P

4 CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

Digital Signal Processing
The Impact of Convergence on Hardware Design Flow

Kofi Appiah, Department of Computing and Informatics, United Kingdom
Andrew Hunter

Abstract: Design and development of real-time, memory and processor hungry digital signal processing systems have for
decades been accomplished on general-purpose microprocessors. Various attempts to improve the performance of these
systems resulted in the use of dedicated digital signal processing devices like DSP processors and the former heavyweight
champion of electronics design — Application Specific Integrated Circuits. The advent of RAM-based Field Programmable
Gate Arrays has changed the DSP design flow. Software algorithmic designers can now take their DSP algorithms right
from inception to hardware implementation, thanks to the increasing number of C/C++ hardware design flow. This has led
to a demand in the industry for graduates with good skills in both electrical engineering and computer science. This paper
evaluates the impact of technology on DSP-based designs, hardware design languages, and how graduate/undergraduate
courses have changed to suit this transition.

Keywords: Digital Signal Processing, Application Specific Integrated Circuits, Field Programmable Gate Array, Augmented

C/C++ design-flow

Introduction

AST CHANGING STATE-OF-THE-ART

technologies have had a great impact on

electronic system design issues. The 1970s

was the decade of semiconductors, which
enabled the digital generation. This was followed by
dynamic memory (DRAM) in the 1980s and then
the microprocessor era in the 1990s, which made the
word “Megahertz (MHz)” a common term in our
everyday language [3]. The new millennium has
made Digital Signal Processing the technology of
focus with an expected exponential growth. Digital
Signal Processing (otherwise referred to as DSP) is
the branch of electronics that involves the represent-
ation, processing and manipulation of real-world
signals in digital form [26]. DSP as a technology has
been available to engineers for over two decades and
was initially used in application areas where cost and
performance were the ultimate goals [21]. This spe-
cial technology can be found in almost all aspects of
our daily lives; including but not limited to security
systems (home or industrial), medical systems, tele-
communications, consumer electronics, defence and
aerospace.

DSP systems for the past decade have been imple-
mented using the ubiquitous general-purpose micro-
processors. The increasing demand by consumers of
such systems for high-speed, resulted in the use of

dedicated Digital Signal Processors also referred to
as DSPs; a special type of general-purpose processor
optimised for signal processing algorithms. The
processing power of general-purpose processors has
increased over the past years while their price de-
creases; thanks to Moore’s law. This trend of increas-
ing the clock-rate of the processor has two major
drawbacks:

1. Inability to meet the performance demand of
today’s electronic systems, as depicted in Figure
1.

2. High power consumption, unsuitable for bat-
tery-powered systems.

As the clock-rate of general purpose processor in-
creases the processing requirement of DSP systems
increase as well. This trend has overstretched the
performance of DSPs to a point that they can no
longer support the demand of today’s systems —
Hook’s law applied to DSP. Power dissipation is
important in almost all DSP-based consumer elec-
tronic devices; hence the high-speed, power-hungry
DSPs become unattractive. For hardware acceleration
and low power consumption, DSP designers had no
option, other than the then heavyweight champion
of electronic design [7], ASIC, sacrificing flexibility
for performance.

INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY, VOLUME 1, 2005/2006
http://www.Technology-Journal.com, ISSN 1832-3669

© Common Ground, Kofi Appiah, Andrew Hunter, All Rights Reserved, Permissions: cg-support@commongroundpublishing.com

https://core.ac.uk/display/53958?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY, VOLUME 1

DSP performance gap
c 1800
o
= 1600
et 1400
) —i— S P
% . 1200 performance
@ <L 1000 requirements
c QO
._g = 800 * DSP
g = 600 Pmﬁt;essor
rmance
=3 400 be
o
o 200)
aQ 0
) S - s
_fb@ _{If@ _ﬂ,@ _flné) AP _{L@

Year

Figure 1: DSP Performance Requirements vs. General-Purpose DSP Processor Performance. Top-Down DSP
Design Flow to Silicon Implementation [3].

Dedicated Digital Signal Processors and Application
Specific Integrated Circuits have high disparities in
term of flexibility and performance. Algorithmic
designers in the DSP world have long been software
engineers with little or no knowledge in hardware
design, but rather software programming and mostly
high-level mathematics needed for DSP. The only
way software engineers could have their design im-
plemented in hardware, for increased performance,
was to pass their algorithms and specifications over
to their hardware colleagues. These hardware engin-
eers are much interested in the “how” of a technolo-
gical phenomenon rather than the “why” and hence
do not have the deep understanding of high-level
mathematics needed in DSP [16]. This makes the
hardware implementation from algorithmic level,
through the register transfer level (RTL) to its final
or silicon implementation error prone.

A hybrid reconfigurable computing architecture
like Field Programmable Gate Array (FPGA) offers
the necessary computing resources needed for
today’s DSP. There is an increasing need for DSPs
to become more reconfigurable to meet future needs
[8]. “The responses also make us believe that pro-
grammable logic is likely to dominate the digital
design domain over the next decade” Kevin Morris
[1] in a survey conducted by Xilinx in September
2004. The latest Dataquest reports show that 40% of
ASIC designs in 2003 had less than 1 million gates,
running at 500 MHz or less [11]. Current FPGAs
from key players like Xilinx and Altera have as many
as 8 million gates, running at SO0OMHz or more. Un-
less power usage is very critical or production

volumes are extraordinary, it is becoming increas-
ingly hard to justify the use of ASIC over FPGA.

Technological advancements in Field Program-
mable Gate Arrays (FPGAs) over the past decade,
open new paths for DSP design engineers. FPGAs
maintain the advantages of the high specificity of
the ASIC while avoiding the high development costs
and inability to make design modifications after
production. They also add design flexibility and ad-
aptability with optimal device utilization conserving
both board space and system power, which is often
not the case with DSP chips. When the design de-
mands more than 100 MIPS, time-to-market is crit-
ical or design adaptability is crucial, the use of recon-
figurable architecture becomes inevitable.

New implementation platforms call for new design
processes for efficiency and accuracy. As the time-
to-market has become very critical in the design and
implementation of DSPs, the conventional method
of implementing DSP designs on ASICs is highly
unacceptable. Designing with multimillion-gate FP-
GA for time constraint systems, therefore require a
new breed of engineers with unique DSP skills. This
is in line with the optimistic view on the impact of
new technologies on society and employment pattern.
To the optimists, new technologies come with new
jobs that replace existing ones and new skill require-
ments - “reskilling” [36].

DSP Design Options

Digital Signal Processing can be implemented on
four major platforms: the use of conventional micro-
processor, dedicated DSP chip, reconfigurable Field

Programmable Gate Array and dedicated Application
Specific Integrated Circuit. Clock speed or instruc-
tion cycle time is not the only contributing factor for
the evaluation of the total performance of a particular
DSP platform [25]. Rather the bus architecture, in-
put/output (I0) hardware and the software algorithm
upon which the implementation is based must be
considered. Table 1 gives a comparison between
these platforms in terms of flexibility and perform-
ance.

DSP design typically starts with the system spe-
cification or algorithmic design, which is followed
by a decision on a platform and finally the actual
implementation. Each platform requires a specific
design route. Knowledge of the final implementation

KOFI APPIAH, ANDREW HUNTER

architecture is required for a successful and highly
optimised DSP design.

Designing DSP-based systems with a micropro-
cessor or dedicated DSP chip is cheaper and much
easier than the other methods, see figure 2. This starts
with the design of the actual algorithm followed by
simulation and verification of the algorithm with a
high-level programming language. It is then followed
by a translation of the algorithm into code acceptable
to the final DSP platform, usually C or assembler.
The functionality of the DSP code is verified with
the high-level program as reference. The design is
then ported to the final hardware for final debugging
and verification.

Table 1: Signal Processing Implementation Platform Comparison.

Flexibility Performance
Programmability | Reconfigurability |Area Utiliza- | Power Consump-| Computational
tion tion throughput

ASIC' |Low Low Low Low High

DSP Medium Medium High High Low

MicroP |Medium High High High Low

(P)

FPGA |Medium High Low Medium Medium

! Source : Jing Ma, Signal and Image Processing Via Reconfigurable Computing , (University of New Orleans: Workshop on Information

and Systems Technology - May 2003)

Algonthm
Design

Progrsamming

im CFfC#4+ oz

High-Level
s imeel aw i om

warificabviaon

Tacget® DEF

& I ogE am

Translabon info

HATL KE

Eeal ~%ime

Fart Dasign
unio hardveare

varificavian

Ten

Rapulny

[p—_—

Figure 2 : Microprocessor/DSP Chip Based DSP-Design Flow. Digital Signal

Processing and Applications f2 5.

This design flow is very short and prone to fewer errors, as the same person who designs the algorithm does
the hardware implementation. The performance of the resulting system in term of speed makes them unattractive.

Designing for Application Specific Integrated Cir-
cuits (ASIC) comes in two disjoint levels, see figure
3. A system or algorithmic designer handles the first

level while a hardware engineer handles the second
level. The algorithmic designer describes and simu-
lates the implementation in a high-level programming

INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY, VOLUME 1

language like C/C++ or MATLAB. This design is
then sent to a hardware designer who will then con-
vert the specification into Register Transfer logic
(RTL) model, by converting all floating-point oper-

ation into fixed-point. The model is then simulated
for similarity with the high-level design. This design
flow is not only error prone but time consuming as
well.

Algarithmic Designer

Algorithm Dasign

Frogramming in
CE++ o MATLAB

Simul sisn
Vardication

and

Syatem spectication Tor

haidwedirg enaineer

Hardwarg
Epecificalion

Hardware D esigner

Hardweare Speciic aton

:

RTL model & simulalion

Logio Syrthesis Fimal D e ign
"
F'li':'l"’r H'HIH & ate Lawel
Smulation

Fignre 3 : A Typical Application Specific Integrated Circuit (ASIC) Design

Flow.

Many hardware designers have taken to FPGA computing for their DSP-based designs for the following important

reasons [10], [Xilinx]:

Fast time-to-market
Non-recurring engineering cost
Efficient use of time and
Satisfying human wants.

b S

The low price/performance ratio of today’s high-end
FPGAs [9] makes them very attractive for the devel-
opment of DSP systems. Until recently, the FPGA
design solutions have been unavailable to software
or algorithmic designers with little or no skills in
computer hardware.

Many design tools have floored the EDA market,
taking advantage of the short FPGA design flow.
Tools based on high-level languages like C/C++ and
MATLAB very common to DSP designers, have
been available on the market recently. This has
helped DSP algorithmic designers to take full advant-
age of FPGA solutions without a steep learning curve

[10]. The C programming language has been the
language of choice for most DSP applications, for
its portability and compactness [4]. C as a typical
language for general-purpose computers lacks the
specialised features like parallelism, wires, clocking
and delays, required in hardware design [24]. To
extend the capabilities of C/C++ for hardware
designs, many tool developers have turned to aug-
mented C/C++ [26]; tools which extend the capabil-
ities of C for hardware purposes. Typical examples
are SystemC, SystemVerilog, Impulse-C, Handel-C
and AccelChip (based on MATLAB).

Impulse-C is designed to simplify the development
of highly parallel, processing-intensive applications,
including applications that require a mix of hardware
and software processing resources, or applications
in which specific processes must be interfaced to
other hardware and/or software components to form
a complete system.

The benefit of using Impulse-C is that it gives you
more opportunities to experiment with alternative
algorithmic approaches, a faster path to a working
prototype and greater opportunities to improve sys-
tem-level performance through iterative design
methods [30].

Another big player in the C/C++ augmentation for
ASIC and FPGA design capture, simulation and
synthesis is Celoxica [31]. Celoxica’s Handel-C has
special statements to support concepts like clocks,
pins, parallelism, interfaces, RAM and ROM. The
numerous libraries that come with the language
makes it much easier to interact with their RC-series
FPGA boards. Designing code with Handel-C is
fairly straightforward to any conventional C program-
mer. This makes it easier for any software engineer,
adopt and use Handel-C for hardware development.
Handel-C is seen as a programming language rather
than a hardware description language like VHDL
and Verilog.

AccelChip DSP synthesis tool, which is based on
MATLAB design flow, has made significant impact
in the FPGA-DSP design environment. The Accel-
Chip DSP synthesis tool directly reads in MATLAB
(a popular DSP algorithm design tool from The
MathsWorks Inc.) models and automatically outputs
synthesizable RTL models and simulation test-
benches in VHDL or Verilog. This provides DSP
designers with a significant reduction in design la-

Impulse
Platform
Libraries

(Generate
FPGA
hardware

KOFI APPIAH, ANDREW HUNTER

bour and time, elimination of misinterpretations and
costly design rework, automatic verification of the
hardware implementation, and the ability of systems
engineers and algorithmic developers to perform ar-
chitectural exploration in the early phases of their
development cycle [3].

The simple and short design flow exhibited by
Impulse-C and Handel-C is shown in figure 4. The
entire design is described in C; taking advantage of
the added hardware support feature as well as the
libraries supplied with the EDA tool. A typical ex-
ample is the PAL library that comes with Celoxica’s
DK suite for interacting with devices, external to the
Field Programmable Gate Array. The design is then
compiled into a Hardware Descriptive Language
(HDL) or an Electronic Design Interchange Format
(EDIF) suitable for a particular vendor’s place and
route tool.

Pessimists of new technologies describe the
emerging short-hardware-design flow for DSP applic-
ations as detrimental. They argue that there will be
an overall decline in job opportunities and thus,
leading to large-scale and possibly permanent unem-
ployment. This is the case, when a single engineer
with the aid of automated design tools is able to ac-
complish the task of two engineers; in this case the
algorithmic designer and the hardware designer. The
use of EDA tools also results in deskilling, as tech-
nology downgrade hardware design engineers.

Clanguage it

applications

imuse

CoDeveloper™

(Generate
hardware
interfaces

Generate
software
interfaces

INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY, VOLUME 1

Systen Speciicstion

CIC++ H arcied-C

W ATLABS mulink

| /

DK design suite

FPGA
place & router

FPGA,

Figure 4 : Impulss-C nd Handel-C Hardware Design Flows. WHW Impudsec Com [20 and

BWW. Celoxica. Com[31]

FPGA-Based Design Requirements

Designing FPGA-based systems, using Hardware
Descriptive Languages (HDLs) like VHDL and
Verilog is very similar to building hardware or arrays
of gates as compared to programming in software.
Thus the designer or developer is expected to focus
on using hardware components rather than software
constructs, to avoid using too many gates and highly
inefficient chip and logic layouts. It is becoming in-
creasingly hard to justify an inefficient hardware
implementation of an algorithm over the same al-
gorithm written in C and running on today’s high-
speed microprocessors. Thus simply implementing
an algorithm in hardware does not necessary make
them faster than their software implementation.
Finding a way to help FPGA designers skip the
long and time consuming HDL-based design without
missing a beat in productivity is a key to gaining
acceptance [6]. Even though many high-level lan-
guages have been proposed as system design lan-
guages (C/C++, Java, and MATLAB) [22], most of
these languages would produce very large logic
designs, if the designer has very little knowledge of
the hardware architecture. Most of these soft-

ware/hardware tool developers argue that in this era
where chips are very cheap, hardware efficiency is
no longer important. Unfortunately, this is not always
true, as most FPGA designs would have to meet
timing, power and architectural constraints. There-
fore, a uniquely skilled DSP/logic designer is gener-
ally required to construct an FPGA design.

Design and implementation of high-speed and
low-powered DSPs to meet the short time-to-market
requirements of today’s increasing consumer elec-
tronics require a broad knowledge in areas tradition-
ally not covered in a single discipline. These areas
include Computer Science, Electrical and Electronic
Engineering, Business, Social Science, Mathematics
and others. This has made it very difficult over the
past years to train students in a single discipline to
effectively design and implement high-speed Digital
Signal Processing systems.

Attempts by various academic institutions in
training students for the always-changing DSP in-
dustry resulted in a number of disciplines with no
clear bounds between them. This means students in-
volved in such disciplines had much more workload.
Computer Science is concerned with the theoretical
and algorithmic aspects of computing. Electrical
Engineering is concerned with the physical aspect

of electronics whiles Software Engineering is an
engineering discipline that is concerned with all as-
pects of software production from early stages of
system specification to maintaining the system after
it has gone into use [35]. Thus Digital Signal Pro-
cessing designs, call for a cross-pollinated engineer
with a multidisciplinary design skills. Such an engin-
eering discipline will embody the science and tech-
nology of design, construction, implementation, and
maintenance of software and hardware components
of modern computing systems and computer-con-
trolled equipments.

The Computer Society of the Institute for Electric-
al and Electronic Engineers (IEEE-CS) and the As-
sociation for Computing Machinery (ACM) by
means of drawing a clear boundary between the re-
lated disciplines (Computer Science and Electrical
Engineering) established a Joint Task Force on
Computing Curricula to undertake a major review
of the curriculum guidelines for undergraduate pro-
grams in computing [32]. The three-year degree
program that resulted from this Task Force’s report
(Computing Curricula for Computer Engineering -
CCCE) is computer engineering, which lies between
computer science and electrical engineering.

Computer engineering is solidly grounded in the
theories and principles of computing, mathematics,
science, and engineering and it applies these theories
and principles to solve technical problems through
the design of computing hardware, software, net-
work, and processes [33]. The CCCE report pub-
lished in 2004(CCCE-04), requires all computer en-
gineers to exhibit the following characteristics:

* Professionalism — as the public has entrusted in
engineers a level of responsibility based on the
systems they design, engineers have to exercise
the utmost conscientiousness when designing.

* Ability to design — to seek and exploit new and
improved products.

* Breadth of Knowledge — that enables the engineer
to span the entire fields of study.

Engineers in other fields like electrical and elec-
tronic engineering are also expected to possess the
same characteristics, with the exception of the
breadth of knowledge require by a computer engin-
eer.

To clarify the similarity in workload of a com-
puter-engineering student and an electronic engineer-
ing student, we evaluate on a common computer-re-
lated course like computer organization and architec-
ture. Typically electrical engineers spend time in
resolving complex communication and synchronisa-
tion issues when dealing with concepts of parallelism
using array of processors. A computer engineer
resolving a similar issue for the purpose of DSP will
use the widespread Field Programmable Gate Array

KOFI APPIAH, ANDREW HUNTER

(FPGA) without having to worry about complex
communication and synchronisation issues. FPGAs,
which were originally used primarily for glue logic,
now have distributed memory and multiplication re-
sources that are capable of handling computational
tasks directly [34]. An electrical engineer will typic-
ally program in Hardware Descriptive Language
(HDL) like VHDL (Very high-speed integrated cir-
cuit Hardware Descriptive Language), which is much
harder as compared to a computer engineer who will
program in a high-level system design language like
Handel-C. Details of common courses and their
content, taken by computer engineer, computer sci-
entist and electrical engineer showing their difference
have been given in [33].

Unlike professions such as law and medicine, en-
gineering generally does not require an advanced
degree for employment in the field. As a means to
allow engineers and scientists from fields other than
computer engineering to take full advantage of new
technologies and their design requirements, several
universities have started graduate degree course in
System-on-Chip (SoC) Design.

The Institute for System Level Integration (ISLI)
started the first postgraduate program in system-on-
chip aimed specifically at system level integration.
The emergence of new generation of design techno-
logies and methodologies, like development of
Electronic Design Automation (EDA) tools, systems
partitioning between software and hardware and
design verification have made this postgraduate
course very popular.

The SOCWARE design cluster including the
Royal Institute of Technology (KTH), Linkoping
University and the Lund University all in Sweden
have for the past four years been running masters
programs in System-on-Chip Design. The key aspects
of these courses have been the design methods, archi-
tectures and circuit design towards system level in-
tegration (SLI). The content of the program is been
driven by:

» Interdisciplinary approach — ranging from deep
submicron and digital noise issues to formal
techniques and system modelling.

* Practical competence — in the form of small pro-
jects undertaken in worlds-leading high-tech
companies and hands-on laboratory sessions for
industrial practice and academic expertise.

Similarly, the Graz University of Technology,
Austria in 2002 started a postgraduate programme
in SoC Design. Students of this program take courses
in concurrent systems, hardware/software co-design
and how to model hardware-software systems. Their
modules also emphasize on the use of IP cores as
well as software libraries, as today’s systems-on-
silicon contain more and more software. The post-

INTERNATIONAL JOURNAL OF TECHNOLOGY, KNOWLEDGE AND SOCIETY, VOLUME 1

graduate course in Embedded Systems Design at the
Advanced Learning and Research Institute, Lugano
in Switzerland and the newly designed master’s
programme in SoC Design at the faculty of engineer-
ing, University of Sheffield in England are no differ-
ent from the above programmes. We are beginning
an era where the system designer is the Integrated
Circuit (IC) designer, the digital designer, the ana-
logue designer and the system integrator [28]; this
therefore calls for graduates who are well prepared
for career challenges ahead of them and hence has
spark the design of new undergraduate/graduate
programmes. Stewart et al [27] also pointed out the
importance of integrating electrical engineering and
computer science courses to aid advanced DSP
designs in both industrial and educational institutions.

Conclusion

Digital Signal Processing is widely used in almost
all aspects of our daily life, yesterday’s wants have
become today’s needs and this trend in expected to
continue throughout this millennium [37]. The in-
creasing need to meet human satisfaction coupled
with the high competition amongst electronic design
companies has triggered the use of FPGAs in the
DSP industry. The use of sophisticated EDA tools
for FPGA designs give pessimists the impression
that new technologies results in deskilling as well as

References

unemployment. Optimists have the view that these
technologies create new jobs, which in effect replaces
old ones and hence the employment rate remains
unchanged. Concerning skill requirement, optimists
are of the view that new graduates as well as skilled
engineers are required to effectively utilise the cap-
abilities of these technologies and thus causing “re-
skilling”. A third group with mixed views on new
technologies has emerged as a result of convergence
between the optimists and the pessimist. Long-term
optimists or the short-term pessimists believe that
new technologies will cause considerable displace-
ment in certain sectors; they maintain it should be
for short term.

Programming FPGA with high-level languages
like C, Java and MATLAB have changed the DSP
design flow and also added to the skill requirements
of today’s DSP development. We have explained in
this paper the requirements in today’s DSP industry
and how several universities have restructured their
curriculum to teach courses in DSP designs and
hardware architectures, to prepare graduates for the
always-changing industries. A typical example is the
new curriculum, computer engineering which has
emerged as a convergence between computer science
and electronic engineering. The software/hardware
designs or the software-hardware co-designs have
significantly shortened the DSP design flow.

Associated Compiler Expert (ACE), “Programming DSPs in High-Lebel Languages”, TechOnLine, November 2002.
Bouldin, Don, Warren Snapp, Paul Haug, David Sunderland, Roger Brees, Carl Sechen, and Wayne Dai. “ASIC by Design”,

IEEFE Circuit & Devices magazine August 2004.

Bursky, Dave, and Ashok Bindra. “Digital ICs: DSP”, ED Online January 2002.
Caporossi, Dino. “FPGA Designers Are Heavyweights Too”, ED Online, August 2003.
Christopher Rowe and Jane Thompson, “People and Chips: the human implication of Information Technology”, McGraw-

Hill 1996.

“Computing Curricula Computer Engineering, Final Report”, Report of the IEEE-CS/ASM Joint Task Force on Computer

Engineering, 2004.

Dick, Chris. “FPGAs: The high-end alternative for DSP applications”, DSP Engineering Spring 2000.

ED Online. "FPGA High-Level Design Methodology Comes Into its Own", June 1999.

Edwards, John. “DSP Technology gains importance in all major market segments”, Boards and Solutions March 2003.
Frantz, Gene A. “Preparing EE’s for the 21 st Century with a 20th Century Education”, Signal Processing Education

Workshop — 2000.

Feist, Tom. “What’s the right language for DSP system-level Design?”” FPGA and Programmable Logic Journal, November

2003.

Ganousis, Dan. (AccelChip, Inc.), “Top-Down DSP design flow to Silicon Implementation ”, System Design Frontier — July

2004.

Habibi, Ali, and Sofiene Tahr. “A Survey on System-On-a-Chip Design Languages”, IEEE workshop on SOC for Real-Time

Applications 2003.

Kinast, Allen. “Designing Digital Signal Processing with FPGA”, White Paper — Mentor Graphics February 2003.
Kairus, Jaakko, Juha Forsten, Matti Tommiska and Jorma Skytta. “Bridging the GAP between future software and hardware
Engineers: A case study using the NIOS softcore processor”, ASEE/IEEE Frontiers in Education Conference

November 2003.

Kaplan, Ian. “C as a Hardware Design Language”, January 2002.

Konsbruck Robert Lee, “Impact of Information Technology on Society in the new Century”, 2002.
Leibson, Steven. “Tailored Processors hit closer to performance aims”, COTS Journal June 2003.
Maliniak, David. “An Easier Path to RTL for DSP Algorithms”, ED Online May 2004.

KOFI APPIAH, ANDREW HUNTER

Maliniak, David. “DSP development flow Evolves to next level”, ED Online October 2004.

Maki, Larry. “Programming FPGA Systems Doesn’t Have to be difficult”, ED Online June 2004.

Ma, Jing. “Signal and Image Processing Via Reconfigurable Computing”, 2003 http://www.impulsec.com/ http://www.celox-
ica.com/

Maxfield, Clive. “The Design Warrior’s guide to FPGAs: Devices, Tools and Flows”, Newnes Publication —2004.

Morris, Kevin. “Engineers Speak Out-The voice of the FPGA Design Community”, FPGA Programmable Logic Journal-
October 2004.

Moussavi, Massoud. “Digital Signal Processing in Electrical Engineering Technology programs”

Ohr, Stephan. “DSP design tools shift to SystemC”, EE Times march 2002.

Pentek Inc. “C-Language Programming for DSP”, 2003

Raje, Salil. “Catching the FPGA productivity wave”, ED Online October 2004.

Spivey, Gary, Shuvra Bhattacharyya, and Kazuo Nakajima. “Logic Foundry: Rapid Prototyping on FPGA-based DSP systems”,
January 2003.

Stranneby, Dag, and William Walker. “Digital Signal Processing and Applications”, Newnes Publication- 2004.

Stewarts, R. W, J. D. Quayle, D. Garcia-Alis and S. Weiss. “Digital Signal Processing Education: Technology and Tradition”,
Signal Processing Education Workshop - 2000.

Soldan, David L, Victor P. Nelson, Andrew McGettrick, John Impagliazzo, Pradip Srimani, Mitchell D. Theys and Joseph
L. A. Hughes. “Development of The Model Curriculum for Computer Engineering”, ASEE/IEEE Frontiers in
Education Conference — October 2004.

Sommerville, lan “Software Engineering”, Pearson Education Limited 2004.

Trevor Jones, “Microelectronics and Society”, The Open University Press 1980.

Wood, Sally L. and Chris Dick. “Concepts of Parallelism in an Introductory Computer Architecture Course with FPGA
Laboratories”, ASEE/IEEE Frontiers in Education Conference — October 2004.

Young, Duncan. “FPGAs’ impact on next generation sensor digital signal processing”, Military Technology Insider June
2004.

About the Authors

Mr Kofi Appiah
Department of Computing and InformaticsUnited Kingdom
Andrew Hunter

Head of Department, Dept. Computing and Informatics, University of Lincoln, Brayford Pool, Lincoln, LN6
7TS.

