5,383 research outputs found

    From FPGA to ASIC: A RISC-V processor experience

    Get PDF
    This work document a correct design flow using these tools in the Lagarto RISC- V Processor and the RTL design considerations that must be taken into account, to move from a design for FPGA to design for ASIC

    Desynchronization: Synthesis of asynchronous circuits from synchronous specifications

    Get PDF
    Asynchronous implementation techniques, which measure logic delays at run time and activate registers accordingly, are inherently more robust than their synchronous counterparts, which estimate worst-case delays at design time, and constrain the clock cycle accordingly. De-synchronization is a new paradigm to automate the design of asynchronous circuits from synchronous specifications, thus permitting widespread adoption of asynchronicity, without requiring special design skills or tools. In this paper, we first of all study different protocols for de-synchronization and formally prove their correctness, using techniques originally developed for distributed deployment of synchronous language specifications. We also provide a taxonomy of existing protocols for asynchronous latch controllers, covering in particular the four-phase handshake protocols devised in the literature for micro-pipelines. We then propose a new controller which exhibits provably maximal concurrency, and analyze the performance of desynchronized circuits with respect to the original synchronous optimized implementation. We finally prove the feasibility and effectiveness of our approach, by showing its application to a set of real designs, including a complete implementation of the DLX microprocessor architectur

    System-on-chip Computing and Interconnection Architectures for Telecommunications and Signal Processing

    Get PDF
    This dissertation proposes novel architectures and design techniques targeting SoC building blocks for telecommunications and signal processing applications. Hardware implementation of Low-Density Parity-Check decoders is approached at both the algorithmic and the architecture level. Low-Density Parity-Check codes are a promising coding scheme for future communication standards due to their outstanding error correction performance. This work proposes a methodology for analyzing effects of finite precision arithmetic on error correction performance and hardware complexity. The methodology is throughout employed for co-designing the decoder. First, a low-complexity check node based on the P-output decoding principle is designed and characterized on a CMOS standard-cells library. Results demonstrate implementation loss below 0.2 dB down to BER of 10^{-8} and a saving in complexity up to 59% with respect to other works in recent literature. High-throughput and low-latency issues are addressed with modified single-phase decoding schedules. A new "memory-aware" schedule is proposed requiring down to 20% of memory with respect to the traditional two-phase flooding decoding. Additionally, throughput is doubled and logic complexity reduced of 12%. These advantages are traded-off with error correction performance, thus making the solution attractive only for long codes, as those adopted in the DVB-S2 standard. The "layered decoding" principle is extended to those codes not specifically conceived for this technique. Proposed architectures exhibit complexity savings in the order of 40% for both area and power consumption figures, while implementation loss is smaller than 0.05 dB. Most modern communication standards employ Orthogonal Frequency Division Multiplexing as part of their physical layer. The core of OFDM is the Fast Fourier Transform and its inverse in charge of symbols (de)modulation. Requirements on throughput and energy efficiency call for FFT hardware implementation, while ubiquity of FFT suggests the design of parametric, re-configurable and re-usable IP hardware macrocells. In this context, this thesis describes an FFT/IFFT core compiler particularly suited for implementation of OFDM communication systems. The tool employs an accuracy-driven configuration engine which automatically profiles the internal arithmetic and generates a core with minimum operands bit-width and thus minimum circuit complexity. The engine performs a closed-loop optimization over three different internal arithmetic models (fixed-point, block floating-point and convergent block floating-point) using the numerical accuracy budget given by the user as a reference point. The flexibility and re-usability of the proposed macrocell are illustrated through several case studies which encompass all current state-of-the-art OFDM communications standards (WLAN, WMAN, xDSL, DVB-T/H, DAB and UWB). Implementations results are presented for two deep sub-micron standard-cells libraries (65 and 90 nm) and commercially available FPGA devices. Compared with other FFT core compilers, the proposed environment produces macrocells with lower circuit complexity and same system level performance (throughput, transform size and numerical accuracy). The final part of this dissertation focuses on the Network-on-Chip design paradigm whose goal is building scalable communication infrastructures connecting hundreds of core. A low-complexity link architecture for mesochronous on-chip communication is discussed. The link enables skew constraint looseness in the clock tree synthesis, frequency speed-up, power consumption reduction and faster back-end turnarounds. The proposed architecture reaches a maximum clock frequency of 1 GHz on 65 nm low-leakage CMOS standard-cells library. In a complex test case with a full-blown NoC infrastructure, the link overhead is only 3% of chip area and 0.5% of leakage power consumption. Finally, a new methodology, named metacoding, is proposed. Metacoding generates correct-by-construction technology independent RTL codebases for NoC building blocks. The RTL coding phase is abstracted and modeled with an Object Oriented framework, integrated within a commercial tool for IP packaging (Synopsys CoreTools suite). Compared with traditional coding styles based on pre-processor directives, metacoding produces 65% smaller codebases and reduces the configurations to verify up to three orders of magnitude

    Lessons Learned from Designing the Montium - a Coarse-Grained Reconfigurable Processing Tile

    Get PDF
    In this paper we describe in retrospective the main results of a four year project, called Chameleon. As part of this project we developed a coarse-grained reconfigurable core for DSP algorithms in wirelessdevices denoted MONTIUM. After presenting the main achievements within this project we present the lessons learned from this project

    The Chameleon project in retrospective

    Get PDF
    In this paper we describe in retrospective the main results of a four year project, called Chameleon. As part of this project we developed a coarse-grained reconfigurable core for DSP algorithms in wireless devices denoted MONTIUM. After presenting the main achievements within this project we present the lessons learned from this project

    A Micro Power Hardware Fabric for Embedded Computing

    Get PDF
    Field Programmable Gate Arrays (FPGAs) mitigate many of the problemsencountered with the development of ASICs by offering flexibility, faster time-to-market, and amortized NRE costs, among other benefits. While FPGAs are increasingly being used for complex computational applications such as signal and image processing, networking, and cryptology, they are far from ideal for these tasks due to relatively high power consumption and silicon usage overheads compared to direct ASIC implementation. A reconfigurable device that exhibits ASIC-like power characteristics and FPGA-like costs and tool support is desirable to fill this void. In this research, a parameterized, reconfigurable fabric model named as domain specific fabric (DSF) is developed that exhibits ASIC-like power characteristics for Digital Signal Processing (DSP) style applications. Using this model, the impact of varying different design parameters on power and performance has been studied. Different optimization techniques like local search and simulated annealing are used to determine the appropriate interconnect for a specific set of applications. A design space exploration tool has been developed to automate and generate a tailored architectural instance of the fabric.The fabric has been synthesized on 160 nm cell-based ASIC fabrication process from OKI and 130 nm from IBM. A detailed power-performance analysis has been completed using signal and image processing benchmarks from the MediaBench benchmark suite and elsewhere with comparisons to other hardware and software implementations. The optimized fabric implemented using the 130 nm process yields energy within 3X of a direct ASIC implementation, 330X better than a Virtex-II Pro FPGA and 2016X better than an Intel XScale processor

    Digital signal processing: the impact of convergence on education, society and design flow

    Get PDF
    Design and development of real-time, memory and processor hungry digital signal processing systems has for decades been accomplished on general-purpose microprocessors. Increasing needs for high-performance DSP systems made these microprocessors unattractive for such implementations. Various attempts to improve the performance of these systems resulted in the use of dedicated digital signal processing devices like DSP processors and the former heavyweight champion of electronics design – Application Specific Integrated Circuits. The advent of RAM-based Field Programmable Gate Arrays has changed the DSP design flow. Software algorithmic designers can now take their DSP algorithms right from inception to hardware implementation, thanks to the increasing availability of software/hardware design flow or hardware/software co-design. This has led to a demand in the industry for graduates with good skills in both Electrical Engineering and Computer Science. This paper evaluates the impact of technology on DSP-based designs, hardware design languages, and how graduate/undergraduate courses have changed to suit this transition

    Efficient hardware implementations of high throughput SHA-3 candidates keccak, luffa and blue midnight wish for single- and multi-message hashing

    Get PDF
    In November 2007 NIST announced that it would organize the SHA-3 competition to select a new cryptographic hash function family by 2012. In the selection process, hardware performances of the candidates will play an important role. Our analysis of previously proposed hardware implementations shows that three SHA-3 candidate algorithms can provide superior performance in hardware: Keccak, Luffa and Blue Midnight Wish (BMW). In this paper, we provide efficient and fast hardware implementations of these three algorithms. Considering both single- and multi-message hashing applications with an emphasis on both speed and efficiency, our work presents more comprehensive analysis of their hardware performances by providing different performance figures for different target devices. To our best knowledge, this is the first work that provides a comparative analysis of SHA-3 candidates in multi-message applications. We discover that BMW algorithm can provide much higher throughput than previously reported if used in multi-message hashing. We also show that better utilization of resources can increase speed via different configurations. We implement our designs using Verilog HDL, and map to both ASIC and FPGA devices (Spartan3, Virtex2, and Virtex 4) to give a better comparison with those in the literature. We report total area, maximum frequency, maximum throughput and throughput/area of the designs for all target devices. Given that the selection process for SHA3 is still open; our results will be instrumental to evaluate the hardware performance of the candidates
    • 

    corecore