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ABSTRACT

The performance of several GPS carrier tracking loops
is evaluated using wideband GPS data recorded during
strong ionospheric scintillations. The aim of this study is
to determine the loop structures and parameters that en-
able good phase tracking during the power fades and phase
dynamics induced by scintillations. Constant-bandwidth
and variable-bandwidth loops are studied using theoreti-
cal models, simulation, and tests with actual GPS signals.
Constant-bandwidth loops with loop bandwidths near 15
Hz are shown to lose phase lock during scintillations. Use
of the decision-directed discriminator reduces the carrier
lock threshold by ∼1 dB relative to the arctangent and

conventional Costas discriminators. A proposed variable-
bandwidth loop based on a Kalman filter reduces the car-
rier lock threshold by more than 7 dB compared to a 15-Hz
constant-bandwidth loop. The Kalman filter-based strat-
egy employs a soft-decision discriminator, explicitly mod-
els the effects of receiver clock noise, and optimally adapts
the loop bandwidth to the carrier-to-noise ratio. In exten-
sive simulation and in tests using actual wideband GPS
data, the Kalman filter PLL demonstrates improved cycle
slip immunity relative to constant bandwidth PLLs.

INTRODUCTION

During the last decade, researchers have exploited Global
Positioning System (GPS) signals to study the ionospheric
dynamics connected with radio-frequency scintillations.1–6

Proposals for future work call for large arrays of GPS re-
ceivers whose combined measurements will be used to de-
termine the spatial irregularity, velocity, and height of the
structures in the disturbed ionosphere. Such wide-area
studies will require hundreds of GPS receivers specially
designed to provide accurate carrier phase and amplitude
data, and to hold tracking lock during the deep power
fades and vigorous phase dynamics associated with scin-
tillations. This paper focuses on a critical component that
is commonly considered the weak link in these specially
designed receivers: the carrier tracking loop.

Two GPS receivers specially designed for monitoring scin-
tillations are reported in the open literature. The Cor-
nell Scintillation Monitor employs a frequency-locked loop
(FLL)1,2 that is known to lose lock during strong equa-
torial scintillations.7 The Ionospheric Scintillation Mon-
itor (ISM) developed by GPS Silicon Valley employs a
3rd-order 10- or 15-Hz decision-directed arctangent phase-
locked loop (PLL).3,8, 9 The ISM has been used success-
fully to monitor amplitude and phase scintillations at sev-
eral locations,4,5 but is known to lose lock during simu-
lated (Ref. 10) and actual (Ref. 8) scintillations. The
ISM’s loop filter is optimal for the case of small phase er-
ror and additive white phase noise with a time-invariant
noise intensity.9,11 A strongly scintillating GPS carrier
signal does not conform to these assumptions. For equa-
torial scintillations, the carrier-to-noise ratio (C/N0) of a
scintillating signal is strongly time-dependent. The result
of this, as demonstrated herein, is that PLLs that employ
wide-bandwidth loop filters (∼ 15 Hz) lose lock during
strong equatorial scintillations.
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The general theory of PLLs is a topic with much her-
itage.11–16 The subject is treated from a GPS perspec-
tive in Refs. [17] and [18]. Much work has studied the
characterization and optimization of the Costas-type loops
used in GPS receivers (see Ref. [12], ch. 11, and Refs.
[19–21]). Although none of these addresses tracking loops
specifically designed for operation in a scintillating envi-
ronment, their general results can be used to guide the de-
sign of a scintillation-robust PLL. In contrast to these pre-
vious studies, however, the present work does not assume
that the carrier tracking loop’s pre-detection bandwidth is
much larger than its loop bandwidth. Relaxation of this
assumption has important implications for loop stability
and phase accuracy.

A characterization of GPS receiver performance during
simulated scintillation is reported in Refs. [10] and [22],
wherein modified Doppler and signal power time histo-
ries mimic the effects of scintillation on a GPS receiver
connected to a GPS signal simulator. However, the test
setup does not isolate the carrier tracking loops nor per-
mit enough tests to clearly define the lock thresholds of
the various receivers tested. Moreover, the scintillations
in the raw wideband GPS digital data used to test the
tracking loops in the current work are more realistic than
the data-derived scintillations in Refs. [10] and [22].

This paper examines the threshold behavior of the
constant-bandwidth PLL (CBPLL) and compares its per-
formance with a variable-bandwidth PLL based on a
Kalman filter (KFPLL). The comparative study is divided
into three sections. In Section I, the relevant theory of
the Costas PLL is reviewed and the KFPLL is introduced.
This includes a discussion on loop structure and parame-
ter optimization. In Section II, Monte-Carlo simulation is
used to evaluate the performance of the PLLs. Results are
compared to the theoretical predictions from step 1. In
Section III, GPS signals recorded in Cachoeira Paulista,
Brazil during strong ionospheric scintillations are used to
evaluate the PLLs. The data set spans several hours and
includes scintillations with S4 index values of 0.9 that are
associated with power fades of more than 30 dB. The data
are processed using off-line implementations of the CBPLL
(over a range of bandwidths) and the KFPLL. Remarks
and conclusions follow in Sections IV and V.

This paper’s contributions are (1) a unified analysis, based
on theoretical models and on simulation, of Costas-type
PLLs, specifically addressing parameters relevant to good
loop operation during ionospheric scintillations, and (2)
a performance evaluation of several tracking loops using
actual GPS wideband digital data collected during strong
scintillations.
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Fig. 1. Discrete-time Costas Loop functional diagram.

I. MODEL ANALYSIS

This section examines the tracking loop theory relevant to
GPS receivers. Models are presented for a general class of
CBPLLs and for the KFPLL. These models will provide
intuition about the challenges involved in tracking scintil-
lating signals.

A. The Costas Loop

The data bits on the transmitted GPS signal must be re-
moved before the underlying carrier phase can be tracked.
The Costas loop is employed for this purpose in GPS
phase-tracking applications. A functional diagram for the
discrete-time Costas loop is shown in Fig. 1.

The signal exiting the receiver’s RF front-end is modeled
as

x(t) = A(t)m(t)C(t) sin[ωIF t + θ(t)] + ni(t) (1)

where A(t) is the carrier amplitude, m(t) is the 50-Hz bi-
nary data modulation, C(t) is the 1.023-MHz binary C/A
PRN bit stream, ωIF is the RF front-end’s intermediate
image of the nominal GPS L1 carrier frequency, θ(t) is the
carrier phase to be estimated, and ni(t) is a zero-mean
additive Gaussian white noise process representing chan-
nel noise and quantization effects. The transfer function
Hi(s) models the effective band-pass filtering of the RF
front-end. The process ni(t) is assumed to be spectrally
flat with density N0/2 within Wi, the two-sided bandwidth
of Hi(s).

For simplicity, this study will assume known symbol tim-
ing; that is, it is assumed that the delay-locked loop used
to track the symbol transitions in m(t) and C(t) is oper-
ating in its tracking mode. Under this assumption, the
receiver’s replica of the C/A PRN code can be used to
eliminate C(t) from x(t).

The signal x(t) is sampled every Ts ' 1/Wi seconds be-
fore correlation with the receiver’s in-phase and quadra-
ture carrier replicas. The sampled signal [with C(t) omit-
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ted] takes the form

x(tj) = A(tj)m(tj) sin[ωIF tj + θ(tj)] + ni(tj) (2)

where ni(tj) is an element of a zero-mean discrete-
time Gaussian white noise sequence with variance σ2

ni
=

N0/2Ts. The carrier-to-noise ratio C/N0 associated with
x(tj) is

C

N0
=

A2

4σ2
ni

Ts
(3)

The sampled signal x(tj) is reduced to baseband by cor-
relation and accumulation in the in-phase and quadrature
arms of the Costas loop. The accumulator output is sam-
pled at 1/Ta Hz where Tb ≥ Ta >> Ts, with Tb denot-
ing the data bit period equal to 20 ms. The loop’s pre-
detection bandwidth is defined as 1/Ta. Known symbol
timing permits alignment of the accumulate-and-dump op-
eration with data bit transitions. The accumulator outputs
are modeled as

Ik =
NkĀkml

2
cos(ϕ̄k) + nI,k (4a)

Qk =
NkĀkml

2
sin(ϕ̄k) + nQ,k (4b)

where Āk and ϕ̄k are the average carrier amplitude and
phase error over the accumulation interval, Nk is the num-
ber of samples in the kth accumulation interval, ml is the
current data bit, and nI,k and nQ,k are samples of zero-
mean Gaussian white noise sequences. The average phase
over the kth interval, ϕ̄k, is related to the true and esti-
mated phase sequences over the kth interval by

ϕ̄k =
1

Nk

jk+Nk−1∑

j=jk

θ(tj)− θ̂(tj) (5)

Assuming Ta >> 2π/ωIF , the following statistics apply to
nI,k and nQ,k:

E[nI,knI,i] = E[nQ,knQ,i] =
(

Nkσ2
ni

2

)
δk,i ≡ σ2

IQδk,i

(6a)

E[nI,knQ,i] = 0 for all k, i (6b)

where δk,i is the Kronecker delta function.

In this study, four phase detector characteristics (discrim-
inators) will be considered within the Costas-loop frame-
work:
1. Arctangent (AT): ek = arctan(Qk/Ik)
2. Conventional Costas (CC): ek = Qk · Ik

3. Decision-Directed (DD): ek = sign(Ik) ·Qk

4. The KFPLL’s implicit discriminator;
where ek is the phase detector error signal.

In what follows, the CC discriminator is used to develop

2ϕ̄k

-

K
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z
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D[z]sin(·)
ϕk

Fig. 2. Discrete-time baseband model of the Costas loop; K =
N2

k Ā2
k/8.

the baseband model of the Costas loop. A similar devel-
opment involving decision error probability is possible for
the DD discriminator (Ref. [12], ch. 2). Simulation will
show that the behavior of the DD, AT, and KFPLL dis-
criminators resembles that of the CC discriminator.

A.1 Baseband Model

The error signal for the CC discriminator is the product
of Ik and Qk:

ek = IkQk =
N2

k Ā2
k

8
sin(2ϕ̄k) + ne,k (7)

where use has been made of m2
l = 1 and where the

signal×noise and noise×noise components of the error sig-
nal have been collected into the noise term ne,k. The sta-
tistics of ne,k are found by applying Eqs. (6a) and (6b) to
the noise terms of the Ik ·Qk product:

E[ne,k] = 0 (8a)

E[ne,kne,i] =
[
N2

k Ā2
k

4
σ2

IQ + σ4
IQ

]
δk,i (8b)

The discrete-time transfer function D[z] filters ek to pro-
duce vk, the control signal input to the numerically con-
trolled oscillator (NCO). The NCO generates a sinusoid
sampled every Ts seconds whose phase is related to vk by

θ̂(tj) = θ̂k + (tj − tk)vk, tk < tj ≤ tk+1 (9a)

θ̂k+1 = θ̂k + Tavk, (9b)

Here, j denotes the index of samples taken at Ts whereas
k denotes the index of samples taken at the accumulation
interval, Ta. The average phase error over the accumula-
tion interval from tk−1 to tk is approximately related to
the true and estimated phases by

ϕ̄k =
θk−1 + θk

2
− θ̂k−1 + θ̂k

2
=

ϕk + ϕk−1

2
(10)

where ϕk = θk − θ̂k.

Equations (7), (9b), and (10) suggest the baseband func-
tional diagram presented in Fig. 2, with K = N2

k Ā2
k/8.

The baseband model retains the essential behavior of the
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Fig. 3. Discrete-time constant-bandwidth linear model of the Costas
loop.

Costas loop; namely, those effects associated with ne, Ta,
and sin(·). Note that the baseband model presented here
is different from those presented in Refs. [12, 14, 16–19]
in that the present model explicitly accounts for the fi-
nite pre-detection bandwidth via the [(z + 1)/z] block. As
will be shown subsequently, the effects of this block can be
significant when the pre-detection bandwidth 1/Ta is near
the loop bandwidth.

A.2 Linear Loop Operation

Consider two further simplifications of the baseband
Costas loop model: (1) assume that the loop is tightly
tracking so that sin(x) ' x, and (2) assume that a gain
factor of 4/N2

kA2
k is added to the loop so that the gain pa-

rameter K is normalized to K = 1/2. For the CC and DD
discriminators, the latter operation requires estimation of
the average carrier amplitude Āk; for the AT discrimina-
tor the normalization is automatic. The bandwidth of the
resulting linearized loop (Fig. 3) is a constant that is set
by the loop filter D[z] and the accumulation interval Ta.
The normalized noise n̂e,k = 4ne,k/N2

k Ā2
k has mean 0 and

variance

E[n̂e,kn̂e,i] =
(

4
N2

k Ā2
k

)2 [
N2

k Ā2
k

4
σ2

IQ + σ4
IQ

]
δk,i ≡ σ2

n̂e
δk,i

(11)
The loop transfer function H[z] and the loop noise trans-
fer function Hn[z] (from noise to phase estimate) can be
written by inspection from Fig. 3 as

H[z] =

(
z+1
2z

) (
Ta

z−1

)
D[z]

1 +
(

z+1
2z

) (
Ta

z−1

)
D[z]

(12)

Hn[z] =

(
Ta

z−1

)
D[z]

1 +
(

z+1
2z

) (
Ta

z−1

)
D[z]

(13)

It is useful to calculate the phase error variance σ2
ϕ = E[ϕ2

k]
as a function of input noise. (Here ϕk is assumed to be
a stationary random sequence; hence σ2

ϕ does not depend
on k.) Let H(s) and Hn(s) be the continuous-time equiv-
alents of H[z] and Hn[z], and let Sn̂e = Taσ2

n̂e
be the

power spectral density associated with the noise process

n̂e,k. Equations (3), (6a), and (11) can be used to relate
Sn̂e

to C/N0:

Sn̂e
=

N0

2C

(
1 +

N0

2CTa

)

︸ ︷︷ ︸
SL−1

=
N0

2CSL (14)

The quantity SL in Eqs. (14) and (15) is termed the squar-
ing loss and represents the penalty paid, relative to the
standard PLL, for multiplying the Ik and Qk accumula-
tions together to remove the data bits. The variance in
the output phase error is then given by

σ2
ϕ =

∫ ∞

−∞
|Hn(f)|2Sn̂e

(f)df =
N0Bn

CSL (15)

where
Bn ≡

∫ ∞

0

|Hn(f)|2df (16)

is the one-sided bandwidth (in Hz) of Hn(s). Note that
the phase error variance is determined by Bn and not by
the one-sided loop bandwidth BL, which is defined as

BL ≡
∫ ∞

0

|H(f)|2df (17)

The noise bandwidth Bn approaches BL for small BLTa

(that is, when the pre-detection bandwidth 1/Ta is much
larger than BL), but this condition may not hold for re-
ceivers used in scintillation monitoring. This point is elab-
orated in the following section. Like Bn, SL is dependent
on Ta. For 100-Hz accumulations (Ta = 10 ms), SL is near
unity above C/N0 = 45 dB-Hz, but at C/N0 = 20 dB-
Hz, SL increases σ2

ϕ by 50% relative to the standard PLL.
Hence, at low C/N0 the squaring loss severely degrades a
receiver’s phase accuracy, leading to loss of phase lock.

A.3 Remarks on Optimality

Considerable effort in prior research has focused on deter-
mining the Costas loop configuration that minimizes σ2

ϕ.
In Ref. [12], ch. 11 and Refs. [19, 20], it is shown that for
Ta = Tb, the maximum a posteriori (MAP) phase estima-
tor for bi-phase modulated signals with known symbol tim-
ing is a Costas-type loop with accumulate-and-dump arm
filters and a discriminator given by ek = tanh(γIk) · Qk,
where γ is a normalizing constant. Reference [19] shows
that the MAP estimator also maximizes SL, thereby min-
imizing σ2

ϕ. The DD and CC discriminators considered in
this paper are special cases of the tanh discriminator for
high and low C/N0. It can be shown that the approxima-
tion

tanh(x) '
{

x ρa ≤ 0 dB (CC)
sign(x) ρa > 0 dB (DD)

(18)

yields loop performance that is indistinguishable from that
of the MAP loop.19 The signal-to-noise ratio at the out-
put of the accumulators, ρa = 2CTa/N0, determines the
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choice between CC and DD. For practical GPS receiver
operation, ρa > 0 dB (for example, for C/N0 ≥ 15 dB-Hz
and Ta = 0.02 s, ρa ≥ 1.02 dB). Hence, the DD discrimi-
nator is practically optimal. Although this result assumes
Ta = Tb, simulation demonstrates that the DD discrimina-
tor outperforms the AT and CC discriminators for all Ta

of interest.

Besides optimizing the loop structure and discriminator,
one may further consider optimizing the loop filter D[z].
This has been done using Wiener Filtering Theory for
the special case of small phase error and additive white
noise with a time-invariant noise density.11 In this case,
the optimum zeroth-, first-, and second- order filters are
those constant-coefficient filters presented in Refs. [17,18].
These are considered the standard PLL loop filters for GPS
tracking loops. But a constant-coefficient loop filter may
not be suitable for tracking carrier phase through the deep
power fades associated with equatorial scintillations. Fur-
thermore, the structure of the loop filters in Refs. [17, 18]
does not exploit what is known about the phase noise intro-
duced by the receiver clock. In a later section, a Kalman-
filter-based loop filter with a time-varying bandwidth and
an explicit receiver clock error model is introduced.

Choice of PLL order may also be tailored to the problem of
tracking scintillating signals. Many GPS receivers, includ-
ing the ISM, employ a 3rd-order loop capable of tracking
a ramping Doppler shift. This tracking ability could be
traded for the added robustness of a lower-order loop. A
study along these lines will be left for future work. In this
paper, attention will be restricted to 3rd-order tracking
loops.

A final consideration in the design of an accurate and ro-
bust carrier tracking loop is the accumulation interval, Ta.
In loop design and analysis, it is commonly assumed that
Ta is short enough that the pre-detection bandwidth 1/Ta

is much wider than the loop bandwidth BL.17,18 Under
this assumption, the accumulation interval has a negligi-
ble effect on the tracking loop’s bandwidth and stability.
In contrast, if 1/Ta is near BL then a loop based on the
standard continuous-time loop filters from Refs. [17, 18]
tends to destabilize, increasing the noise bandwidth Bn.
The situation is illustrated in Fig. 4, which plots the loop
noise transfer function of a standard 3rd-order loop with an
equivalent continuous-time bandwidth of 15 Hz that is up-
dated at three different accumulation intervals, Ta = 1, 10,
and 20 ms, with corresponding pre-detection bandwidths
of 1000, 100, and 50 Hz. As is evident, the longer accumu-
lation intervals (10 and 20 ms) significantly increase the
loop noise bandwidth Bn. Such an increase in the loop
noise bandwidth can be mitigated by designing the loop
filter directly in the digital domain instead of simply con-
verting the standard continuous-time loop filters to their
discrete-time approximations, but it must be recognized
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Fig. 4. Loop noise transfer function magnitude |Hn(f)| for several
values of Ta.

that, in general, Bn increases with increasing Ta. This is a
standard result from discrete-time loop theory, but it bears
repeating here because one might otherwise be tempted to
conclude from Eq. (14) that Ta should be made as large
as possible in order to reduce SL−1. One must bear in
mind that the phase error variance σ2

ϕ = N0Bn/CSL [Eq.
(15)] is dependent both on squaring loss and on loop noise
bandwidth. Hence, Ta must be chosen to suitably trade
off the noise contribution of each.

A.4 Nonlinear Effects and Threshold Behavior

When C/N0 at the loop input drops below a certain level
(as a result, for example, of a power fade caused by scin-
tillation), there is a sudden deterioration in loop perfor-
mance. In this threshold region, squaring loss and the
nonlinear effects associated with sin(·) begin to dominate
loop behavior, eventually leading to a loss of phase lock.

Total loss of phase lock is preceded by cycle slipping. The
cycle slip phenomenon can be understood by expressing
the baseband model of Fig. 2 as a nonlinear stochastic
difference equation. The baseband model’s sin(2ϕ̄k) func-
tion is insensitive to phase error shifts of nπ, where n is
an integer. As a result, an infinite set of stable attrac-
tors exists for the nonlinear difference equation. The noise
process ne,k can cause the phase error to slip from one
attractor to another, leading to infinite σ2

ϕ in the steady-
state. This is the familiar cycle slip phenomenon associ-
ated with PLLs. The effect is illustrated in Fig. 5. Note
that for a constant waveform PLL (no data bit modulation
on the incoming signal), a cycle slip is a phase error shift
of n·2π; that is, an integer number of full carrier cycles. In
contrast, the Costas-type PLL slips by half carrier cycles,
making slippage more likely. In this paper, half cycle slips
are referred to as cycle slips.
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Total loss of phase lock occurs when the tracking loop slips
several cycles at once so that the difference between the
true carrier frequency and the loop filter’s internal estimate
of carrier frequency falls outside the loop’s frequency pull-
in range (for 2nd- and 3rd order loops). A GPS receiver
will declare loss of lock based on its code- and phase-lock
detectors. A phase detector declares loss of lock when the
phase error exceeds a predetermined threshold,17 a con-
dition that may preempt a total loss of lock within the
tracking loop. Repeated data bit parity failure is the final
indicator of loss of lock.

In order to characterize the complete statistics of ϕk, in-
cluding cycle slips, one must calculate the pdf of ϕk di-
rectly from the nonlinear difference equation. A simpler
strategy considers the pdf of φk, which is defined as ϕk

reduced modulo 2π, and accounts for cycle slipping sep-
arately by a diffusion coefficient.12 Analysis along these
lines has been carried out for first- and second-order dig-
ital PLLs,16,21 but becomes difficult at higher orders and
in cases where TaBL is not small. One may alternatively
characterize the variance of φk and the mean cycle slip rate
by simulation. This is the approach taken herein.

B. The Kalman Filter-based PLL

The possibility of using a variable-bandwidth loop filter
to track scintillating GPS signals was mentioned in the
discussion on loop optimization. In this section, a Kalman
filter-based phase-locked loop (KFPLL) is proposed as one
such variable-bandwidth strategy. This approach is at-
tractive because the bandwidth chosen by the Kalman fil-
ter represents the optimal bandwidth in the sense that
σ2

ϕ is minimized under the assumption of additive white
Gaussian noise. Earlier applications of the Kalman filter to
PLLs are reported in Refs. [11, 23] and references therein.
These estimators have a time-varying Kalman gain, and
consequently a time-varying bandwidth, but they are sub-
optimal in the sense that they solve only the steady-state
Ricatti equation. Moreover, they are not designed to track
a carrier signal that is fully modulated by data bits (sup-
pressed carrier). In contrast, the Kalman filter developed
in Ref. [24] and summarized here is a full implementation
of the extended Kalman filter that is specially designed for
tracking weak suppressed-carrier GPS signals.

Proper choice of loop bandwidth requires the KFPLL to
continuously estimate C/N0. Accordingly, the KFPLL’s
state vector includes an estimate of carrier amplitude along
with estimates of carrier phase, Doppler shift, and Doppler
rate. The KFPLL’s state xk at time tk is related to its
state at time tk+1 by the dynamics model

xk+1 = Φkxk + uk + wk (19)

where uk is a control input from the receiver’s NCO and
wk is the process noise made up of contributions from
the receiver clock errors, line of sight acceleration changes
(jerk), and varying signal amplitude. Equation (19) in-
cludes a discrete-time triple integrator driven by white
noise for the update of the phase elements and a random
walk model for the carrier amplitude update. Both the
noise models and the state transition matrix Φk depend
on Ta. However, simulation demonstrates that, in contrast
to the CBPLLs, the phase error variance of the KFPLL is
relatively insensitive to changes in Ta.

Equations (4a) and (4b), with ϕ̄k = ϕ̄k(xk, uk, wk), con-
stitute the KFPLL’s nonlinear measurement model. The
KFPLL deals with the unknown data bits in the measure-
ment equation by running two separate estimators in par-
allel. One estimator propagates the state and performs a
measurement update under the assumption that ml = 1;
the other estimator does the same under the assumption
that ml = −1. A Bayesian analysis based on carrier phase
and amplitude innovations is used to estimate the relative
probabilities of the +1 and −1 data bit signs. These rela-
tive probabilities, in turn, are used to synthesize an over-
all state estimate whose elements drive the PLL feedback
loop.

The KFPLL may be thought of as a Costas-type tracking
loop with a variable bandwidth and a soft-decision dis-
criminator. It adjusts its bandwidth based on its models
for process noise wk and measurement noise nI,k and nQ,k.
Because the measurement noise depends on C/N0, the KF-
PLL bandwidth varies as a function of C/N0.

One can determine the KFPLL’s effective noise band-
width Bn by Monte-Carlo simulation. Low-intensity noise
(C/N0 > 45 dB-Hz) is fed to the KFPLL while its inter-
nal estimate of C/N0 is artificially varied. The variance of
the resulting phase error is then estimated and related to
Bn by Eq. (15). Use of low-intensity noise ensures that
the linearity assumptions underlying Eq. (15) are valid.
Figure 6 shows an example Bn vs. C/N0 curve for mild
line-of-sight dynamics and receiver clock errors typical of
a temperature-compensated crystal oscillator (TCXO).

Characterization of the KFPLL’s phase detector charac-
teristic as a “soft-decision” discriminator is based on a
comparison with the DD discriminator. Whereas the DD
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discriminator measures carrier phase by making a hard de-
cision about the sign of the current data bit, the KFPLL
weights two alternative phase estimates, one for each bit
sign, by the a posteriori probabilities for each bit sign,
thereby reflecting uncertainty about the current data bit
in the phase estimate update.

Note that the KFPLL is a causal estimator; that is, it op-
erates only on past measurements. Hence, given sufficient
processing capability, the KFPLL can be used for real-time
ionospheric monitoring applications.

II. SIMULATION

A. Simulation Setup

A Matlab equivalent of the baseband Costas loop model
of Fig. 2 was created for each of the AT-, CC-, and DD-
based CBPLLs. The KFPLL was likewise implemented
in Matlab. The loop filter D[z] for the CBPLLs is the
discrete-time equivalent of the 2nd-order loop filter pre-
sented in Refs. [11] and [18]. This is considered the stan-
dard 2nd-order PLL loop filter. The resulting feedback
loop is 3rd-order. The CC and DD loops have been nor-
malized as discussed in Section I-A.2 so that their loop
gains are equivalent to that of the AT loop.

Independent Gaussian noise samples are added to the Ik

and Qk accumulations to simulate loop noise. For compar-
ative tests, each PLL is fed with the same noise sequence.
The noise variance is related to C/N0 by Eqs. (3) and (6a),
but can be expressed more conveniently for baseband sim-
ulation as

σ2
IQ =

[I2 + Q2]nom

2TaC/N0
(20)

where [I2 +Q2]nom is the squared magnitude of the nomi-
nal (noise-free) (I, Q) vector. To simulate the loss of power
that results from a change in phase error over the accu-
mulation interval, the nominal (I, Q) vector magnitude is
scaled by the factor 2 sin(ϕ̄k/2)/ϕ̄k before noise is added
to the accumulations.

The tracking loop implementations have been configured
so that Ta can be chosen from the set {1, 2, 4, 5, 10, 20} ms.
Because the KFPLL makes use of all the accumulations
within a bit interval to arrive at its bit sign probabilities,

the DD-discriminator loop has been likewise configured so
that the sign(·) function operates on the sum of the in-
phase accumulations within each bit interval.

Three cases of true phase dynamics are considered. Case
0 assumes no phase dynamics (θk = 0 for all k), which
implies a constant line of sight separation and a perfect
receiver clock. Case I assumes phase dynamics consistent
with a 7 × 10−4-g change in line of sight acceleration in
10 seconds (roughly 30 times the maximum jerk experi-
enced by a stationary receiver on the Earth’s surface) and
a receiver clock with a TCXO frequency reference. Case
II is like Case I except that the frequency reference is as-
sumed to be an ovenized crystal oscillator (OXO) instead
of a TCXO.

B. Simulation Results

B.1 The AT, CC, and DD CBPLLs

Parameter values for the CBPLLs were chosen to match
those of the ISM: continuous-time BL = 15 Hz; Ta = 10
ms.9 For Case 0 true phase dynamics, a log-scale compar-
ison of the phase error standard deviation over a range of
C/N0 is presented in Fig. 7. Five Monte-Carlo simula-
tions were used to generate σϕ estimates over the range
29 ≤ C/N0 ≤ 45 dB-Hz. No cycle slips occurred in this
region. Within the threshold region (25 to 28 dB-Hz), 50
Monte-Carlo trials were required because cases with cycle
slips or loss of lock were not included in the σϕ estimate.
Figure 7 includes results from the AT-, CC-, and DD- dis-
criminator loops as well as the phase deviation predicted
by linear theory for the CC-discriminator [Eq. (15)]. The
coincidence of the plots above C/N0 = 30 dB-Hz reflects
the accuracy of the linear approximation for moderate to
high C/N0.

A linear-scale view of the threshold region is shown in Fig.
8. As anticipated, the loops’ phase deviations diverge from
the linear theory prediction in the threshold region. Note
that below 29 dB-Hz the DD deviation is lower than that
predicted by linear theory. By estimating the data bit sign,
the DD discriminator avoids part of the noise×noise term
that causes squaring loss.

Cycle slip statistics at several values of C/N0 in the thresh-
old region are presented in Fig. 9. The plot shows the
probability of either a cycle slip or a total loss of lock dur-
ing a 20-second interval at each C/N0. Probabilities were
calculated using data from 300 Monte-Carlo runs at each
value of C/N0. The DD discriminator has a decided ad-
vantage at each particular C/N0, but in practical terms its
lock threshold is only about 1.5 dB lower than that of the
AT discriminator. Comparison of Figs. 8 and 9 confirms
the rule of thumb that a cycle slip is imminent when σφ

exceeds 15 deg.18
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A hybrid decision-directed arctangent discriminator mod-
eled after the one employed by the ISM4,9 was also tested
in comparison to the DD, CC, and AT discriminators.
This discriminator makes use of the four-quadrant arct-
angent function atan2(·, ·) that is usually reserved for the
continuous-wave PLL (no modulating data bits).18 As
with the DD discriminator, the 180-deg phase shifts caused
by data bit transitions are eliminated by estimating the
current data bit as the sign of Il,k, the sum of the in-phase
accumulations in the current data bit interval. Hence, for
the hybrid decision-directed arctangent discriminator

ek = atan2 [sign(Il,k) ·Qk, sign(Il,k) · Ik] (21)

The hybrid discriminator is equivalent to the AT discrimi-
nator when Ta = 20 ms; that is, when only one accumula-
tion occurs per data bit. Simulation shows that for Ta = 10
ms the phase error performance of the hybrid discriminator
is slightly better than the AT and CC discriminators, but
worse than the DD discriminator. Because these simpler
discriminators provide bounds on the hybrid discrimina-
tor’s performance, the latter will not be treated further in
this section.

Figure 9 has bearing on the problem of tracking scintillat-
ing GPS signals. During strong equatorial scintillations,
C/N0 can plummet by more that 20 dB and remain low
for seconds. For a typical quiescent C/N0 of 45 dB-Hz,
such a signal fade would force a 15-Hz tracking loop to op-
erate near 25 dB-Hz—at the lower boundary of its thresh-
old region. The low squaring loss of the DD discriminator
offers some relief, but a more dramatic reduction in lock
threshold requires a reduction in loop bandwidth. For ex-
ample, the lower boundary of a 3-Hz loop’s threshold re-
gion is around 20 dB-Hz. A 15-Hz loop cannot be expected
to operate reliably during strong equatorial scintillations.
This proposition is corroborated subsequently using actual
scintillating GPS signals.

Lowering the loop bandwidth enables a PLL to maintain
lock on weak signals, but there is a penalty to be paid: the
loop is no longer able to respond to vigorous phase scintil-
lations. When phase scintillations are not accompanied by
amplitude fades (as is typically the case for auroral scin-
tillations5,6), the PLL bandwidth should be made wide
enough to accurately track the phase scintillations. Ide-
ally, a phase-tracking loop should be agile when tracking
auroral scintillations and sluggish when tracking equatorial
scintillations. This is the motivation behind the variable-
bandwidth KFPLL.

B.2 Comparison of the CBPLLs and the KFPLL

To evaluate the performance of the KFPLL in comparison
to the CBPLLs over the range of C/N0 shown in Fig. 7,
the noise bandwidth of the CBPLLs was matched at each
C/N0 to that of the KFPLL. Neither the CBPLLs nor
the KFPLL experienced cycle slips for 25 ≤ C/N0 ≤ 45
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dB-Hz under these conditions. By this procedure it was
found that the KFPLL’s phase error variance is approxi-
mately equal to that of the DD CBPLL and slightly better
than that of the AT and CC CBPLLs. This implies that
the squaring loss associated with the KFPLL’s implicit
soft-decision discriminator is effectively equivalent to the
squaring loss of the DD discriminator.

The advantage of the KFPLL over the CBPLLs becomes
more apparent near the KFPLL’s lock threshold and when
the true phase dynamics are non-zero. Consider a KFPLL
whose internal process noise model assumes phase dynam-
ics like those of Case I and also assumes vigorous amplitude
dynamics that allow a 100% change in signal amplitude in
1/7th of a second. Such a KFPLL is tuned to operate in
the presence of ionospheric scintillations with a low-cost
frequency reference.

The KFPLL’s lock threshold for Case I true phase dynam-
ics is near C/N0 = 19 dB-Hz. At this value of C/N0 the
KFPLL’s effective noise bandwidth is 3 Hz. For Case II
true phase dynamics, the lock threshold is near C/N0 = 21
dB-Hz and the effective noise bandwidth is 3.5 Hz. For a
comparative evaluation, the noise bandwidths of the AT,
CC, and DD CBPLLs were tuned to match the noise band-
width of the KFPLL at C/N0 = 19 and at 21 dB-Hz, and
Ta for all PLLs was set to 0.02 seconds. Statistics from
3000 20-second intervals were used to calculate mean time
to loss of lock, where loss of lock is defined as either a cycle
slip or a total loss of lock. Results are given in Table I,
with error bounds indicating 1σ confidence intervals.

TABLE I

Mean time to loss of lock (seconds)

True phase: Case 0 True phase: Case I
PLL C/N0 = 19 dB-Hz C/N0 = 21 dB-Hz
AT 86± 2 18.7± 0.3
CC 686± 45 10.4± 0.2
DD 700± 36 28.7± 0.8
KF 1207± 105 433± 33

The test results indicate that the KFPLL’s mean time to
loss of lock for Case 0 true phase dynamics at C/N0 = 19
dB-Hz is roughly twice that of the best CBPLL with an
equivalent noise bandwidth. For Case I true phase dynam-
ics at C/N0 = 21 dB-Hz, the KFPLL’s advantage is much
more pronounced: it’s mean time to loss of lock is more
than ten times that of the best bandwidth-equivalent CB-
PLL. The KFPLL appears to deal more effectively than
the CBPLLs with the sin(·) nonlinearity, whose effects be-
come dominant in the threshold region. Similar matched-
bandwidth tests with C/N0 ranging from 19 to 24 showed
that the KFPLL’s practical advantage for Case 0 is slight—
it’s lock threshold is less than 1 dB below that of the best

bandwidth-equivalent CBPLL. On the other hand, for the
more realistic Case I dynamics the KFPLL’s lock thresh-
old is a substantial 3 dB below that of the best bandwidth-
equivalent CBPLL.

Of course, the primary advantage of the KFPLL is not that
it outperforms a matched-bandwidth CBPLL, but that it
optimally adapts its bandwidth to C/N0. To see this, one
can convert the probabilities in Fig. 9 to mean time to
loss of lock to show that the KFPLL’s lock threshold is
more than 7 dB below the 15-Hz CBPLL’s lock threshold
for Case 0 phase dynamics.

B.3 KFPLL enhancement and further applications

It is possible to extend the KFPLL’s Bayesian treatment
of the current data bit to include the past Nb data bits.
This requires a bank of 2Nb parallel Kalman filters, one for
each of the different possible combinations of recent data
bits, which entails a 2Nb−1-fold increase in computation.

In addition, one might consider operation of the KFPLL
under more favorable circumstances than using a low-
cost TCXO frequency reference in the presence of strong
ionospheric scintillations. For example, suppose that line
of sight jerk remains the same as in Case I but that an
OXO frequency reference is used instead of a TCXO. This
situation corresponds to Case II true phase dynamics. Fur-
ther assume that signal amplitude changes are benign: a
100% amplitude change now requiring 1000 seconds. Table
II compares the KFPLL’s mean time to cycle slip for this
case at several different values of Nb, where means and 1σ
error bounds were computed as for Table I. A matched-
bandwidth DD CBPLL, chosen to represent the best of
the CBPLLs, is included for reference. The effective noise
bandwidth is 0.65 Hz.

TABLE II

Mean time to loss of lock (seconds)

True phase: Case II
PLL Nb C/N0 = 15 dB-Hz
DD N/A 157± 5
KF 1 3546± 222
KF 2 4435± 556
KF 3 3768± 222
KF 4 4435± 556
KF 5 4991± 962

It is apparent from Table II that the KFPLL convinc-
ingly outperforms the matched-bandwidth DD CBPLL at
C/N0 = 15 dB-Hz . The worst KFPLL mean time to loss
of lock is more than 20 times longer than that of the DD
PLL. It is also apparent that an increase in Nb leads to
a slight but noticeable improvement in mean time to loss
of lock. The KFPLL’s ability to maintain lock with Case
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II true phase dynamics at C/N0 = 15 dB-Hz represents a
significant performance improvement over the roughly 25-
dB-Hz threshold of the 15-Hz CBPLLs (cf. Fig. 9) with
Case 0 true phase dynamics (which assume a perfect re-
ceiver clock and no line of sight dynamics).

III. TRACKING LOOP EVALUATION USING
ACTUAL GPS DATA

The performance of the AT CBPLL and the KFPLL was
also evaluated using real GPS signals. The AT discrimina-
tor was chosen because it does not require loop gain nor-
malization, making it a common choice for many tracking
loop implementations. The ISM’s hybrid decision-directed
arctangent discriminator was also tested.

The input data are wideband GPS L1 C/A code digital
data sampled at 5.7 MHz that were recorded in Cachoeira
Paulista, Brazil from December 4 to 6, 2003.7 Cauchoeira
Paulista lies along the southern boundary of the Appleton
equatorial anomaly. This region is notorious for strong
ionospheric scintillations.25,26 The recorded data set spans
several hours and includes scintillations with S4 index val-
ues greater than 0.9 that are associated with power fades
of more than 30 dB. The digital storage device used to
record the GPS data is equipped with a TCXO. Conse-
quently, the sampling rate of the recorded wideband data
is affected by the TCXO’s frequency instability. This is
discussed further in the next section.

An FLL-based real-time Cornell scintillation monitor was
co-located with the digital storage device during the cam-
paign in Brazil. The FLL-based monitor lost lock many
times during strong scintillations. These loss of lock times
were used to guide a selection of data intervals over which
the KFPLL and AT CBPLL were evaluated. Figures 10
and 11 present one such interval over which the S4 index
exceeds 0.9.

The C/N0 estimate shown in Fig. 10 is based on the KF-
PLL’s signal amplitude estimate over the interval and on
a noise floor estimate taken from a simulaneously avail-
able non-scintillating GPS signal. The KFPLL maintains
lock throughout the interval. In contrast, the AT CBPLL,
with continuous-time BL = 15 Hz and Ta = 10 ms, expe-
riences a total loss of lock at the point indicated on the
C/N0 estimate in Fig. 10. The deep C/N0 fade that oc-
curs at this point causes the loss. A CBPLL based on
the hybrid decision-directed arctangent discriminator also
experiences a loss of lock, but re-acquires after a lapse
of approximately 7 seconds. A 10-Hz version of the AT
CBPLL does not experience a total loss of lock over the
interval, but it does suffer cycle slips, as illustrated in Fig.
11. The cycle slips shown in the lower panel are relative to
the KFPLL’s phase estimate; nonetheless, an inspection of
the top panel suggests that these slips also occur relative
to the true carrier phase since the AT CBPLL’s detrended

0 5 10 15 20 25
0

10

20

30

40

50

Time (sec)

C
/N

0 (
dB

−
H

z)

   
   

   
   

 

15−Hz loop loses lock 

Fig. 10. KFPLL estimate of C/N0 over an interval with S4 > 0.9
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phase changes at the slippage points appear unphysical. A
5-Hz version of the AT CBPLL tracks the KFPLL’s phase
estimate closely, experiencing no relative cycle slips. Close
inspection of the KFPLL phase estimate in the top panel
of Fig. 11 reveals that even the KFPLL (and the 5-Hz AT
CBPLL) may also experience one 1-π cycle slip over the
interval. In no cases studied did the KFPLL or a ≤ 10-Hz
AT CBPLL experience total loss of lock.

IV. REMARKS

The behavior of the KFPLL and the AT CBPLL when
tracking the recorded scintillation data suggests that, for
equatorial scintillations, loss of lock is caused by the low
signal-to-noise ratios brought on by deep power fades. This
is in contradistinction to the notion that loss of lock occurs
because the limited PLL bandwidth does not permit track-
ing of high-frequency phase variations. Although one can
construct a model of destructive phase interference that
predicts rapid phase fluctuations during power fades, the
low C/N0 in these power fades makes the phase changes
exceedingly difficult to track, regardless of the PLL band-
width. The winning strategy for equatorial scintillations is
to slog through the power fades using a low loop bandwidth
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(≤ 5 Hz), ignoring the spurious phase changes brought
on by destructive interference. This strategy is consistent
with the findings of Ref. [10] and explains the good per-
formance of the KFPLL’s adaptive-bandwidth scheme and
of the low-bandwidth AT CBPLL.

For auroral scintillations, phase variations—not power
fades—are the dominant phenomenon.5,6 Under such con-
ditions, a high-bandwidth (> 5 Hz) tracking loop is fa-
vored. No wideband data for auroral scintillations were
available to the authors; however, one notes from Fig. 6
that the bandwidth of the KFPLL for C/N0 > 42 dB-Hz
is greater than 10 Hz and would be adequate for tracking
auroral phase scintillations. This highlights the general
applicability of the KFPLL.

Some cycle slipping during strong equatorial scintillations
is perhaps unavoidable, even for low-bandwidth tracking
loops. This suggests caution when interpreting phase sig-
mas, the common measure of phase scintillation.3–5 In-
stead of measuring phase scintillation, one might be mea-
suring cycle slips. A recorded phase history is required to
distinguish the two effects.

As was mentioned in the foregoing section, the digital stor-
age device used to record the GPS data employs a TCXO
frequency reference. It has been shown that a TXCO’s fre-
quency instability is on the order of scintillation-induced
carrier phase variations.3,17 Hence, a TCXO introduces
significant errors into a PLL’s phase estimate. This is true
for the CBPLLs and the KFPLL alike. (Even though the
KFPLL’s internal model of TCXO-induced phase errors
enables it to more reliably maintain carrier lock, the KF-
PLL cannot distinguish between actual phase variations
and TCXO-induced phase variations. Hence, its phase es-
timate is also corrupted by TCXO noise.) Despite the
TCXO’s poor frequency stability, its low cost makes it
practical for use in large arrays of scintillation monitors.
If a short latency in the provision of phase estimates is
allowed, then the problem of TCXO-corrupted phase esti-
mates can be overcome by estimating the TCXO-induced
phase errors on a non-scintillating signal and subtracting
this estimate from a scintillating signal’s phase estimate.3

This technique will be further developed in future work.

V. CONCLUSIONS

Costas-type phase-locked loops (PLLs) for use in GPS re-
ceivers have been analyzed and tested to evaluate their
performance during ionospheric scintillations. Constant-
bandwidth 15-Hz loops show adequate performance at
moderate to high carrier-to-noise ratios, but experience
cycle slips and total loss of phase lock at ratios below ∼26
dB-Hz. Use of the decision-directed phase discriminator
improves phase accuracy and reduces the lock threshold
by ∼ 1 dB relative to the conventional Costas and arct-
angent discriminators. A variable-bandwidth PLL based

on a Kalman filter has also been tested. The Kalman
filter-based PLL explicitly models the effects of receiver
clock errors, optimally adapts its bandwidth to the carrier-
to-noise ratio, and deals with data bit uncertainty by a
Bayesian analysis of past data bits. In extensive simulation
and in tests using actual scintillating GPS signals recorded
in Brazil, the Kalman filter PLL demonstrated improved
cycle-slip immunity relative to the constant-bandwidth
PLLs. Because of its optimally-adapted bandwidth, the
Kalman filter PLL offers accurate and robust phase and
amplitude tracking for equatorial scintillations and is also
expected to perform well in the presence of auroral scintil-
lations.
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