750 research outputs found

    Analysis and design of wideband voltage controlled oscillators using self-oscillating active inductors.

    Get PDF
    Voltage controlled oscillators (VCOs) are essential components of RF circuits used in transmitters and receivers as sources of carrier waves with variable frequencies. This, together with a rapid development of microelectronic circuits, led to an extensive research on integrated implementations of the oscillator circuits. One of the known approaches to oscillator design employs resonators with active inductors electronic circuits simulating the behavior of passive inductors using only transistors and capacitors. Such resonators occupy only a fraction of the silicon area necessary for a passive inductor, and thus allow to use chip area more eectively. The downsides of the active inductor approach include: power consumption and noise introduced by transistors. This thesis presents a new approach to active inductor oscillator design using selfoscillating active inductor circuits. The instability necessary to start oscillations is provided by the use of a passive RC network rather than a power consuming external circuit employed in the standard oscillator approach. As a result, total power consumption of the oscillator is improved. Although, some of the active inductors with RC circuits has been reported in the literature, there has been no attempt to utilise this technique in wideband voltage controlled oscillator design. For this reason, the dissertation presents a thorough investigation of self-oscillating active inductor circuits, providing a new set of design rules and related trade-os. This includes: a complete small signal model of the oscillator, sensitivity analysis, large signal behavior of the circuit and phase noise model. The presented theory is conrmed by extensive simulations of wideband CMOS VCO circuit for various temperatures and process variations. The obtained results prove that active inductor oscillator performance is obtained without the use of standard active compensation circuits. Finally, the concept of self-oscillating active inductor has been employed to simple and fast OOK (On-Off Keying) transmitter showing energy eciency comparable to the state of the art implementations reported in the literature

    Design of a RF communication receiver front-end for ultra-low power and voltage applications in a FDSOI 28nm technology

    Get PDF
    The advances in the semiconductor and wireless industry have enabled the expansion of new paradigms, which have given rise to concepts like Internet of Things (IoT). Apart from qualities like size, speed or cost, the ever-increasing demand for autonomy focuses all design efforts in the minimization of power consumption. Scaling technologies and the request to reduce power consumption have pushed designers towards lower supply voltages. Despite the fact that technology scalability allows for faster transistors, radio-frequency (RF) integrated circuit (IC) design accuses the reduction of the voltage supply through frequency response degradation, which significantly deteriorates the overall performance. Analog and RF circuits in highend applications require substantial gate voltage overdrive to maintain device speed, which further complicates the design due to the reduction of voltage headroom. As a consequence, the necessity to develop circuit topologies capable to deal with low-power and low-voltage stringent constraints well suited to applications requiring long battery life and low cost emerges. This work aims to implement a low-noise amplifier and mixer stages of a radio-frequency receiver front-end working under an ultra-low power (< 100 ?W) and ultra-low voltage (< 0.8V) scenario while targeting decent overall performance. To cope with the stringent power requirements, 28nm FD-SOI technology will be used to take maximum profit of aggressive forward body bias and enhance transistor performance

    Cmos Rotary Traveling Wave Oscillators (Rtwos)

    Get PDF
    Rotary Traveling Wave Oscillator (RTWO) represents a transmission line based technology for multi-gigahertz multiple phase clock generation. RTWO is known for providing low jitter and low phase noise signals but the issue of high power consumption is a major drawback in its application. Direction of wave propagation is random and is determined by the least resistance path in the absence of an external direction control circuit. The objective of this research is to address some of the problems of RTWO design, including high power consumption, uncertainty of propagation direction and optimization of design variables. Included is the modeling of RTWO for sensitivity, phase noise and power analysis. Research objectives were met through design, simulation and implementation. Different designs of RTWO in terms of ring size and number of amplifier stages were implemented and tested. Design tools employed include Agilent ADS, Cadence EDA, SONNET and Altium PCB Designer. Test chip was fabricated using IBM 0.18 μm RF CMOS technology. Performance measures of interest are tuning range, phase noise and power consumption. Agilent ADS and SONNET were used for electromagnetic modeling of transmission lines and electromagnetic field radiation. For each design, electromagnetic simulations were carried out followed by oscillation synthesis based on circuit simulation in Cadence Spectre. RTWO frequencies between 2 GHz and 12 GHz were measured based on the ring size of transmission lines. Simulated microstrip transmission line segments had a quality factor between 5.5 and 18. For the various designs, power consumption ranged from 20 mW to 120 mW. Measured phase noise ranged between -123 dBc/Hz and -87 dBc/Hz at 1 MHz offset. Development also included the design of a wide band buffer and a printed circuit board with high signal integrity for accurate measurement of oscillation frequency and other performance measures. Simulated performance, schematics and measurement results are presented

    Wireless wire - ultra-low-power and high-data-rate wireless communication systems

    Get PDF
    With the rapid development of communication technologies, wireless personal-area communication systems gain momentum and become increasingly important. When the market gets gradually saturated and the technology becomes much more mature, new demands on higher throughput push the wireless communication further into the high-frequency and high-data-rate direction. For example, in the IEEE 802.15.3c standard, a 60-GHz physical layer is specified, which occupies the unlicensed 57 to 64 GHz band and supports gigabit links for applications such as wireless downloading and data streaming. Along with the progress, however, both wireless protocols and physical systems and devices start to become very complex. Due to the limited cut-off frequency of the technology and high parasitic and noise levels at high frequency bands, the power consumption of these systems, especially of the RF front-ends, increases significantly. The reason behind this is that RF performance does not scale with technology at the same rate as digital baseband circuits. Based on the challenges encountered, the wireless-wire system is proposed for the millimeter wave high-data-rate communication. In this system, beamsteering directional communication front-ends are used, which confine the RF power within a narrow beam and increase the level of the equivalent isotropic radiation power by a factor equal to the number of antenna elements. Since extra gain is obtained from the antenna beamsteering, less front-end gain is required, which will reduce the power consumption accordingly. Besides, the narrow beam also reduces the interference level to other nodes. In order to minimize the system average power consumption, an ultra-low power asynchronous duty-cycled wake-up receiver is added to listen to the channel and control the communication modes. The main receiver is switched on by the wake-up receiver only when the communication is identified while in other cases it will always be in sleep mode with virtually no power consumed. Before transmitting the payload, the event-triggered transmitter will send a wake-up beacon to the wake-up receiver. As long as the wake-up beacon is longer than one cycle of the wake-up receiver, it can be captured and identified. Furthermore, by adopting a frequency-sweeping injection locking oscillator, the wake-up receiver is able to achieve good sensitivity, low latency and wide bandwidth simultaneously. In this way, high-data-rate communication can be achieved with ultra-low average power consumption. System power optimization is achieved by optimizing the antenna number, data rate, modulation scheme, transceiver architecture, and transceiver circuitries with regards to particular application scenarios. Cross-layer power optimization is performed as well. In order to verify the most critical elements of this new approach, a W-band injection-locked oscillator and the wake-up receiver have been designed and implemented in standard TSMC 65-nm CMOS technology. It can be seen from the measurement results that the wake-up receiver is able to achieve about -60 dBm sensitivity, 10 mW peak power consumption and 8.5 µs worst-case latency simultaneously. When applying a duty-cycling scheme, the average power of the wake-up receiver becomes lower than 10 µW if the event frequency is 1000 times/day, which matches battery-based or energy harvesting-based wireless applications. A 4-path phased-array main receiver is simulated working with 1 Gbps data rate and on-off-keying modulation. The average power consumption is 10 µW with 10 Gb communication data per day

    A reconfigurable 60GHz receiver : providing robustness to process variations

    Get PDF
    The problems associated with process-induced variability and other challenges of 60GHz circuit design and measurement are treated in this thesis. A system-level analysis is performed on a generic RF receiver. For doing that, first, bit error rate (BER) is considered as a figure of merit representing the overall performance of the Receiver. Then, each stage of the receiver is described by three parameters: voltage gain, noise, and nonlinearity which are prone to variation due to process spread. The variation of these parameters represents all lower-level sources of variability. Since bit error rate (BER), as a major performance measure of the receiver, is a direct function of the noise and distortion, the contribution of each block to the overall noise plus distortion (NPD) is analyzed, which opens the way for minimization of the sensitivity of the NPD to the performance variation of individual stages. It is shown that the first order sensitivities of NPD to the individual gains of the building blocks can all be made zero. Its second order sensitivity to the gains of the building blocks can be reduced. Its sensitivity to noise and nonlinearity of an individual building block can be reduced, but at the cost of that of other blocks; its sensitivity to noise and nonlinearity cannot be reduced over the whole system. Three design approaches are proposed, analyzed and compared. Statistical and corner simulations are performed to confirm the validity of the proposed guidelines showing significant improvement in the yield of the designs. Applying the analysis to a zero-IF three-stage 60 GHz receiver shows a significant improvement in the design yield, by nullifying the first order sensitivities of the overall performance to the individual gains of the blocks. Reduction of the second order sensitivity of the NPD to the gain of individual stages, by keeping the contribution factor of all the stages below one, results in further improvements in the design yield. The conventional optimum-power design methodology has been modified in a way that it nullifies the first order sensitivities of NPD to the individual gains of all the stages. It is shown that for simultaneous power optimization and reduced second-order sensitivity to the gains of the blocks less power hungry building blocks must be in the rear stages of the receiver and more power hungry ones in the front. After identifying the limitations of a pure system-level approach, i.e., inability to suppress the sensitivity of the overall performance to the noise and nonlinearity of all the blocks, the focus is shifted towards circuit-level methods by providing re-configurability to some RF circuits. A receiver is designed with good noise and nonlinearity performance and with accumulated noise and nonlinearity distortion contribution in its last stage (mixer). As a result, the overall performance of the receiver is more sensitive to the performance variations of the mixer. Simulations show that it is possible to correct the overall receiver performance degradations resulting from process variations by just tuning the performance of the mixer. Furthermore, a tunable mixer is presented for minimizing the IMD2 across a wide IF bandwidth. It is demonstrated both in theory and measurement that a presented three-dimensional tuning method is beneficial for wideband cancellation of second order intermodulation distortions (IMD2) in a zero-IF downconverter. A 60GHz zero-IF mixer is designed and measured on-wafer to show that the proposed tuning mechanism can simultaneously suppress IMD2 tones across the whole 1GHz IF band. To address the challenges of 60GHz circuit design, a design methodology is utilized which serves to properly model the parasitic effects and improve the predictability of the performance. The parasitic effects due to layout, which are more influential at high frequencies, are taken into account by performing automatic RC extraction and manual L extraction. The long signal lines are modeled with distributed RLC networks. The problem of substrate losses is addressed by using patterned ground shields in inductors and transmission lines. The cross-talk issue is treated by using distributed meshed ground lines, decoupled DC lines, and grounded substrate contacts around sensitive RF components. However, in practice, it is observed that accurate simulation of all the effects is sometimes very time consuming or even infeasible. For instance electromagnetic simulation of a transformer in the presence of all the dummy metals is beyond the computational capability of existing EM-simulators. Three 60GHz receiver components are analyzed, designed, and measured with good performance. A two-stage fully integrated 60 GHz differential low noise amplifier is implemented in a CMOS 65 nm bulk technology with superior noise figure compared to state-of-the-art mm-wave LNAs. A doublebalanced 60 GHz mixer with ac-coupled RF input is designed and measured with a series capacitor in the input RF path to suppress the low frequency second order intermodulation distortions generated in the previous stage. A quadrature 60 GHz VCO is presented which exhibits a comparable level of performance, in particular very good phase noise, to state-of-the-art single-phase VCOs, despite the additional challenges and limitations imposed by the quadrature topology. The on-wafer measurements on the 60GHz circuits designed in this work are performed using a waveguide-based measurement setup. The fixed waveguide structures, specially provided for the probe station, serve for the robustness of the setup as they circumvent the need for cables, which are by nature difficult to rigidify, in the vicinity of the probes. Taking advantage of magic- Ts, it is possible to measure differential mm-wave circuits with a two-port network analyzer rather than using a much more expensive four-port one. Noise, s-parameter, and phase noise measurements are performed using the mentioned setups

    Techniques for Frequency Synthesizer-Based Transmitters.

    Full text link
    Internet of Things (IoT) devices are poised to be the largest market for the semiconductor industry. At the heart of a wireless IoT module is the radio and integral to any radio is the transmitter. Transmitters with low power consumption and small area are crucial to the ubiquity of IoT devices. The fairly simple modulation schemes used in IoT systems makes frequency synthesizer-based (also known as PLL-based) transmitters an ideal candidate for these devices. Because of the reduced number of analog blocks and the simple architecture, PLL-based transmitters lend themselves nicely to the highly integrated, low voltage nanometer digital CMOS processes of today. This thesis outlines techniques that not only reduce the power consumption and area, but also significantly improve the performance of PLL-based transmitters.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113385/1/mammad_1.pd

    Design of CMOS transimpedance amplifiers for remote antenna units in fiber-wireless systems.

    Get PDF
    La memoria de la tesis doctoral: Diseño de Amplificadores de Transimpedancia para Unidades de Antena Remota en Sistemas Fibra-Inalámbrico, se presenta en la modalidad de compendio de Publicaciones. A continuación, se expone un resumen del contexto, motivation y objetivos de la tesis.A lo largo de las últimas décadas, los avances tecnológicos y el esfuerzo por desarrollar nuevos sistemas de comunicaciones han crecido al ritmo que la demanda de información aumentaba a nivel mundial. Desde la aparición de Internet, el tráfico global de datos ha incrementado de forma exponencial y se han creado infinidad de aplicaciones y contenidos desde entonces.Con la llegada de la fibra óptica se produjo un avance muy significativo en el campo de las comunicaciones, ya que la fibra de vidrio y sus características fueron la clave para crear redes de largo alcance y alta velocidad. Por otro lado, los avances en las tecnologías de fabricación de circuitos integrados y de dispositivos fotónicos de alta velocidad han encabezado el desarrollo de los sistemas de comunicaciones ópticos, logrando incrementar la tasa de transmisión de datos hasta prácticamente alcanzar el ancho de banda de la fibra óptica.Para conseguir una mayor eficiencia en las comunicaciones y aumentar la tasa de transferencia, se necesitan métodos de modulación complejos que aprovechen mejor el ancho de banda disponible. No obstante, esta mayor complejidad de la modulación de los datos requiere sistemas con mejores prestaciones en cuanto a rango dinámico y linealidad. Estos esquemas de modulación se emplean desde hace tiempo en los sistemas de comunicaciones inalámbricos, donde el ancho de banda del canal, el aire, es extremadamente limitado y codiciado.Actualmente, los sistemas inalámbricos se enfrentan a una saturación del espectro que supone un límite a la tasa de transmisión de datos. Pese a los esfuerzos por extender el rango frecuencial a bandas superiores para aumentar el ancho de banda disponible, se espera un enorme aumento tanto en el número de dispositivos, como en la cantidad de datos demandados por usuario.Ante esta situación se han planteado distintas soluciones para superar estas limitaciones y mejorar las prestaciones de los sistemas actuales. Entre estas alternativas están los sistemas mixtos fibra-inalámbrico utilizando sistemas de antenas distribuidas (DAS). Estos sistemas prometen ser una solución económica y muy efectiva para mejorar la accesibilidad de los dispositivos inalámbricos, aumentando la cobertura y la tasa de transferencia de las redes a la vez que disminuyen las interferencias. El despliegue de los DAS tendrá un gran efecto en escenarios tales como edificios densamente poblados, hospitales, aeropuertos o edificios de oficinas, así como en áreas residenciales, donde un gran número de dispositivos requieren una cada vez mayor interconectividad.Dependiendo del modo de transmisión de los datos a través de la fibra, los sistemas mixtos fibra-inalámbrico se pueden categorizar de tres formas distintas: Banda base sobre fibra (BBoF), radiofrecuencia sobre fibra (RFoF) y frecuencia intermedia sobre fibra (IFoF). Actualmente, el esquema BBoF es el más utilizado para transmisiones de larga y media distancia. No obstante, utilizar este esquema en un DAS requiere unidades de antena remota (RAU) complejas y costosas, por lo que no está claro que esta configuración pueda ser viable en aplicaciones de bajo coste que requieran de un gran número de RAUs. Los sistemas RFoF e IFoF presentan esquemas más simples, sin necesidad de integrar un modulador/demodulador, puesto que la señal se procesa en una estación base y no en las propias RAUs.El desarrollo de esta tesis se enmarca en el estudio de los distintos esquemas de DAS. A lo largo de esta tesis se presentan varias propuestas de amplificadores de transimpedancia (TIA) adecuadas para su implementación en cada uno de los tres tipos de RAU existentes. La versatilidad y el amplio campo de aplicación de este circuito integrado, tanto en comunicaciones como en otros ámbitos, han motivado el estudio de la implementación de este bloque específico en las diferentes arquitecturas de RAU y en otros sistemas, tales como un receptor de televisión por cable (CATV) o una interfaz de un microsensor inercial capacitivo.La memoria de tesis se ha dividido en tres capítulos. El Capítulo 1 se ha empleado para introducir el concepto de los DAS, proporcionando el contexto y la motivación del diseño de las RAU, partiendo desde los principios básicos de operación de los dispositivos fotónicos y electrónicos y presentando las distintas arquitecturas de RAU. El Capítulo 2 supone el núcleo principal de la tesis. En este capítulo se presenta el estudio y diseño de los diferentes TIAs, que han sido optimizados respectivamente para cada una de las configuraciones de RAU, así como para otras aplicaciones. En un tercer capítulo se recogen los resultados más relevantes y se exponen las conclusiones de este trabajo.Tras llevar a cabo la descripción y comparación de las topologías existentes de TIA, se ha llegado a las siguientes conclusiones, las cuales nos llevan a elegir la topología shunt-feedback como la más adecuada para el diseño: - El compromiso entre ancho de banda, transimpedancia, consumo de potencia y ruido es menos restrictivo en los TIAs de lazo cerrado. - Los TIAs de lazo cerrado tienen un mayor número de grados de libertad para acometer su diseño. - Esta topología presenta una mejor linealidad gracias al lazo de realimentación. Si la respuesta frecuencial del núcleo del amplificador se ajusta de manera adecuada, el TIA shunt-feedback puede presentar una respuesta frecuencial plana y estable.En esta tesis, se ha propuesto una nueva técnica de reducción de ruido, aplicable en receptores ópticos con fotodiodos con un área activa grande (~1mm2). Esta estrategia, que se ha llamado la técnica del fotodiodo troceado, consiste en la fabricación del fotodiodo, no como una estructura única, sino como un array de N sub-fotodiodos, que ocuparían la misma área activa que el original. Las principales conclusiones tras hacer un estudio teórico y realizar un estudio de su aplicación en una de las topologías de TIA propuestas son: - El ruido equivalente a la entrada es menor cuanto mayor es el número de sub-fotodiodos, dado que la contribución al ruido que depende con el cuadrado de la frecuencia (f^2) decrece con una dependencia proporcional a N. - Con una aplicación simple de la técnica, replicando el amplificador de tensión del TIA N veces y utilizando N resistencias de realimentación, cada una con un valor N veces el original, la sensibilidad del receptor aumenta aproximadamente en un factor √N y la estabilidad del sistema no se ve afectada. - Al dividir el fotodiodo en N sub-fotodiodos, la capacidad parásita de cada uno de ellos es N veces menor a la original. Con esta nueva capacidad parásita, el diseño del TIA se puede optimizar, consiguiendo una sensibilidad mucho mejor que con un único fotodiodo para el mismo valor de consumo de potencia.Las principales conclusiones respecto a los diseños de los distintos TIAs para comunicaciones son las siguientes: TIA para BBoF: - El TIA propuesto, alcanza, con un consumo de tan solo 2.9 mW, un ancho de banda de 1 GHz y una sensibilidad de -11 dBm, superando las características de trabajos anteriores en condiciones similares (capacidad del fotodiodo, tecnología y tasa de transmisión). - La técnica del fotodiodo troceado se ha aplicado a este circuito, consiguiendo una mejora de hasta 7.9 dBm en la sensibilidad para un diseño optimizado de 16 sub-fotodiodos, demostrando, en una simulación a nivel de transistor, que la técnica propuesta funciona correctamente. TIA para RFoF: - El diseño propuesto logra una figura de mérito superior a la de trabajos previos, gracias a la combinación de su bajo consumo de potencia y su mayor transimpedancia. - Además, mientras que en la mayoría de trabajos previos no se integra un control de ganancia en el TIA, esta propuesta presenta una transimpedancia controlable desde 45 hasta 65 dBΩ. A través de un sistema de control simultáneo de la transimpedancia y de la ganancia en lazo abierto del amplificador de voltaje, se consigue garantizar una respuesta frecuencial plana y estable en todos los estados de transimpedancia, que le otorga al diseño una superior versatilidad y flexibilidad. TIA para CATV: - Se ha adaptado una versión del TIA para RFoF para demostrar la capacidad de adaptación de esta estructura en una implementación en un receptor CATV con un rango de control de transimpedancia de 18 dB. - Con la implementación del control de ganancia en el TIA, no es necesario el uso de un atenuador variable en el receptor, simplificando así el número de etapas del mismo. - Gracias al control de transimpedancia, el TIA logra rangos de entrada similares a los publicados en trabajos anteriores basados en una tecnología mucho menos accesible como GaAs PHEMT. TIA para IFoF Se ha fabricado un chip en una tecnología CMOS de 65 nm que opera a 1.2 V de tensión de alimentación y se ha realizado su caracterización eléctrica y óptica. - El TIA presenta una programabilidad de su transimpedancia con un control lineal en dB entre 60 y 76 dBΩ mediante un código termómetro de 4 bits. - El ancho de banda se mantiene casi constante en todo el rango de transimpedancia, entre 500 y 600 MHz.Como conclusión general tras comparar el funcionamiento de los TIAs para las distintas configuraciones de RAU, vale la pena mencionar que el TIA para IFoF consigue una figura de mérito muy superior a la de otros trabajos previos diseñados para RFoF. Esto se debe principalmente a la mayor transimpedancia y al muy bajo consumo de potencia del TIA para IFoF propuesto. Además, se consigue una mejor linealidad, ya que, para una transmisión de 54 Mb/s con el estándar 802.11a, se consigue un EVM menor de 2 % en un rango de entrada de 10 dB, comparado con los entre 3 y 5 dB reportados en trabajos previos. El esquema IFoF presenta un gran potencial y ventajas frente al RFoF, lo que lo coloca como una buena alternativa para disminuir los costes y mejorar el rendimiento de los sistemas de antenas distribuidas.Por último, cabe destacar que el diseño de TIA propuesto y fabricado para IFoF contribuye en gran medida al desarrollo y validación de una RAU completa. Se ha demostrado la capacidad de la estructura propuesta para alcanzar un bajo ruido, alta linealidad, simplicidad en la programabilidad de la transimpedancia y adaptabilidad de la topología para diferentes requisitos, lo cual es de un gran interés en el diseño de receptores ópticos.Por otra parte, una versión del TIA para su uso en una interfaz de sensores MEMS capacitivos se ha propuesto y estudiado. Consiste en un convertidor capacidad-voltaje basado en una versión del TIA para RFoF, con el objetivo de conseguir un menor ruido y proveer de una adaptabilidad para diferentes sensores capacitivos. Los resultados más significativos y las conclusiones de este diseño se resumen a continuación: - El TIA presenta un control de transimpedancia con un rango de 34 dB manteniendo el ancho de banda constante en 1.2 MHz. También presenta un control independiente del ancho de banda, desde 75 kHz hasta 1.2 MHz, manteniendo la transimpedancia fija en un valor máximo. - Con un consumo de potencia de tan solo 54 μW, el TIA alcanza una sensibilidad máxima de 1 mV/fF, que corresponde a una sensibilidad de 4.2 mV/g y presenta un ruido de entrada de tan solo 100 µg/√("Hz" ) a 50 kHz en la configuración de máxima transimpedancia.La principal conclusión que destaca de este diseño es su versatilidad y flexibilidad. El diseño propuesto permite adaptar fácilmente la respuesta de la interfaz a una amplia gama de dispositivos sensores, ya que se puede ajustar el ancho de banda para ajustarse a distintas frecuencias de operación, así como la transimpedancia puede ser modificada para conseguir distintas sensibilidades. Este doble control independiente de ancho de banda y transimpedancia le proporcionan una adaptabilidad completa al TIA.<br /

    A study of Radiation-Tolerant Voltage-Controlled Oscillators designs in 65 nm bulk and 28 nm FDSOI CMOS technologies

    Get PDF
    Phase-locked loop (PLL) systems are widely employed in integrated circuits for space analog devices and communications systems that operate in radiation environments, where significant perturbations, especially in terms of phase noise, can be generated due to radiation particles. Among all the blocks that form a PLL system, previous research suggests the voltage-controlled oscillator (VCO) is one of the most critical components in terms of radiation tolerance and electric performance. Ring oscillators (ROs) and LC-tank VCOs have been commonly employed in high-performance PLLs. Nevertheless, both structures have drawbacks including a limited tuning range, high sensitivity to phase noise, limited radiation tolerance, and large design areas. In order to fulfill these high-performance requirements, a current-model logic (CML) based RO-VCO is presented as a possible solution capable of reducing the limitations of the commonly used structures and exploiting their advantages. The proposed hybrid VCO model includes passive components in its design which are the key parameters that define oscillation frequency of this structure. This tunable oscillator has been designed and tested in 65nm Bulk and 28 nm Fully depleted silicon-on-insulator (FDSOI) CMOS technologies The 65nm testchip was designed to compare the behavior of the proposed CML VCO with a current-starved RO and a radiation hardened by design (RHBD) LC-tank VCO in terms of tuning range, phase noise, Single event effect (SEE) sensitivity and design area. Simulations were carried out by applying a double exponential current pulse into different sensitive nodes of the three VCOs. In addition, SEE tests were conducted using pulsed laser experiments. Simulation and test results show that a CML VCO can effectively overcome the limitations presented by a RO-VCO and LC-tank VCO, achieving a wide range of tuning, and low sensitivity to noise and SEEs without the need for a large cross-section. Further studies of the proposed CML VCO were done on 28nm FDSOI in order to reduce the leakage current and increase the switching speed. the same current-starved VCO and CML VCO were implemented on this testchip, and simulations were performed by injecting a double exponential current pulse energy into the previously defined sensitive nodes. The results show SEE sensitivity improvement without narrowing the tuning range or affecting the phase noise response

    A 5 GHz BiCMOS I/Q VCO with 360° variable phase outputs using the vector sum method

    Get PDF
    This research looks into the design of an integrated in-phase/quadrature (I/Q) VCO operating at 5 GHz. The goal is to design a phase shifter that is implemented at the LO used for RF up conversion. The target application for the phase shifter is towards phased array antennas operating at 5 GHz. Instead of designing multiple VCOs that each deliver a variety of phases, two identical LC-VCOs are coupled together to oscillate at the same frequency and deliver four outputs that are 90 ° out of phase. By varying the amplitudes of the in-phase and quadrature signals independently using VGAs before adding them together, a resultant out-of-phase signal is obtained. A number of independently variable out-of-phase signals can be obtained from these 90 ° out-of-phase signals and this technique is better known as the vector sum method of phase shifting. Control signals to the inputs of the VGAs required to obtain 22.5 ° phase shifts were designed from simulations and are generated using 16-bit DACs. The design is implemented and manufactured using a 0.35 µm SiGe BiCMOS process and the complete prototype IC occupies an area of 2.65 × 2.65 mm2. The I/Q VCO with 360 ° variable phase outputs occupies 1.10 × 0.85 mm2 of chip area and the 16-bit DAC along with its decoding circuitry occupies 0.41 × 0.13 mm2 of chip area. The manufactured quadrature VCO was found to oscillate between 4.12 ~ 4.74 GHz and consumes 23.1 mW from a 3.3 V supply without its buffer circuitry. A maximum phase noise of -78.5 dBc / Hz at a 100 kHz offset and -108.17 dBc / Hz at a 1 MHz offset was measured and the minimum VCO figure of merit is 157.8 dBc / Hz. The output voltages of the 16 bit DAC are within 3.5 % of the design specifications. When the phase shifter is controlled by the 16 DAC signals, the maximum measured phase error of the phase shifter is lower than 10 %.Dissertation (MEng)--University of Pretoria, 2009.Electrical, Electronic and Computer Engineeringunrestricte

    Parametric analog signal amplification applied to nanoscale cmos wireless digital transceivers

    Get PDF
    Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e TecnologiaSignal amplification is required in almost every analog electronic system. However noise is also present, thus imposing limits to the overall circuit performance, e.g., on the sensitivity of the radio transceiver. This drawback has triggered a major research on the field, which has been producing several solutions to achieve amplification with minimum added noise. During the Fifties, an interesting out of mainstream path was followed which was based on variable reactance instead of resistance based amplifiers. The principle of these parametric circuits permits to achieve low noise amplifiers since the controlled variations of pure reactance elements is intrinsically noiseless. The amplification is based on a mixing effect which enables energy transfer from an AC pump source to other related signal frequencies. While the first implementations of these type of amplifiers were already available at that time, the discrete-time version only became visible more recently. This discrete-time version is a promising technique since it is well adapted to the mainstream nanoscale CMOS technology. The technique itself is based on the principle of changing the surface potential of the MOS device while maintaining the transistor gate in a floating state. In order words, the voltage amplification is achieved by changing the capacitance value while maintaining the total charge unchanged during an amplification phase. Since a parametric amplifier is not intrinsically dependent on the transconductance of the MOS transistor, it does not directly suffer from the intrinsic transconductance MOS gain issues verified in nanoscale MOS technologies. As a consequence, open-loop and opamp free structures can further emerge with this additional contribution. This thesis is dedicated to the analysis of parametric amplification with special emphasis on the MOS discrete-time implementation. The use of the latter is supported on the presentation of several circuits where the MOS Parametric Amplifier cell is well suited: small gain amplifier, comparator, discrete-time mixer and filter, and ADC. Relatively to the latter, a high speed time-interleaved pipeline ADC prototype is implemented in a,standard 130 nm CMOS digital technology from United Microelectronics Corporation (UMC). The ADC is fully based on parametric MOS amplification which means that one could achieve a compact and MOS-only implementation. Furthermore, any high speed opamp has not been used in the signal path, being all the amplification steps implemented with open-loop parametric MOS amplifiers. To the author’s knowledge, this is first reported pipeline ADC that extensively used the parametric amplification concept.Fundação para a Ciência e Tecnologia through the projects SPEED, LEADER and IMPAC
    corecore