). According to the coordination graph in Fig. 3.1, the global Q-function, Q (a),

can be written as

Q(a) = Q1(a1, a2) +Q2(a2, a4) +Q3(a1, a3) +Q4(a3, a4). (3.9)

3.4.4 Coordinated Action Selection

In multi-agent Q-learning, according to (3.8), the agents select a joint action that

maximizes the global Q-function. By using the agent-based decomposition, the joint

action selection at state x, maxa Q (a), is written as

max
a1,a2,a3,a4

Q1(a1, a2) +Q2(a2, a4) +Q3(a1, a3) +Q4(a3, a4). (3.10)

This maximization problem, can be solved via variable elimination (VE) algorithm,

which is basically similar to variable elimination in a Bayesian network [80]. Here, we

review this method for the network in Fig. 3.1. The key idea is to maximize over one

variable at a time, find conditional solutions, passing conditional functions to other

agents, and sending back the results of local optimization to the related agents to
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recover their joint action choices. The steps of the joint maximization solution are

presented in Fig. 3.2 as they are described below.

We start from agent A4. a4 influences Q2 and Q4, so the maximization problem

can be written as

max
a1,a2,a3

Q1(a1, a2) +Q3(a1, a3) + [max
a4

Q2(a2, a4) +Q4(a3, a4)]. (3.11)

Agent A2 communicates Q2 to A4, and A4 solves its local maximization, which results

in two functions: f4 (a2, a3), and b4 (a2, a3). These functions are defined as follows

f4 (a2, a3) = max
a4

Q2 (a2, a4) +Q4 (a3, a4) , (3.12)

b4 (a2, a3) = arg max
a4

Q2 (a2, a4) +Q4 (a3, a4) . (3.13)

At his stage, the A4 has a conditional solution for a4 based on a2, and a3, represented

as the function b4. Therefore, A4 keeps b4 and sends f4 to its connecting agent, A3.

Then, A4 is removed from the coordination graph, and the maximization problem is

translated to

max
a1,a2,a3

Q1 (a1, a2) +Q3 (a1, a3) + f4 (a2, a3) , (3.14)

f4 brings a new edge in the coordination graph, an induced edge, which is shown with

dashed line between A2 and A3 in Fig. 3.2. The next agent to be removed is A3. The

maximization problem is rewritten as
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max
a1,a2

Q1 (a1, a2) +

[
max
a3

Q3 (a1, a3) + f4 (a2, a3)

]
. (3.15)

With the same procedure, A3 introduces f3 (a1, a2), and b3 (a1, a2). Accordingly, the

problem reduces to

max
a1,a2

Q1 (a1, a2) + f3 (a1, a2) . (3.16)

Next agent to choose its action is A2, for which the problem results in

f1 = max
a1

f2 (a1) , (3.17)

where, f2 (a1) = maxa2 Q1 (a1, a2) + f3 (a1, a2). Finally, A1 chooses its action based

on maximizing the function f2 (a1). The results at this stage are f1, and a∗1. f1

represents the maximum value of the global Q-function over a1, a2, a3, and a4, and a∗1

is the optimal joint action for A1. To recover the joint action choices, A1 sends a∗1 to

A2. Then A2 chooses its action, a2 = b2(a∗1), and sends a∗1, a
∗
2 to A3. A3 and A4 will

choose their actions with the same procedure, a∗3 = b3(a∗1, a
∗
2), and a∗4 = b4(a∗2, a

∗
3).

In general, the elimination algorithm maintains a set of functions in each step,

Q. It starts with all local Q-functions, {Q1, Q2, ..., QN}, and eliminates agents one

by one. The algorithm steps can be summarized as follows

1. Choose an uneliminated agent, for example Al.

2. Choose all functions, Q1, Q2, ..., Ql ∈ Q whose Scope contains Al.

3. Define a new function, fl = maxal
∑

j Qj and add it to Q. The Scope of Ql is

∪Lj=1 Scope [Qj]− {Al}.
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3.4.5 Local Update Rule

After finding the joint action, each agent will update its local Q-function. The update

rule in (3.8) can be written as

∑
j

Qj

(
x, aj

)
=
∑
j

Qj

(
x, aj

)
+

α

[∑
j

Rj

(
x, aj

)
+ γmax

a

∑
j

Qj (x′, a′)−
∑
j

Qj

(
x, aj

)]
, (3.18)

where, the joint maximization is solved through VE according to the last section. By

assuming a∗ as the solution to the VE, and aj
∗ ⊂ a∗ as the optimal joint action set

for Qj, the update rule for each local Q-function can be derived as

Qj(x, aj) = Qj(x, aj) + α[Rj(x, aj) + γQj(x
′, aj

∗)−Qj(x, aj)]. (3.19)

The Fig. 3.2 illustrates all messages passed between the agents to solve VE and update

local Q-functions.

3.5 Power Allocation Using Coordinated Q-Learning

To integrate the idea of coordinated multi-agent learning into a communication net-

work, we will model the SBS as an agent, and the whole network as a multi-agent

MDP. The goal of the agents is to maximize total throughput of the network, as a

cooperative game. In the following we introduce the power allocation scheme based

on coordinated Q-learning as Q-CoPA.
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3.5.1 Q-CoPA Algorithm

The proposed solution of this paper, Q-CoPA, can be summarized as follows

The interference model of the network will be used to derive the coordination graph

of the agents. The entire network is modeled as an MDP, and the global Q-function

of the MDP is approximated by linear combination of local Q-functions of the agents.

Each agent, based on the coordination graph, knows its Scope. Local Q-functions

are learned by the agents using cooperative Q-learning. The cooperation method

between the agents is to maximize the summation of local Q-functions by choosing

an appropriate joint action. This action selection is implemented using variable

elimination and message passing between the agents. The backhaul of the network

is used as the required infrastructure for message passing. The proposed method

is represented in Algorithm 1. In the Algorithm 1, the loops at lines 5 and 10 are

independent, and could be executed in parallel by the agents.

Algorithm 1 The proposed Q-CoPA algorithm

1: Initialize x
2: Initialize All Qj(x, aj) arbitrarily
3: for all episodes do
4: Choose a∗ according to VE
5: for all agents do
6: Take action aj, observe Rj

7: end for
8: Observe x′

9: Calculate maxa′ Q according to VE
10: for all agents do
11: Update local Q-function according to Eq. 3.19
12: end for
13: xj ← x

′
j

14: end for
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3.5.2 Q-learning Configurations

In the following the actions, and the reward of the Q-learning algorithm implemented

by each agent is defined.

• Actions : Each SBS has a set of actions, which is defined as the transmit power

levels. We define this set as
{
p1, p2, ..., pNpower

}
. The number of power levels is

defined as Npower.

• Reward : In each episode, SBS chooses a power level, and transmits its data to

its intended user. The user measures the SINR of the signal, and will feedback it

to the SBS. Then the reward of the SBS j is calculated as rj = log2 (1 + SINRj).

3.6 Simulation Results

In this section, we implement the proposed power allocation for a two transmitter

and two receiver with interfering channels scenario. In fact, since there are only two

SBSs in the system, the assumption of one dominant interferer is accurate. Hence, we

can investigate the optimality of the proposed solution in this case. We consider each

SBS supports one UE. Each transmitter has omni-directional antenna and separate

power source. The channel model is assumed to be time-invariant, i.e. slow fading.

The channel gains are assumed to be g1 = 2.5, and g2 = 1.5. The P1,max = 10

dBm, P2,max = 13 dBm, and σ2 = 0 dBm. Without loss of generality we assume

that β1,2 = β2,1 = β in (3.1). The objective of the optimization is to find the power

allocation to maximize the sum throughput of the network under individual power

constraints.

In executing the Q-CoPA algorithm, each Q-function is defined as a table, Q-table.

The learning rate is α = 0.5, the discount factor as γ = 0.9, Npower = 100, and the
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Figure 3.3: Global action-value function.

maximum number of episodes is set to 50 times the size of a Q-table. The MDP

of this problem is assumed to be stateless. The actions of agents are the transmit

powers, a1 = P1, and a2 = P2, Q-functions are defined as: Q1(P1,P2) and Q2(P1,P2),

and the global Q-function is defined as: Q (P1, P2) = Q1(P1, P2) +Q2(P1, P2).

According to [74], the optimal power allocation to maximize the sum-rate of the

above network is derived as

(P∗1,P
∗
2) =


(P1,max, 0), if g1P1,max ≥ max (g2P2,max, 1/β

2) ,

(0,P2,max), if g2P2,max ≥ max (g1P1,max, 1/β
2) ,

(P1,max,P2,max), otherwise.

(3.20)

First we will execute our proposed algorithm for β = 0.3. According to the

optimal solution, (0,P2,max) is the optimal solution. According to Q-CoPA, the SBSs

will choose the powers that maximizes the global Q-function. The learned global
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Q-function, Q (P1,P2), is plotted in Fig. 3.3 with maximum value at P1 = 0 and

P2 = P2,max, which is optimal.
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Figure 3.4: Normalized throughput versus portion of interference (β).

In Fig. 3.4, the solution of the power allocation for different values of the portion

of interference between two channels, β ∈ [0, 1], is plotted. The greedy approach is

defined to allocate full power to the transmitter with higher peak power, and zero

to the other one. The simultaneous allocation is defined to use maximum power at

both transmitters. According to Fig. 3.4, the Q-CoPA finds the optimal solution for

all values of β.

3.7 Conclusion

In this chapter, we used message-passing and variable elimination to coordinate the

power allocation in order to maximize a common goal in an interference-limited net-

work. The variable elimination algorithm is exact, so as long as the local Q-functions’
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action set covers all interfering SBSs, the proposed solution is optimal. Although,

when each node of the coordination graph gets densely connected, i.e., the size of

action set of local Q-function grows, for the sake of computational complexity we

need to approximate local Q-functions’ action set with smaller sets, which results in

suboptimal solution. Therefore, the proposed solution is suitable for indoor applica-

tions, or networks in which the number of interferes is low.
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Chapter 4

SPATIAL INDEXING FOR SYSTEM-LEVEL

EVALUATION OF 5G HETEROGENEOUS CELLULAR

NETWORKS

System level simulations of large 5G networks are essential to evaluate and design

algorithms related to network issues such as scheduling, mobility management, in-

terference management, and cell planning. In this chapter, we look back to the

idea of spatial indexing and its advantages, applications, and future potentials in

accelerating large 5G network simulations. We introduce a multi-level inheritance

based architecture which is used to index all elements of a heterogeneous network

(HetNet) on a single geometry tree. Then, we define spatial queries to accelerate

searches in distance, azimuth, and elevation. We demonstrate that spatial indexing

can accelerate location-based searches by 3 orders of magnitude. Further, the pro-

posed design is implemented as an open source platform freely available to all. This

work is submitted for possible publication in [29]

4.1 Introduction

Supporting the expected cellular traffic growth is one of the main tasks for the

next generation (a.k.a “5G”) wireless cellular networks and densification is one of

the main technologies to achieve such growth [3]. A key driver for densification in
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the next 5-10 years will be small base stations (SBSs) operating at millimeter wave

(mmWave) frequencies. These SBSs will also support conventional communication

below 6 GHz (Sub6GHz) frequencies and possibly use mmWave for the backhauling

as well as some user equipment (UE) connections. Furthermore, due to propagation

features in mmWave bands, usage of highly directional antennas at the transceivers is

a necessity [16]. Hence, 5G will contain directional heterogeneous networks (HetNets)

with large number of nodes working on different frequency bands.

In the development and standardization of 5G, simulations are necessary to im-

plement and design new algorithms and protocols. Considering the above features of

5G, system-level simulations need platforms which deliver accurate results in short

time in large HetNets. These simulations are needed to evaluate the performance of

scheduling algorithms, mobility managements procedures, interference management

methods, and cell planning algorithms [81].

In simulation of large networks, operations that require searches over various nodes

of the network may be extremely time consuming, where spatial indexing has been

one of the methods to address this issue [82]. In fact, spatial indexing has been used

instead of traditional array indexing in order to accelerate location-based searches

in the simulation of large homogeneous networks such as wireless sensor networks

(WSNs). Wireless sensors are indexed based on their location on a geometry tree to

provide fast search queries. This method can not be trivially applied in HetNets since

a single geometry tree cannot be used for spatial indexing of different nodes.

4.1.1 Contributions

In this chapter, first, we propose a multi-level inheritance based structure to be able

to store different nodes of a HetNet on a single geometry tree. The proposed structure
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is polymorphic in a sense that different levels of a node can be accessed via dynamic

casting [83]. Second, we focus on potentials of spatial indexing in accelerating the

simulation of directional communications. We introduce different spatial queries

and show that spatial indexing significantly accelerates simulation time in orders

of magnitude when it comes to location-based searches over azimuth, and elevation

as well as its traditional usage in searches over distance.

4.1.2 Motivation

Traditional wireless network simulators such as Network Simulator (NS-2, NS-3) [84,

85] do not take into consideration the relationship between a terminal and its location

in the indexing procedure. In other words, nodes are indexed based on features such

as identification numbers or the order in which they are added to the network. Nodes

are simply stored in an array (array indexing) and there is no pre-processing (sorting

or classification) based on the location of the nodes. Consequently, in a network

with n nodes, the search size of any algorithm related to the location of the nodes

equals the total number of the nodes in the network, i.e., O(n). Hence, if all nodes

run such an algorithm, the exhaustive search complexity would be O(n2). This is

important since in dynamic wireless networks, location-dependent searches are called

frequently in simulations. Examples of location-dependent searches in a simulation

environment are: finding the nearest neighboring users for association or handover

purposes, finding the k-nearest neighboring BSs for coordinated multipoint (CoMP)

transmission, or finding the potential interferers to evaluate signal-to-interference-

plus-noise-ratio (SINR) of a communication link. While the above searches are defined

over distance, in mmWave applications the direction of communication is important

as well. This means searching over distance, azimuth, and elevation at the same time
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which can increase the complexity of the overall algorithm significantly. In practice,

decreasing the order of search complexity can potentially change the computation

time from hours to seconds of computation in large networks. In order to achieve this

goal, location-transparency can be changed into location-dependency in the indexing

of nodes [86–88]. To this aim, spatial indexing has been used in homogeneous networks

with the intent of accelerating distance queries. In this work, we take advantage of

polymorphic programming to use spatial indexing in heterogeneous cellular networks

and to provide fast spatial search queries in distance, azimuth, and elevation.

4.1.3 Related Works

There are several open-source simulators developed for different purposes in wireless

networks. In this category, with the focus on open-source platforms, we have Net-

work Simulators (NS-2, NS-3) [84, 85], OMNET++ [89], J-Sim [90], and SHOX [91]

platforms. These common simulators focus on preparing a platform for design and

evaluation of communication protocols in the network layer or layers above it. The

physical layer modules in the above platforms are not appropriate for mmWave

or directional communications. The full-stack mmWave module proposed by [92]

alleviates this shortcoming, by adding this module to the NS-3 platform for support

of the mmWave communications. The physical-layer module presented by [92] is

extensive. However, the added module is built on the core of the NS-3 and is not

designed to calculate directional interference in networks with dynamic topology.

Nevertheless, none of the above simulators takes advantage of spatial indexing. In

fact, the nodes of the network are simply stored in an array.

Spatial indexing has been used in two major applications in wireless commu-

nications: (i) location-aware data indexing in wireless broadcast systems and (ii)
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location-dependent indexing in simulation platforms. Location awareness is naturally

the first step of context-awareness in broadcast systems and spatial indexing is used

in wireless broadcast systems where efficient indexing of data segments is essential for

mobile users to find their required query from the broadcast data [93–95]. Apart from

the application of spatial indexing in broadcast systems, its advantage in simulation

environments has been noticed in a few works [96,97]. Fast distance query of spatial

indexing is used in high fidelity large-scale simulation of wireless communications [96].

Also, [97] changed the indexing procedure of NS-3 in the simulation of a large-scale

(more than 1000 nodes) vehicular ad-hoc network (VANET) to provide fast distance

queries as well. However, wireless networks and more specifically cellular networks

are heterogeneous. This means elements of the network can vary from macro base

stations to small base stations and mobile users. Further, there are certain phenomena

that need to be considered in system-level simulations such as blockages. Also, in

5G, features of millimeter-wave communications such as directionality changes the

complexity of location-dependent searches. In fact, search queries are not just in

distance but also in azimuth and elevation as well. Therefore, we need an architecture

that uses spatial indexing in a HetNet and supports the above features. In the

following, we introduce a generic architecture that uses multi-level inheritance and

polymorphism to enable indexing a heterogeneous network on a single geometry

tree. Then we evaluate the performance of the proposed architecture with respect to

traditional array indexing.

It is worth mentioning that acceleration of high-fidelity wireless communication

simulations has been investigated through geography-based partitioning for parallel

implementation on multiple processors as well [98]. However, parallel computing is

not the focus of this work.
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Figure 4.1: The proposed multi-level architecture. Location and geometry properties
of elements of the network are abstracted in the Node object. The Container stores the
elements of the network on a geometry tree. From the view of the geometry tree, all
elements are the same and represented as polygons. The Network basically represents any
wireless network which can be a WSN, mmWave, or an integrated access and backhaul
(IAB) network.

4.2 Spatial Indexing and Queries in HetNets

In this section, we first introduce the architecture which enables us to use spatial

indexing for a HetNet. Then, the indexing procedure and the defined spatial queries

are explained.

4.2.1 Architecture

In order to store heterogeneous nodes on a single geometry tree, nodes of the network

need to be represented just by their geometry. In fact, the elements of the network

are abstracted as polygons regardless of their higher level nature which can be a UE,

BS, or even a blockage. The proposed architecture is shown in Fig. 4.1. All the

elements of the network are generated based on inheritance from an object named

Node. The Node object contains location and geometry (length, width, and height)

of the elements and is the lowest level in the platform and is stored on the geometry
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tree. Node is inherited by the TRX and the Blockage objects. The TRX object

contains related parameters to a transceiver such as the carrier frequency, transmit

power, and antenna properties. Also, the TRX contains an independent standard

thread with signal-slot capabilities. The signal-slot methods are used to implement

message-passing and event-based processes such as asynchronous procedures of the

network. Wireless sensors, mmWave or Sub6GHz BSs, and UEs can be generated by

inheriting from the TRX. The blockage objects are generated by directly inheriting

from the Node. The proposed design consists of a class named Container which is used

to manage all the created nodes in the simulation. The Container holds a geometry

tree which indexes all the generated elements and provides the spatial queries over

the geometry tree. Since just the Node data is saved on the geometry tree, one single

tree can be used for any type of element in the network. The designed architecture

and indexing procedure is applicable to any object-oriented language that supports

multilevel inheritance. However, the code snippets that we use are based on C++

language.

4.2.2 Indexing a HetNet With single Geometry Tree

In order to use spatial indexing, a proper spatial data structure should be selected.

Most of the spatial data structures work based on the principle of space partitioning

and storing data on a tree-like structure such as R-tree or K-d tree [99]. K-d tree

can only contain points and does not handle adding and removing points. However,

in R-tree nodes are represented as polygons. Since, we need to provide dimensions

for the nodes of the network as well as dynamic removal of them, we use R-tree [100]

for spatial indexing. R-tree is a geometry tree proposed by Guttman as a dynamic

indexing structure designed for spatial searching in multi-dimensional datasets. Basi-
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(a) (b)

Figure 4.2: Example of a HetNet indexed with a single R-tree with n = 10 and M = 3.
(a) The tree containing different levels of MBRs which partition a network of one macro
BS (MBS), four SBSs, four UEs, and one blockage. (b) The rectangles R1 to R17 represent
MBRs, the black MBRs (R1, R2) are the roots, the red MBRs (R3-R7) are the second
layer, and the green MBRs (R8-R17) are the leaf nodes which contain the data objects of
the network. The MBRs R1 and R2 cover total area of the network.

cally, R-tree groups the objects using minimum bounding rectangles (MBR). Objects

are added to an MBR within the index that will lead to the smallest increase in its

size. R-tree records the indices in its leaf nodes with pointers to the data objects

as in Fig. 4.2(a). Data objects refer to the polygons of the elements of the network

which is detailed below. Further, by defining M as the maximum number of entries

in an element of the tree, the average search complexity of R-tree is O(logM n). A

representation of the R-tree and MBRs over a HetNet is illustrated in Fig. 4.2(a) and

Fig. 4.2(b), respectively.

According to Fig. 4.2(a), the leaf nodes store data objects related to the elements

of the network. The data objects are 2-tuples containing first the location of the

element, and second a pointer to the Node object of the element. We name the

2-tuple, value pairs in the code snippets. We define the following value pair as the

input of the R-tree.
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<location,node*> <location,node*>

(a) (b)

Figure 4.3: (a) The value pairs of the R-tree leaves and their relationship with the elements
of the network. Each leaf contains location and a pointer which stores the Node information
of the respective element of the network. Here, R14 contains the location of a SBS and its
Node data. (b) Retrieving higher levels of an object from a query result.

1 typede f pair<point , shared ptr<node>>value ;

According to the above, an element of the network is added to the R-tree based on

its location (point variable) and a pointer (shared ptr) to its Node object and the

R-tree indexes the elements of the network based on their corresponding locations.

Fig. 4.3(a) shows the value pairs of MBRs R14 and R15 defined in Fig. 4.2(a). For

details of inserting elements to the R-tree see Appendix B.1.

4.2.3 Spatial Queries

A spatial query is a query which considers the spatial relationship between the

elements of the network such as relative location-based searching, k-nearest neighbors,

and ray tracing. Spatial queries have significant applications in map servers where

there are continuous queries over the database based on the location of the objects.

Google Maps and Quantum Geographic Information Systems (QGIS) are examples

of applications which use spatial queries frequently. Considering the above, any

location-dependent search can be defined as a spatial query over the polygons of

the elements of the network. For instance, finding fixed-radius neighbors can be
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defined as a circle-shaped polygon query over the nodes of the network. Therefore,

we can represent the association of users to base stations as a spatial query. The same

applies to finding the potential interferers in a certain direction which can be stated

as a triangular-shaped polygon query. In the following, we describe these queries.

After inserting all the elements (BSs, UEs, blockages) in the R-tree, any element

is able to define customized spatial queries over the network. The general format of

a spatial query is defined as follows.

1 m tree . query ( Condition , Resu l t s )

In the above, the Condition can be any function defined based on the point variables.

Results is a standard vector containing the value pairs of the elements that their

locations satisfy the defined Condition. Due to the indexing method, any query over

the network results in a vector containing pointers to Node objects. In order to derive

the higher levels of a Node object, for example a mmWave BS from the pointer of its

Node, we use dynamic cast as in Fig. 4.3(b). It is important to note that since we

use downcasting to derive classes from the shared pointer of the Node, the Node class

should be polymorphic [83], i.e., Node should at least contain one virtual method.

Here, we use spatial queries to define two common location-dependent searches

in wireless networks: search for fixed-radius near neighbors and search for interferer

BSs residing in the boresight of a receiver. However, any customized query can be

defined as well. The two queries are implemented as follows.

(i) Fixed-radius near neighbors: This query is used in association, coordination,

and routing problems. The Condition for this query is written based on the euclidean

distance from the desired point. In fact, any point that is in distance R of the desired

point is in a circular polygon with radius R around the desired point. If the MBR

of any element of the network intersects with the defined circular polygon, then the
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(b)

Figure 4.4: (a) Sectored-pattern antenna model with the beamwidth of φm, main-lobe gain
of Gmax, and side-lobe gain of Gmin. (b) Polygon estimating the area in which potential
interferer BSs reside.

element is in distance R of the desired point (center of the circular polygon). In

the following the elements located in the defined distance R of the desired point are

derived.

1 // Def in ing the r e s u l t vec to r

2 std : : vector<value>r e s u l t s ;

3 // The d e s i r e d l o c a t i o n .

4 po int d e s i r e d ( xx , yy ) ;

5 m tree . query ( bgi : : s a t i s f i e s ( [ & ] ( va lue const& v ) { re turn bg : : d i s t anc e ( v .

f i r s t , sought )<R; } ) , s td : : b a c k i n s e r t e r ( r e s u l t s ) ) ;

(ii) Directional interferer neighbors: This query is used for SINR calculation

of a directional wireless link. In another terms, search for neighbors in distance

and azimuth (or elevation) at the same time. In directional communications, the

power received at the receiver depends on the combined antenna gain of the receiver

and transmitter. Directional communication is viable with large antenna arrays and

using different MIMO transmission techniques such as fully digital, analog or hybrid

beamforming. Here, we use the sectored-pattern antenna gain shown in Fig. 4.4(a)
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which is practically accepted for single stream analog beamforming [16]. In order

to accurately calculate the antenna gain at a receiver, we need to figure out if the

interfering transmitter is in the main lobe of the receiver or not. We solve this

problem with a polygon query. In order to define this query, we define a triangular

polygon estimating the area in which the BSs causing interference are located as in

Fig. 4.4(b). The nodes residing inside the triangular polygon are in the main lobe of

the receiver. After finding the interferer nodes, we can initiate the same query from

the interfering nodes to see if the receiver is in their main lobe as well. This query

can be implemented as follows.

1 // Def in ing the r e s u l t vec to r .

2 std : : vector<value> r e s u l t s ;

3 // Performing the query to search f o r any node i n t e r s e c t i n g with the

der ived polygon .

4 m tree . query ( bgi : : i n t e r s e c t s ( t r i a n g u l a r p o l y g o n ) , std : : b a c k i n s e r t e r (

r e s u l t ) ) ;

In the above, the triangular polygon is defined for a transmitter-receiver pair based

on the direction of transmission, beamwidth, and the maximum transmission range

according to Fig. 4.4(b). The neighbors whose MBR intersect with the triangu-

lar polygon are returned in the results vector. By using dynamic cast the TRX related

object of the neighbors can be derived. Finally, the interference can be calculated

based on the interference model of the network. It is worth mentioning that the

polygon query can be used for other purposes such as user association for BSs which

have multiple sectors as well.
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4.3 Simulation Acceleration with Spatial Indexing

The goal of this section is to compare the performance of spatial indexing versus array

indexing in location-dependent searches in large directional wireless networks. The

network under study contains mmWave SBSs which are distributed with fixed density

of 100 SBS/Km2. We assume SBSs are equipped with directional antennas. Without

loss of generality, we assume all SBSs are on the same horizon plane. Thus, we do

not consider beams variations in the elevation and define the antenna gain pattern

with widely-adopted sectorized-pattern as [16,101].

Generally, in cellular communication, the measured signal at a receiver is a combi-

nation of the desired signal, the interference, and noise, hence SINR. In mmWave com-

munications, due to narrow beams, the links are sometimes assumed to be interference-

free and the SNR metric is used in simulations. Despite the fact that the interference-

free assumption is reasonable, the probability of occurrence of interference increases as

the density of the network increases [59,102]. Selection of the right metric is important

in certain applications such as path selection and routing algorithms. Hence, we

assume two scenarios: (i) SNR and (ii) SINR calculation of all potential links between

any two pair of SBSs with maximum transmission range of 200 m.

In the following we provide performance time comparison and complexity analysis

in both scenarios. Experiments are carried out in C++ with an Intel(R) Core(TM)

i5-6300HQ @ 2.30 GHz processor powered by Fedora 31 operating system and Linux

kernel 5.4.18.
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Figure 4.5: (a) Processing times to calculate SNR of all existing links. (b) Loading time
to generate and store all nodes.

4.3.1 SNR calculation

In order to calculate the SNR of all potential links between SBSs in a network, we need

to measure distance of all pairs of SBSs and calculate SNR of the ones in transmission

range of each other. In array indexing, complexity of finding potential links between

one SBS and its neighbors is O(n), which contains measuring the distance between

the node and all existing nodes. Hence, the total complexity for all the nodes isO(n2).

However, with spatial indexing, finding neighbors can simply be implemented with a

fixed-radius neighbor query as in 4.2.3 which is a spatial query over the distance. The

complexity of one query is O(log n) and hence for the whole network is O(n log n)

on average. In Fig. 4.5(a) the processing time for finding the potential links for

calculating SNR of the network is presented. As shown, spatial indexing outperforms

array indexing.

It is worth mentioning that, when using spatial indexing, loading the nodes on

the R-tree introduces an overhead to the simulation. However, loading time is a

one-time overhead, however, location-dependent searches are called frequently during
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Figure 4.6: Processing time to calculate SINR of all existing links.

a simulation. In Fig. 4.5(b), we have compared the required time of storing nodes on

an array and a R-tree with respect to the number of nodes.

4.3.2 SINR calculation

In directional communication, the calculation of SINR for a link contains one ad-

ditional search compared to SNR calculation. In fact, after finding the potential

neighbors, we need to search for interferers for each link. This search is in distance and

azimuth according to Fig. 4.4(b). With array indexing, finding directional interferers

for each link leads to another search which increases the complexity to O(n2). Hence,

the computational complexity for the whole network can go up toO(n3). On the other

hand, spatial indexing provides a systematic approach to accelerate the calculation of

SINR. SINR calculation can be simply implemented as a combination of fixed-radius

near neighbors query followed by a triangular polygon query over the results of the

first query. This systematic approach is one of the advantages of spatial indexing.

In Fig. 4.6, the processing time of SINR calculation in large wireless networks with

directional communication is plotted. As it is shown in Fig. 4.6, spatial indexing
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has clear advantage in processing time of searches in distance and azimuth. This

advantage can be used to enormously accelerate system-simulation of large systems.

For the implementation details see Appendix B.3.

4.4 Conclusion

In this chapter, we propose the use of spatial indexing in system-level evaluation of

5G heterogeneous cellular networks. We introduced an inheritance based polymorphic

architecture which enables us to index a wireless heterogeneous network with a single

R-tree. This structure enables us to take advantage of spatial queries to accelerate

simulation of large-scale directional heterogeneous wireless networks. Researchers can

use spatial indexing in their platforms to accelerate system-level simulations enor-

mously. Acceleration can be achieved in any search defined in distance, azimuth or

even elevation. Further, due to the ability of considering the blockage, spatial indexing

can accelerate system-level simulations which account for the spatial correlation of

blocking such as [103, 104]. Another main application of spatial indexing could be

generating training data sets of accurate SINR values in millimeter-wave commu-

nications for machine learning purposes. Further, spatial indexing can accelerate

simulation in multiple applications such SINR evaluations in ad-hoc networks, node

deployment [105–107], routing, clustering, implementation of self-organizing networks

(SONs) [27], and generating communication graphs. We are currently developing an

open-source platform based on the introduced structure in Fig. 4.1 which implements

some of the applications of spatial indexing in [108].
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Chapter 5

TOPOLOGY MANAGEMENT IN MILLIMETER WAVE

WIRELESS BACKHAUL IN 5G CELLULAR NETWORKS

The dynamic and autonomous connections of a mmWave backhaul network is similar

as an ad hoc network. In ad hoc networks, the topology of a network is the set

of communication links between the nodes that is used by the routing algorithm.

According to ad hoc related literature, weeding out redundant and unnecessary

topology information is called topology management. Topology management plays

a key role in performance of routing, scheduling, broadcasting. The wrong topology

information can reduce the capacity, increase the end-to-end delay, and decrease the

robustness to node failure. As the above factors are important in ad hoc networks,

they have the same importance in mmWave backhaul networks as well. In this

chapter, we investigate the effect of using signal-to-noise-ratio (SNR) instead of signal-

to-interference-plus-noise-ratio (SINR) in topology management of dense mmWave

networks. Further, we design a multi-agent reinforcement learning algorithm to

achieve k-connecitivty as one of the requirements of fail-safe wireless backhauling

in mmWave networks.
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5.1 Introduction

Supporting the expected cellular traffic growth via densification is one of the main

tasks for the next generation (a.k.a “5G”) wireless cellular networks [3]. A key

driver for densification in the next 5-10 years will be small base stations (SBSs)

operating at millimeter wave (mmWave) frequencies. These SBSs will also support

conventional communication below 6 GHz (Sub6GHz) frequencies and possibly use

mmWave for the backhauling as well as some UE connections. Small cells construct an

underlay of low-power and short-range, indoor and outdoor microcells, femtocells or

picocells [109]. New small cells are deployed in public and private infrastructures with

the vision of aggressive densification to provide the high speculated rate requirements

of 5G networks. Meanwhile, achieving the full potential of densification to improve

the spectral efficiency of access links runs into the significant bottleneck of efficient

backhauling.

Wired and wireless technologies can be used as backhaul solutions. Wired tech-

nologies such as fiber or xDSL have the advantage of high throughput, high relia-

bility, and low latency. However, wired solutions have high expenses and situational

impracticality in providing backhaul to a large number of small cells [15]. On the

contrary, wireless technology is a potential solution to provide a cost-efficient and

scalable backhaul support when wired solution is impractical [16]. Wireless backhaul

technologies can operate at Sub6GHz or mmWave bands. Sub6GHz wireless backhaul

has the advantage of non-line-of-sight (NLoS) transmission with the disadvantage of

co-channel interference and variable delay. In constrast, thanks to huge spectrum,

high directional transmission, and low delay of line-of-sight (LoS) links, mmWave

communications can be modeled as pseudo-wired communications without inter-
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ference [18]. Therefore, mmWave communications are suitable candidates for the

backhaul of dense small cells.

As mmWave communication is a potential technology for the backhaul of dense

small cell networks, its high path loss and susceptibility to blockage needs to be

considered in backhaul management (planning) procedures. High path loss results in

a limited range of effective communication which is resolved by multi-hop transmis-

sions [110]. Multi-hop transmission increases the reliability of the links while intro-

ducing more delay [111]. Severe vulnerability to blockage at mmWave transmission

decreases link availability [16]. Link blockage is solely dependent on the placement of

transceivers and the context of the environment. Surviving a blocked link can be done

via beam switching and finding new unblocked directions between the transceivers.

However, due to channel sparsity in mmWave communications, the number of strong

feasible beam directions between a transmitter and a receiver is mostly on the order

of two or three [112]. On the other hand, due to spatial correlation of beams, there is

good chance of blockage for all beams in case of severe blockage for one of them [113].

Hence, detouring the blockage by using another SBS as a relay is a viable option in

wireless backhauling [114].

Therefore, a SBS needs to be aware of all possible links that it can establish

to provide its backhaul in case of failure of one of them. Thus, we need an au-

tonomous backhauling algorithm to realize a wireless backhaul which is fast (low

latency), reliable (failure resilient), and scalable. We can simplify such definition

as a self-organizing wireless backhaul algorithm. In fact, due to unplanned and

high density deployment of small cells, self-organizing network (SON) procedures

and tools are becoming essential including backhaul managements. SON promises

self-configuration, self-optimization, and self-healing procedures for wireless backhaul.
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Self-configuration establishes the backhaul links with the appropriate neighboring

cells and alignment of transceiver antennas. Self-optimization manages possible inter-

ference with neighboring radios. Self-healing features in avoiding possible link failures

and contains necessary procedures in case of link failures due to specific propagation

features of mmWave communications such as susceptibility to blockage.

The dynamic and autonomous connections of a mmWave backhaul network is

similar as ad hoc network. In ad hoc networks, the topology of a network is the set

of communication links between the nodes that is used by the routing algorithm.

According to ad hoc related literature, weeding out redundant and unnecessary

topology information is called topology management [115,116]. Topology management

plays a key role in performance of routing, scheduling, broadcasting. The wrong

topology information can reduce the capacity, increase the end-to-end delay, and

decrease the robustness to node failure. As the above factors are important in ad

hoc networks, they have the same importance in mmWave backhaul networks as

well. This is part of the reason, in recent literature, researchers model mmWave

backhaul networks with graph theory and use the same protocols and concepts in

ad hoc networks to manage the topology of the network [117]. However, specific

propagation characteristics of mmWave communications and 3GPP requirements for

mmWave backhaul in 5G NR [118] brings certain features that need to be considered

in topology management of mmWave networks. In this chapter, we aim to review

and analyze the requirements and possible topologies of mmWave networks.

5.1.1 Related Work

A great deal of research exists in different aspects of wireless backhauling. We can

roughly categorize recent works as in wireless backhaul technologies [18, 119], rate
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and coverage analysis [120–123], optimal node deployment [124, 125], routing and

scheduling [126, 127], and management algorithms [117, 128–132]. In [18] hetero-

geneous backhaul operating on both Sub6GHz and mmWave bands is proposed as

a potential solution to backhauling of dense small cells due to their diverse char-

acteristics. Sub6GHz wireless backhaul has the advantage of NLoS transmission

with disadvantage of co-existence interference and unpredictable delay. MmWave

offers high capacity and reliability in LoS transmissions. The authors in [18] suggest

Sub6GHz band for modest length and mmWave as a competitive candidate for short

length communications. Meanwhile, the authors in [119] point to high licensing cost

of Sub6GHz wireless backhauling compared to the license-exempt nature of 60 GHz

from an operator’s perspective.

In [120] the advantage of short-hop wireless backhauling is analyzed in terms of

the number of antenna requirements for the SBSs and throughput scalability. Sing

et al. [121] derive rate distribution of a mmWave wireless backhaul network with

orthogonal sharing of resources between access and backhaul, and show that the

spectral efficiency of mmWave networks increases with density of SBSs. In [122]

and [123] integrated access backhaul (IAB) in mmWave communication is analyzed

in which access and backhaul share time and bandwidth resources, respectively.

More particularly, in [122] static and dynamic, synchronized and unsynchronized

time division duplexing (TDD) schemes and in [123] bandwidth sharing based on the

backhaul load are analyzed. In both scenarios, the higher achievable rate in dynamic

schemes are approved while [123] shows a cell-load beyond which the performance of

the IAB scheme starts decreasing.

Authors in [124] and [125] find optimal location of aggregator nodes (ANs), SBSs

with fiber-backhaul, to provide wireless backhaul to other SBSs of the network.
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In [124] joint problem of minimizing deployment cost while maximizing coverage

via ANs is solved with Tabu search. In [125], wireless backhaul support for SBSs in

downtown Manhattan is considered. The authors find optimal location for deployment

of ANs that can establish LoS mmWave (60 GHz) links to gateways. The required

rate is delivered to the SBSs with deployment of two ANs that establish LoS mmWave

links to the SBSs in a noise-limited scenario, and six ANs that connect to SBSs via

NLoS Sub6GHz links in an interference-limited scenario. [126] and [127] consider

the problem of backhaul routing (path selection) in a wireless backhauled mmWave

network with already established links. The authors consider latency requirements of

the networks and find optimal routes via minimizing defined regret functions in [126]

and matching theory in [127].

In management of wireless backhaul, we need to make sure of a topology that is

configured cost-effectively, provides the required flow demand, and can restore itself

from link failures (self-healing) [128]. Generally, backhaul topology can be one of the

ring, tree or mesh topologies. The authors in [129] provide an analytical study of

the advantages of the mesh over tree and ring topologies in multiple aspects. They

characterize their problem with minimizing installation cost of wireless backhaul links

under traffic flow constraints and show that: (i) mesh topology can accommodate

higher traffic demands than tree and ring topology, (ii) mesh topology has higher

value for maximum feasible traffic fluctuations. Hence, mesh topology is of common

interest as the topology of wireless backhauls. As in terms of self-healing, in the

current cellular network and their predecessors, restorability is achieved with adding

backup links to the mesh of the network [130]. Authors in [117] and [131] follow the

same approach and design central organizing algorithms that add backup/redundant

links to achieve restorability and minimize packet loss in case of link failures. The
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work in [131] considers a mmWave wireless backhaul network in which each SBS’s

antenna array is able to rotate mechanically. The work proposes a central software

defined solution to reconfigure the antennas’ alignment when the topology of the

network changes due to addition or reduction of SBSs or change of flow demand. The

work in [117] proposes a central solution to select some of the SBSs as cluster heads

to design a two-layer hierarchical mesh topology between the SBSs. Meanwhile, by

adding redundant paths for each non-cluster head SBS, they make sure of robustness

against blockage or link failures. The work in [132] focuses on the same idea of

selecting cluster heads, and provides a heuristic search algorithm to find a trade-off

between faster backhaul links or more cluster heads. However, their architecture does

not provide link failure restoration.

5.1.2 Contributions

The contributions of this chapter are two-folds.

1. We focus on the effect of selecting signal-to-noise-ratio (SNR) vs signal-to-

interference-plus-noise-ratio (SINR) as mmWave link quality performance in

dense mmWave networks. In fact, in directional communications, the links are

sometimes assumed to be interference-free, and the SNR metric is used in simu-

lations. Here, we show that despite the fact that in directional communications,

the interference-free assumption is reasonable, however, in cases of occurrence

of interference, SNR is not a valid metric and SINR should be considered to

make a correct decision.

2. We design a self-organizing algorithm to achieve k-connectivity in a backhaul

network. As we mentioned before, redundancy in a backhaul network is one of
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the requirements of a fail-safe topology, and connectivity is a key performance

factor in topology management. Hence, we use reinforcement learning, Q-

learning in specific, to design a transmission range control algorithm to achieve

k-connectivity in a backhaul network.

The chapter is organized as follows. In Section 5.2, the system model is presented.

Section. 5.3 introduces distributed path selection policies and the effect of using SNR

instead of SINR on the resulted topology of the network. Section 5.4, introduced

the designed transmission range control algorithm. Finally, Section 5.5 concludes the

chapter.

Notation: Lowercase, boldface lowercase, boldface uppercase, and calligraphic

symbols represent scalars, vectors, matrices, and sets, respectively.

5.2 System Model

We consider a multi-cell heterogeneous network (HetNet) where multiple macrocells

are overlaid with a set of SBSs, S. SBSs are distributed with density λs = 100

SBSs/km2 on R2. The location of SBSs are derived according to a Poisson point

process (PPP) denoted by Φs, however, the derived conclusions in this chapter can be

considered for any network generation method. Fig. 5.1 shows the locations of MBSs

and SBSs. The network contains 66 wireless SBSs and 6 fixed wired BSs (MBSs). In

the following, the antenna, path loss, and interference models are detailed. Further,

the value of the system model parameters are presented in TABLE. 5.1.
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Figure 5.1: Deployment models of mmWave base stations with density of 100 SBS/km2.
MBSs are connected to the core network with a wired backhaul. SBSs use wireless
backhauling to reach one of the MBSs. PPP distribution for SBSs and fixed locations
for MBSs.

5.2.1 Antenna Model

We assume transmitters and receivers are equipped with directional antennas. With-

out loss of generality, we assume all BSs are on the same horizon plane. Thus, we do

not consider beams variations in the elevation angle θ and define the antenna gain

pattern with widely-adopted sectorized-pattern as [16,101]

G(φ) =


Gmax, if φ ≤ |φm|

Gmin, otherwise,

(5.1)

where, φ and φm denote azimuth angle and antenna main lobe beamwidth, re-

spectively. Gmax and Gmin denote the antenna gains at main lobe and side lobes,

respectively.
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Table 5.1: Notation, Simulation Parameters

Notation Parameter Value

λs SBS density 100 km−2

B mmWave bandwidth 400 MHz
Pt mmWave transmit power 30 dBm
f mmWave carrier frequency 28 GHz
ζ standard deviation of path loss LOS = 7.6, NLOS = 7.9
α path loss exponent LOS=2.0, NLOS=3.5
β path loss at 1 m 70 dB
Gmax

Gmin

φm

main lobe gain
side lob gain
beam-width

18 dB
−2 dB
10◦

NF Noise Figure 10 dB
σ2
N noise power −174 dBm/Hz+10 log10 (B)+NF

— Area of the simulation 1km2

— Minimum distance between SBSs 10 m
— Maximum mmWave transmission

range
200 m

5.2.2 Path Loss

The received power at y ∈ R2 from a transmitter at x ∈ R2 with power p (x) is

given by p (x)ψ (x,y)L (x,y)−1, where ψ (x,y) is the overall beamforming gain.

L (x,y) = β + 10α log (‖x− y‖) +χ is the associated path loss, where χ ∼ N (0, ζ2).

The parameters β, α, and ζ2 represent the path loss at 1 meter distance, the path

loss exponent, and the variance of the shadowing, respectively. For mmWave com-

munications, motivated by the model of [121], we accommodate different path loss

parameters for LoS and NLoS links in mmWave band. We assume small-scale fading

as Nakagami fading with the shape factor parameter as 2 and 3 for LoS and NLoS

links, respectively.
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5.2.3 Interference Model

The SINR of the link between the transmitter i and receiver j is calculated as follows

Due to directional communication, a few transmitters affect the desired receiver [133].

Considering this fact, the setting for interference is as follows. Assume, small BSs

(SBSs) communication over backhaul links. In each time-slot, there are NT SBSs

transmitting. Hence, there are NT −1 interfering transmitters and Ij number of them

are in the interference area of the desired receiver j (SBSj). Therefore, the received

SINR of a link from the SBS i (SBSi) to the SBSj can be expressed as

SINRij =
HijGiGjL

−1 (dij)

N0/Pt +
∑Ij

k=1HkjGkGjL−1 (dkj)
, (5.2)

where the received signal and the interference power are normalized by the transmis-

sion power Pt. Hij = |hij|2 is the small-scale fading power of the channel between

the SBSi and the SBSj. dij is the distance between the two SBSs and N0 is the

thermal noise power. The set Ij is the interfering nodes active at the same time-slot

as the transmitter-receiver i and j. The value of the Gk , k ∈ Ij, is set by a Bernoulli

random variable in such a way that by probability p = φm
2π

, Gj = Gmax and otherwise,

Gj = Gmin. By considering the allocated bandwidth between the SBSi and the SBSj

as Bij, the instantaneous achievable rate for the link is rij = Bij log (1 + SINRij).

5.3 Distributed Path Selection

In reality, the measured signal at a receiver is a combination of the desired signal,

the interference, and noise, hence SINR. However, in directional communications, the

links are sometimes assumed to be interference-free, and the SNR metric is used in
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Table 5.2: Path selection policies for wireless mmWave backhauling.

Policy Metric Selection Rule
High SNR First SNR Select the link with the highest SNR.

Wired First position and SNR
Select a wired BS if possible

otherwise use High SNR first.

Position Aware position and SNR

Select a link with the highest SNR

among those links with parent
BSs closer to a MBS.

High SINR First SINR Select the link with the highest SINR.

simulations. Here, we show that despite the fact that in directional communications,

the interference-free assumption is reasonable, however, in cases of occurrence of

interference, SNR is not a valid metric and SINR should be considered to make a

correct decision. In this regard, first, we implement four path selection policies for

wireless backhaul routing as in Table. 5.2. Second, we show the performance effect of

selecting SNR and SINR as decision metrics.

5.3.1 Path selection policies

We use four policies for path selection as in Table. 5.2. The High SNR First, the

Wired First, and the Position Aware policies are suggested in [134] and [135]. These

three policies are defined based on metrics of position and link SNR. To see the effect

of decision making based on SINR, we define one more policy named High SINR First

which uses the SINR as its metric. The selection rule under each policy is defined in

Table. 5.2.

5.3.2 Effect of selecting SNR vs SINR as mmWave link quality metric

In order to evaluate the performance of the defined path selection policies, two

performance metrics are discussed: (i) required number of hops for a SBS to reach an
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MBS, and (ii) quality of bottleneck links. These two metrics are discussed below. The

location of SBSs and MBSs in Fig. 5.1 are loaded for all simulations. The simulations

are implemented using our proposed platform in Chapter 4.

Required number of hops to reach an MBS

For each policy, we evaluate the number of hops that SBSs take to reach a wired BS

(MBS). The plot in Fig. 5.2(a) shows the fraction of connected SBSs with respect to

the number of hops. Further, the final selected paths for all four policies are visualized

in Fig. 5.2 as well. According to Fig. 5.2(a), the two policies relying on just the quality

of the link (SNR, SINR) fail to connect all SBSs by increasing the number of hops.

In fact, in both cases there are SBSs which fail to reach any wired BS. We see this

also in Fig. 5.2(b) and Fig. 5.2(c). On the other hand, in the two policies which use

the position of wired BSs, SBSs reach to a wired BS with a maximum of five hops

for 90% of the times. The Position aware policy performs slightly better than the

Wired first policy in Fig. 5.2(a). Further, the wired first policy results in a star-shape

topology as in Fig. 5.2(d). Hence, awareness of the positions of wired BSs enhances

the chance of reaching to the wired BSs.

On the comparison of choosing SINR instead of SNR, we can look at the different

paths selected by SBSs in Fig. 5.2(b) and Fig. 5.2(c). As shown, choosing SINR

metric in the simulations results in different routes which are potentially closer to the

reality of the network.

Quality of the bottleneck links

The bottleneck link is defined as the weakest selected link from the selected paths in

the network [135], and its quality can be a performance measure for a path selection
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(e) Position Aware.

Figure 5.2: The selected paths by following each of the four policies. The red nodes
represent the wired BS, black nodes represent the wireless SBSs. The number on each BS
shows the number of hops it takes to reach to a wired BS. This number is zero for a wired
BS and −1 for the ones with no route to a wired BS.
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Figure 5.3: Empirical CDF over 1000 number of iterations for a fixed topology and 6
number of wired BSs.

policy. The CDF of the bottleneck link’s SNR and SINR under the defined policies are

plotted in Fig. 5.3(a) and Fig. 5.3(b), respectively. The relative trend of the High SNR

first, Wired first, and Position aware policies are the same in both figures. In fact,

position aware methods (Wired First an Position Aware) gain higher performance

compared to HQF1. However, the actual quality of the link, i.e., its SINR, is much

different than the SNR. Furthermore, the SINR of the bottleneck link under the

HQF2 policy has a different trend. This is the result of different decisions under the

SINR metric. Therefore, considering SINR as the metric becomes essential in dense

networks [59,102,136].

Computation wise, calculation of directional interference is much higher than an

interference-free scenario, and this is one of the advantages of the proposed platform

in Chapter 4 which provides a systematic approach to accelerate the calculation of

SINR in highly dense environments. It is important to mention that, it takes about

just 12 seconds to provide the 1000 iterations of the above simulations. Each iteration

involves neighborhood search and calculation of directional interference for each of
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the BSs. This is important, since in similar work [134], the CDF of bottleneck link

quality is plotted in steps which implies low number of iterations for the simulations

due to high computational complexity.

5.4 K-Connectivity with Multi-Agent Reinforcement Learn-

ing

In this section, we focus on designing a self-organizing algorithm for SBSs to achieve

k-connectivity in a backhaul network. As we mentioned before, redundancy in a

backhaul network is one of the requirements of a fail-safe topology. Each SBS needs to

hold a certain number of connections to its neighbors to ensure successful transmission

of its backhaul data to the core network. We define the degree of a SBS as the

number of connections it can establish with its neighbors. In a network of size n,

if the degree of a node is on the order of log (n), the network is connected with

high probability [137]. Transmission range control is one of the methods of achieving

different connectivity degrees for a node. In fact, with increasing the transmission

range (with transmit power control), the node can increase number of its neighbors

and hence increase potential connections.

In this section, the range control is presented as a RL problem in which each SBS is

an agent which controls its transmission range to achieve a certain connectivity level.

Hence, achieving the desired degree with limited transmission power is essential. In

the following, we use reinforcement learning, Q-learning in specific, to achieve node

degree of k for all SBSs.
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5.4.1 Q-learning for range control

In order to use Q-learning, the following definitions are used in our method.

• Agent: each node (SBS) is considered as an agent in the network. The goal of

each agent is to learn the minimum transmission range to achieve k as its node

degree.

• Environment: The whole network is the environment of the Q-learning. The

environment contains all the nodes as its agents. From each node’s view, the

combination of all other nodes constitutes the environment.

• State set: The state set of each node is defined as the set of degrees that it can

hold with its neighbors. Here, we assume a set, S = {0, 1, 2, ..., kmax}, as the

state set for all the nodes. The goal state for each node is the state k ∈ S.

• Action set: Each node has a limited transmission range, Rmax. Each agent se-

lects its transmission range according to a set of actions,A = {∆r, 2∆r, ..., Rmax},

∆r = Rmax

|A| .

• Reward function: The design of the reward function depends on the goal of

each agent. Here, the goal of the agent is to reach the state k ∈ S, i.e., select

a minimum transmission range to reach to k neighbors. If a node selects an

action a and reaches the state s ∈ S, the defined reward function is as follows

r (s, a) = e−(s−k)2 . (5.3)

The agents act independently. This means each node considers any other node

in its transmission range as its potential neighbor. This is due to the definition of
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topology management in which an algorithm is designed to find potential links for

communication. Meanwhile, scheduling the links is the responsibility of scheduler. In

the training process, each agent selects a communication range in its current state

based on ε-greedy policy, transmits a message to find the number of its neighbors in

the selected range, and updates the corresponding value of the state-action set in its

Q-function according to the temporal-difference method as follows

Q (s, a)← Q (s, a) + α

γmax
a′

Q (s′, a′) + r −Q (s, a)︸ ︷︷ ︸
temporal-difference

 , (5.4)

in which, s, a, s′ represent the current state, the selected action, and the new state,

respectively. Also, α and γ are the learning rate and the discount factor. Each agent

runs the Q-learning algorithm for L episodes to train its Q-function.

After the training, each agent runs Algorithm 1 to select its neighbors. In Al-

gorithm 1, the goal state, i.e., k, can be selected to configure different connectivity

levels for the network. The higher the k, the higher connectivity level is derived for

the network. However, the SBSs need to track more links and use more power to

increase their transmission range. Hence, the overhead and consumed energy of the

network increases as well.

5.4.2 Resulted topology

In order to visualize the resulted topology of the designed algorithm above, a network

is generated with the same approach as in Section 5.2 with loading a predefined

network. The simulation parameters are presented in Table. 5.3.

Implementation of a MARL algorithm on such a large network is not conventional.
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Algorithm 1 Transmission Range Control

1: Initialize: a = Rmax, rounds = 0
2: Find the initial state s
3: while rounds > 0 do
4: a = arg maxa′ Q (s, a′)
5: Broadcast a message with a
6: Receive message from others and calculate number of neighbors
7: Calculate the new state s′

8: if s′ == k then
9: break

10: else
11: Update Q-function
12: end if
13: rounds← rounds− 1
14: end while

Table 5.3: Simulation Parameters

Parameters Value

Density of nodes 100 km−2

Maximum communication range (Rmax) 200 m
Goal state (k) 3

Learning rate (α) 0.2
Discount factor (γ) 0.99

ε 0.2
Rounds 10
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Figure 5.4: Topology of the network. The number on each node represents its degree.

We took advantage of our designed platform in Chapter 4 to integrate RL procedures

in each SBS node. Reinforcement learning procedures are implemented with the help

of the open-source template-based C++ RLLib [138]. The RLLib template-based

classes fit mathematics of RL with the implementations. Further, we illustrate how

to implement multi-agent RL training procedure in parallel (asynchronous training)

in Appendix C.1. The scalability of the asynchronous multi-agent RL algorithm is

investigated in Appendix C.1 as well.

The generated network is shown in Fig. 5.4(a). The degree of each node in

Fig. 5.4(a) is the result of using the maximum transmission range. This is the first

topology of the network before running the Algorithm 1. The topology of the network

after the training and running Algorithm 1 is presented in Fig. 5.4(b).



110

5.5 Conclusion

In this chapter, we focused on topology management in mmWave backhaul networks.

First, we defined distributed path selection policies and illustrated that the effect of

using SINR instead of SNR as a metric for mmWave link quality is a necessity in dense

networks. We investigated the importance of proper mmWave link quality metric with

visualization of the resulted network topologies and CDF of bottleneck links. Second,

we focused on k-connectivity of backhaul networks and designed a self-organizing

algorithm to achieve k-connectivity via multi-agent reinforcement learning. We used

our designed platform in Chapter 4 to implement the designed topology management

algorithms. Further, the resulted topologies are visualized as well.
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Chapter 6

CONCLUSION

The presented dissertation is an effort to realize, develop, and investigate potential

solutions and tools for data-driven decision making in self-organizing networks (SONs)

more specifically in cellular networks. We develop an reinforcement learning based

framework and develop multiple learning algorithms for transmit power control in

heterogeneous networks (HetNets). Generally, training machine learning applications

needs large amount of data measurements and there is a need in the communication

community of standard data sets such as MNIST [139] in image processing field.

Hence, we developed an open-source platform for simulation of large 5G cellular

HetNets based on spatial indexing. The platform is able to produce large amount of

accurate signal signal-to-interference-plus-noise-ratio (SINR) values in short amount

of time. Finally, we take advantage of the developed platform and study topology

management of dense millimeter wave (mmWave) backhaul networks. In the following

the major contributions of the dissertation are detailed, and possible future directions

are presented.

6.1 Summary

• Chapter 2: In this chapter, we focus on realization of self-organizing networks

(SONs) with reinforcement learning (RL). We look into transmit power control
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in a dense heterogeneous network (HetNet) and rely on local SINR measure-

ments to make decisions. We design a general framework for reinforcement

learning applications. The proposed framework models a multi-agent network

with a single Markov decision process (MDP) that contains the joint action of

the all the agents as its action set. Then, we make two main assumption to

factorize the global MDP into local ones: (i) total reward is linear combination

each agents reward, and (ii) the transition probability of each agent’s MDP

depends just on its action. With these two assumptions, we define local inde-

pendent and cooperative learning (IL, and CL) methods for decision making.

Further, we propose a systematic approach to define a reward function that

maximizes the summation of achievable transmission rate of the network while

satisfying minimum requirements for all agents. Finally, we derive a minimum

bound on the sample complexity of the proposed learning methods to achieve

ε-optimality. The numerical results of this chapter illustrate the performance

of different learning configurations and reward functions. This chapter plays a

key role in the dissertation as the reinforcement learning framework is used in

other chapters as well.

• Chapter 3: In this chapter, we focus on transmit power control in an interference-

limited network of small base stations (SBSs). First, we define a global Q-

function relating to the whole network. Then, in order to factorize the global

Q-function, we feed the interference model of the network to the factorization

process. In fact, we investigate the effect of accurate MDP factorization on the

optimality of the solution. To di this, we assume each SBS receives most of

its interference from one neighbor. Hence, its transition probability function
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depends on its action and the neighbor. With this assumption, we factorize the

global Q-function and use the variable elimination (VE) method to find joint

actions in the network. The agents use message-passing for passing conditional

solutions to each other. In the simulation section, we illustrate the optimality

of the proposed solution for a 2 by 2 transmit-receiver case.

• Chapter 4: In this chapter, we design a new architecture for system-level

simulations of large 5G networks. We had two motivations for developing a new

simulation platform: (i) we needed to design topology management algorithms

for large directional networks, and ((ii)) we needed a fast simulator to be able

to run reinforcement learning algorithms. However, the existing simulators did

not provide us with one. Hence, we looked back to the idea of spatial indexing

and its advantages, applications, and future potentials in accelerating large 5G

network simulations. We introduce a multi-level inheritance based architecture

which is used to index all elements of a HetNet on a single geometry tree.

Then, we define spatial queries to accelerate searches in distance, azimuth,

and elevation. The platform can be used to evaluate and design algorithms

related to network issues such as scheduling, mobility management, interference

management, and cell planning. Further, the proposed design is implemented

as an open source platform freely available to all.

• Chapter 5: In this chapter, we focus on topology management of mmWave

backhaul networks. First, we investigate the effect of using signal-to-noise-ratio

(SNR) instead of SINR in topology management of dense mmWave networks.

In mmWave communications, due to narrow beams, the links are sometimes

assumed to be interference-free and the SNR metric is used in simulations. De-
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spite the fact that the interference-free assumption is reasonable, the probability

of occurrence of interference increases as the density of the network increases.

We investigate the effect of using SNR and SINR on final derived topology

of a mmWave backhaul network. Further, we design a multi-agent reinforce-

ment learning algorithm to achieve k-connecitivty as one of the requirements of

fail-safe wireless backhauling in mmWave networks.

6.2 Future Research Direction

6.2.1 Deep reinforcement learning for large state sets

As we discussed in simulation section of Chapter 2, there is a performance gap between

the proposed approach and the exhaustive search. In fact, we wish to improve and

cover this gap by utilizing deep neural networks (DNNs) as the function approximator

of the learning method. Neural networks can handle the large state-action spaces more

efficiently. Hence, by increasing the state set size we would like to decrease the gap

between the RL and the exhaustive search solutions.

6.2.2 Mean-field reinforcement learning in large networks

One of our future works is to extend the proposed message-passing based solution in

Chapter 3 to multi transmit-receiver pairs such as [140]. However, the overhead

of message passing between the agents would be enormous. Further more, the

assumption of one major interferer for each agent might not hold all the times in

cellular networks. We propose to use mean-field reinforcement learning [141], to

factorize the global Q-function. In fact the transition probability of each agent

would depend on its own action and an action which is the average of other agents
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in the environment. Therefore, we might be able to apply the idea of VE and

message-passing in large networks as well.

6.2.3 Spatial correlation of blocking in HetNets

One of the features of the proposed platform in Chapter 4, is ability to introduce

blocking in the simulation environment. We believe spatial indexing can accelerate

system-level simulations which account for the spatial correlation of blocking as well.

Developing an application based on the core of the platform for such studies can be

a potential direction for extending the platform.

6.2.4 Graph embedding in topology management

We are currently working on the applications of graph embedding methods in topology

management of wireless networks. Topology management can be seen as an algorithm

which searches over possible graphs of the network to find one that satisfies all the

requirements. Designing an algorithm for search over a graph can be challenging.

We wish to overcome this difficulty by using graph embedding methods. In fact, we

would like to embed the graph of the wireless network into a fixed-dimensional vector

space. This approach helps to search in a vector space in efficient time. Further,

the designed machine learning algorithms can become independent of the size of the

graphs as well.
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A.1 Proof of Proposition 1

Proof. Assume an MDP represented as (X ,A,Pr (y|x, a) , r (x, a)), a policy π with

value-function Vπ : X → R and Q-function Qπ : Z → R, Z = X ×A. Here, A refers

to action space of one agent and k is the iteration index. According to (2.4), the

maximum of the value-function can be fined as Vmax = Rmax

1−β . The Bellman optimality

operator is defined as (TQ) (x, a) , r (x, a) + β
∑

y∈X Pr (y|x, a) max
b∈A

Q (y, b). TQ is

a contraction operator with factor β, i.e., ‖TQ − TQ′‖ ≤ β‖Q − Q′‖ and Q∗ is a

unique fixed-point of (TQ) (x, a), ∀ (x, a) ∈ Z. Further, for the ease of notation and

readability the time step notation is slightly changed as Qk refers to the action-value

function after k iterations.

Assume that the state-action pair (x, a) is visited k times and Fk = {y1, y2, ..., yk}

are the visiting next states. At time step k + 1, the update rule of Q-learning is

Qk+1 (x, a) = (1− αk)Qk (x, a) + αkTkQk (x, a) , (A.1)

where, TkQk is the empirical Bellman operator defined as TkQk (x, a) , r (x, a) +

βmax
b∈A

Q (yk, b). (From this point, for simplicity, we remove the dependency on (x, a)).

It is easy to show that E [TkQk] = TQk, therefore, we define ek as the estimation error

of each iteration as ek = TkQk−TQk. By using αk = 1
k+1

, the update rule of Q-learning

can be written as

Qk+1 =
1

k + 1
(kQk + TQk + ek) . (A.2)

Now, in order to prove Proposition 1, we need to state the following lemmas.
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Lemma 1. For any k ≥ 1, we have

Qk =
1

k

k−1∑
i=0

TiQi =
1

k

(
k−1∑
i=0

TQi +
k−1∑
i=0

ei

)
. (A.3)

Proof. We prove this lemma by induction. The lemma holds for k = 1 as Q1 =

T0Q0 = TQ0 + e0. We now show that if the result holds for k, then it also holds for

k + 1. From (A.2) we have

Qk+1 =
k

k + 1
Qk +

1

k + 1
(TQk + ek)

=
k

k + 1

1

k

(
k−1∑
i=0

TQi +
k−1∑
i=0

ei

)
+

1

k + 1
(TQk + ek)

=
1

k + 1

(
k∑
i=0

TQi +
k∑
i=0

ei

)
.

Thus (A.3) holds for k ≥ 1 by induction.

Lemma 2. Assume that initial action-value function, Q0, is uniformly bounded by

Vmax. Then, for all k ≥ 1 we have ‖Qk‖ ≤ Vmax and ‖Q∗ −Qk‖ ≤ 2Vmax.

Proof. We first prove that ‖Qk‖ ≤ Vmax by induction. The inequality holds for k = 1

as

‖Q1‖ = ‖T0Q0‖

= ‖r + βmaxQ0‖ ≤ ‖r‖+ β‖Q0‖ ≤ Rmax + βVmax

= Vmax.

Now, we assume that for 1 ≤ i ≤ k, ‖Qk‖ ≤ Vmax holds. First, ‖TkQk‖ = ‖r +

βmaxQk‖ ≤ ‖r‖+ β‖maxQk‖ ≤ Rmax + βVmax = Vmax. Second, from Lemma 1 we
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have

‖Qk+1‖ =
1

k + 1

∥∥∥∥∥
k∑
i=0

TiQi

∥∥∥∥∥ ≤ 1

k + 1

k∑
i=0

‖TiQi‖ ≤ Vmax.

Therefore, the inequality holds for k ≥ 1 by induction. Now the bound on ‖Q∗−Qk‖

follows ‖Q∗ −Qk‖ ≤ ‖Q∗‖+ ‖Qk‖ ≤ 2Vmax.

Lemma 3. Assume that initial action-value function, Q0, is uniformly bounded by

Vmax, then, for any k ≥ 1

‖Q∗ −Qk‖ ≤
2βVmax
k (1− β)

+
1

k

∥∥∥∥∥
k−1∑
i=0

ei

∥∥∥∥∥. (A.4)

Proof. From Lemma 1, we have

Q∗ −Qk = Q∗ − 1

k

(
k−1∑
i=0

TQi +
k−1∑
i=0

ei

)

=
1

k

k−1∑
i=0

(TQ∗ − TQi)−
1

k

k−1∑
i=0

ei.

Therefore, we can write

‖Q∗ −Qk‖ ≤
1

k

∥∥∥∥∥
k−1∑
i=0

(TQ∗ − TQi)

∥∥∥∥∥+
1

k

∥∥∥∥∥
k−1∑
i=0

ei

∥∥∥∥∥
≤ 1

k

k−1∑
i=0

‖TQ∗ − TQi‖+
1

k

∥∥∥∥∥
k−1∑
i=0

ei

∥∥∥∥∥
≤ β

k

k−1∑
i=0

‖Q∗ −Qi‖+
1

k

∥∥∥∥∥
k−1∑
i=0

ei

∥∥∥∥∥.
and according to [142], ‖Q∗ − Qi‖ ≤ βi‖Q∗ − Q0‖. Hence, using Lemma 2, we can

write
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‖Q∗ −Qk‖ ≤
β

k

k−1∑
i=0

2βiVmax +
1

k

∥∥∥∥∥
k−1∑
i=0

ei

∥∥∥∥∥
≤ 2βVmax
k (1− β)

+
1

k

∥∥∥∥∥
k−1∑
i=0

ei

∥∥∥∥∥.

Now, we prove Proposition 1 by using the above result in Lemma 3. To this aim,

we need to provide a bound on the norm of the summation of errors in the inequality

of Lemma 3. First, we can write

1

k

∥∥∥∥∥
k−1∑
i=0

ei

∥∥∥∥∥ =
1

k
max

(x,a)∈Z

∣∣∣∣∣
k−1∑
i=0

ei

∣∣∣∣∣.
For the estimation error sequence {e0, e1, · · · , ek}, we have the property that E [ek|Fk−1] =

0 which means that the error sequence is a martingale difference sequence with respect

to Fk. Therefore, according to Hoeffding-Azuma inequality [143] for a martingale

difference sequence of {e0, e1, · · · , ek−1} which is bounded by 2Vmax, for any t > 0,

we can write

Pr

(∣∣∣∣∣
k−1∑
i=0

ei

∣∣∣∣∣ > t

)
≤ 2 exp

(
−t2

8kV 2
max

)
.

Therefore, by a union bound over the state-action space, we have

Pr

(∥∥∥∥∥
k−1∑
i=0

ei

∥∥∥∥∥ > t

)
≤ 2|X |.|A| exp

(
−t2

8kV 2
max

)
= δ,

and then,
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Pr

(
1

k

∥∥∥∥∥
k−1∑
i=0

ei

∥∥∥∥∥ ≤ Vmax

√
8

k
ln

2|X |.|A|
δ

)
≥ 1− δ.

Hence, with probability at least 1− δ we can say

‖Q∗ −Qk‖ ≤
2Rmax

(1− β)

[
β

k (1− β)
+

√
2

k
ln

2|X |.|A|
δ

]
.

Consequently, the result in Proposition 1 is proved.
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B.1 Insertion to the R-tree

In order to implement the R-tree, we have used the Boost C++ libraries [144].

Further, we define two variables representing the location and the dimensions of

an element of the network respectively as point and box variables. Without loss of

generality, we assume point has two-dimensions. The point variable can be defined

for three-dimensional data if the height of the elements of the network is important

as well. Also, The point variable is defined over float data type to accelerate the

simulations. The box variable is a two-dimensional rectangle representing the physical

dimensions of the elements of the network. The Node contains the above definitions

as the spatial information of objects as follows. The above definitions are represented

below.

1 namespace bg = boost : : geometry ;

2 namespace bgi = boost : : geometry : : index ;

3 typede f bg : : model : : point<f l o a t , 2 , bg : : c s : : c a r t e s i an>po int ;

4 typede f bg : : model : : box<point>box ;

As it is mentioned in Section 4.2.2, leaves of the R-tree hold the information as

value pairs. We define the following value pair as the input of the R-tree named as

value.

1 typede f std : : pa ir<point , boost : : shared ptr<node>> value ;

The R-tree data structure saves the objects of the network based on their correspond-

ing pairs. This method helps to index all the elements of the network based on their

location. Hence, after creating an object, the corresponding value pair is created and

inserted in the tree as follows. Here, we create a mmWave BS as an example.

1 bgi : : r t r e e< value , bg i : : quadrat ic<16>>m tree ;

2 boost : : shared ptr<mmWaveBS>BS ;
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3 // Generate shared po in t e r o f a mmWaveBS

4 BS=boost : : shared ptr<mmWaveBS>(new mmWaveBS(x , y , get nextID ( ) , de f P tx ) ) ;

5 // I n s e r t the BS to the t r e e .

6 m tree . i n s e r t ( std : : make pair (BS−>g e t l o c ( ) ,BS) ) ;

In the first line above, the m tree is created as an R-tree over the defined value

pairs. The second and third line create a mmWaveBS and set its location, x, y,

identification number, and its transmit power. Finally, the created mmWaveBS is

inserted to the tree with its corresponding value in line four (The mmWaveBS contains

the get loc() method which returns the location of the object in point format.). Also,

since mmWaveBS is inherited from the Node, there is no need to cast it to the Node

object.

B.2 Parallel processing and message-passing

1. Parallel processing: In order to create a parallel process for an object inherited

from the TRX, the ThreadMain() method of the object should be implemented.

The desired functionality of the thread can be called from the Start method as

follows.

1 void Star t ( ) {

2 the thread=std : : thread(& des i r edObjec t : : ThreadMain , t h i s ) ;}

In the above, a simple implementation of the Start method is presented. The

Start method calls the ThreadMain function as the main function of the thread.

2. Message-passing: Message-passing is implemented using simple signal-slot mech-

anisms. Any signal-slot mechanism contains three main fields, (i) the message

structure, (ii) the signal to be sent, and (iii) the destination function (slot).
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You can connect functions to the signal which will be called when the emit()

method on the signal object is invoked. Any argument passed to emit() will be

passed to the given functions. For instance, for passing a message from object

O1 to a function in object O2, first we need to define the structure of the

message as follow.

1 s t r u c t Message{ char [ 2 0 ] s ; } ;

In the above, the Message structure contains an array of characters. The signal

is defined in the sender, i.e., O1 as follow.

1 Signa l<Message const &> s i g n a l ;

and the function which handles the received message is defined in the O2 as

follows.

1 void handler ( Const Message& msg) ;

After ceating the objects O1 and O2, the signal and the slot are connected to

each other as follows.

1 s i g n a l . connect member(&O2, &O2 : : handler ) ;

In order to create an event or emit the signal, we just need to call the emit

function of the signal with the Message data as follows.

1 // Create the msg and F i l l in the f i e l d s .

2 Message msg ; msg . s = ” He l lo ! ”

3 // Emitting the msg .

4 s i g n a l . emit (msg) ;

By emitting the signal from the object O1, the handler function in the object

O2 receives the Message and is able to process it.
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B.3 SINR characterization

In a randomly deployed network or a dynamic network where the active set of

transmitters and receivers change with time, deriving the set Ij (representing the

set of directional interferers) for the receiver j is challenging. However, with the

proposed architecture, any receiver can find the set Ij for any transmitter with the

defined queries in Section 4.2.3. In Algorithm 1, we illustrate how to calculate SINR

of the all possible mmWave links for a network containing a set N mmWave nodes.

Further, the code snippets of the Algorithm 1 is presented afterwards as well.

Algorithm 2 Evaluate SINR of all links in a mmWave network.

1: for j ∈ N do
2: Retrieve desired level of the object j using dynamic cast
3: Get position and ID of the node j.
4: perform fixed-radius neighbor query to derive set Oj (Localizing the search)
5: for i ∈ Oj do
6: Retrieve desired level of the object i using dynamic cast
7: Get position and ID of the node i.
8: Derive the triangular polygon for the pair j and i
9: Perform triangular query over the polygon to derive the set Ij

10: interference = 0
11: for k ∈ Ij do
12: Calculate interference of node k and add it to interference
13: end for
14: Calculate SINRij

15: end for
16: end for

1 // mmB i s the d e s i r e d r e c e i v e r SBS , c id and p1 are i t s ID and loca t i on ,

r e s p e c t i v e l y .

2 u i n t 3 2 t c id = mmB. get ( )−>getID ( ) ;

3 po int p1 = mmB−>g e t l o c ( ) ;

4 // search f o r f ixed−rad iu s nea r e s t ne ighbours r e s i d i n g in maximum mmWave

range .
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5 std : : vector<value> r e s u l t s ;

6 m tree . query ( bgi : : s a t i s f i e s ( [ & ] ( va lue const& v ) { re turn bg : : d i s t anc e ( v .

f i r s t , p1 ) < def MAX MMWAVE RANGE; } ) , s td : : b a c k i n s e r t e r ( r e s u l t s ) ) ;

7 // Search in the r e s u l t e d SBSs in the maximum range .

8 BOOST FOREACH( value const&v , r e s u l t s ) {

9 bs p t r mmB2 = boost : : dynamic po inte r cas t<mmWaveBS>(v . second ) ;

10 u i n t 3 2 t c id2 = mmB2. get ( )−>getID ( ) ;

11 i f ( c id2 != c id ) {

12 double x2 = mmB2−>getX ( ) ; double y2 = mmB2−>getY ( ) ; po int p2 =

mmB2−>g e t l o c ( ) ;

13 // c r e a t e the i n t e r f e r e n c e t r i a n g u l a r polygon .

14 polygon2D poly = d i r e c t i o n a l p o l y g o n ( p1 , p2 , mmB−>get phi m ( ) ) ;

15 std : : vector<value> vec query ;

16 // Find the i n t e r f e r i n g SBSs .

17 m tree . query ( bgi : : i n t e r s e c t s ( poly ) , s td : : b a c k i n s e r t e r ( vec query

) ) ;

18 double i n t e r f =0. ;

19 BOOST FOREACH( value const&mz, vec query ) {

20 bs p t r mmB3 = boost : : dynamic po inter cas t<mmWaveBS>(mz .

second ) ;

21 u i n t 3 2 t c id3 = mmB3−>getID ( ) ;

22 i f ( c id3 != c id2 && cid3 != c id )

23 i n t e r f+= mmB−>c a l c u l a t e I n t e r f o f l i n k (mmB3−>getX ( ) ,

mmB3−>getY ( ) ) ;

24 }

25 // Ca lcu la te SNR and SINR of the l i n k .

26 double snr = mmB−>c a l c u l a t e S N R o f l i n k ( x2 , y2 ) ;

27 double s i n r = mmB−>c a l c u l a t e S I N R o f l i n k ( x2 , y2 , i n t e r f ) ;

28 }

29 }
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Figure C.1: Independent process of an agent and the main process.

C.1 Synchronous and Asynchronous Learning

Multi-agent RL, in its nature, is based on the interaction of each agent with the

environment. Hence, the agents can run their training algorithms separately. From a

computation standpoint, the independence of the training of each agent gives us the

opportunity to perform this task in parallel. Parallel training of the agents becomes

essential as the function approximator of each agent becomes expensive. For instance,

if each agent is using a deep neural network (DNN) as its function approximator

and backpropagation as the training algorithm, then parallel training and using all

resources is essential. Hence, we provide two methods of training for the RL agents,

(i) synchronous and (ii) asynchronous learning. In synchronous learning, agents are

trained in a queue by a single process. Synchronous learning can be used in simple
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Figure C.2: Running time for training of the WSN with 62 sensors. The running time for
one process refers to synchronous learning and the rest are related to asynchronous learning.
The machine specification for running the simulations is Intel(R) Xeon(R) CPU E5-2683
v3@2.00GHz.

training algorithms or when the resources are limited. In asynchronous learning, each

agent runs its processes independently as a separate thread as in Fig. C.1. According

to Fig. C.1, an agent trains its own Q-function with a signal-slot structure. By

taking action a, the agent emits a signal containing its action. The environment as

the main thread receives this signal and runs the required processes to calculate the

reward and the new state of the agent. Meanwhile, the agent waits for the response

of the environment. The new state and the reward of the agent are emitted by the

environment. Upon receiving the new state and the reward, the agent updates its

Q-function, i.e., learning process, and then updates its state. Independent processes

for the agents bring scalability, which can be essential in large networks to use all the

computation resources.

Further, in order to investigate the scalability, we run the training process on



144

different machines with a different number of processes. Fig. C.2 presents the running

time of the training process for one, eight, 16, and 32 number of processes. Fig. C.2

shows the scalability of the simulator for using the existing resources to accelerate

the training processes. On the other hand, even for one processor, the running time

of the training is just 83.1 seconds for one million iterations. This result shows the

efficiency of the platform.




