3,475 research outputs found

    High dynamic global positioning system receiver

    Get PDF
    A Global Positioning System (GPS) receiver having a number of channels, receives an aggregate of pseudorange code time division modulated signals. The aggregate is converted to baseband and then to digital form for separate processing in the separate channels. A fast fourier transform processor computes the signal energy as a function of Doppler frequency for each correlation lag, and a range and frequency estimator computes estimates of pseudorange, and frequency. Raw estimates from all channels are used to estimate receiver position, velocity, clock offset and clock rate offset in a conventional navigation and control unit, and based on the unit that computes smoothed estimates for the next measurement interval

    GPS Carrier Tracking Loop Performance in the presence of Ionospheric Scintillations

    Get PDF
    The performance of several GPS carrier tracking loops is evaluated using wideband GPS data recorded during strong ionospheric scintillations. The aim of this study is to determine the loop structures and parameters that enable good phase tracking during the power fades and phase dynamics induced by scintillations. Constant-bandwidth and variable-bandwidth loops are studied using theoretical models, simulation, and tests with actual GPS signals. Constant-bandwidth loops with loop bandwidths near 15 Hz are shown to lose phase lock during scintillations. Use of the decision-directed discriminator reduces the carrier lock threshold by ∼1 dB relative to the arctangent and conventional Costas discriminators. A proposed variablebandwidth loop based on a Kalman filter reduces the carrier lock threshold by more than 7 dB compared to a 15-Hz constant-bandwidth loop. The Kalman filter-based strategy employs a soft-decision discriminator, explicitly models the effects of receiver clock noise, and optimally adapts the loop bandwidth to the carrier-to-noise ratio. In extensive simulation and in tests using actual wideband GPS data, the Kalman filter PLL demonstrates improved cycle slip immunity relative to constant bandwidth PLLs.Aerospace Engineering and Engineering Mechanic

    Design study of a low cost civil aviation GPS receiver system

    Get PDF
    A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified

    A Multi Antenna Receiver for Galileo SoL Applications

    Get PDF
    One of the main features of the Galileo Satellite Navigation System is integrity. To ensure a reliable and robust navigation for Safety of Life applications, like CAT III aircraft landings, new receiver technologies are indispensable. Therefore, the German Aerospace Centre originated the development of a complete safety-of-life Galileo receiver to demonstrate the capabilities of new digital beam-forming and signal-processing algorithms for the detection and mitigation of interference. To take full advantage of those algorithms a carefully designed analogue signal processing is needed. The development addresses several challenging questions in the field of antenna design, frontend development and digital signal processing. The paper will give an insight in the activity and will present latest results

    Characterizing Power Consumption of Dual-Frequency GNSS of a Smartphone

    Full text link
    Location service is one of the most widely used features on a smartphone. More and more apps are built based on location services. As such, demand for accurate positioning is ever higher. Mobile brand Xiaomi has introduced Mi 8, the world's first smartphone equipped with a dual-frequency GNSS chipset which is claimed to provide up to decimeter-level positioning accuracy. Such unprecedentedly high location accuracy brought excitement to industry and academia for navigation research and development of emerging apps. On the other hand, there is a significant knowledge gap on the energy efficiency of smartphones equipped with a dual-frequency GNSS chipset. In this paper, we bridge this knowledge gap by performing an empirical study on power consumption of a dual-frequency GNSS phone. To the best our knowledge, this is the first experimental study that characterizes the power consumption of a smartphone equipped with a dual-frequency GNSS chipset and compares the energy efficiency with a single-frequency GNSS phone. We demonstrate that a smartphone with a dual-frequency GNSS chipset consumes 37% more power on average outdoors, and 28% more power indoors, in comparison with a singe-frequency GNSS phone.Comment: Published in IEEE Global Communications Conference (GLOBECOM

    A Graphical Approach to GPS Software-Defined Receiver Implementation

    Get PDF
    Global positioning system (GPS) software-defined receivers (SDRs) offer many advantages over their hardwarebased counterparts, such as flexibility, modularity, and upgradability. A typical GPS receiver is readily expressible as a block diagram, making a graphical approach a natural choice for implementing GPS SDRs. This paper presents a real-time, graphical implementation of a GPS SDR, consisting of two modes: acquisition and tracking. The acquisition mode performs a twodimensional fast Fourier transform (FFT)-based search over code offsets and Doppler frequencies. The carrier-aided code tracking mode consists of the following main building blocks: correlators, code and carrier phase detectors, code and carrier phase filters, a code generator, and a numerically-controlled oscillator. The presented GPS SDR provides an abstraction level that enables future research endeavors.Aerospace Engineering and Engineering Mechanic
    corecore