1,849 research outputs found

    Narrative review of cardiac computed tomography perfusion: insights into static rest perfusion

    Get PDF
    Cardiac or left ventricular perfusion performed with cardiac computed tomography (CCT) is a developing method that may have the potential to complete in a very straight forward way the assessment of ischemic heart disease by means of CT. Myocardial CT perfusion (CTP) can be achieved with a single static scan during the first-pass of the iodinate contrast agent, with the monoenergetic or dual-energy acquisition, or as a dynamic, time-resolved scan during stress by using coronary vasodilator agents. Several methods can be performed, and we focused on static perfusion. CTP may serve as a useful adjunct to coronary CT angiography (CTA) to improve specificity of detecting myocardial ischemia. Technological advances will reduce the radiation dose of myocardial CTP, such as low tube voltage imaging or new reconstruction algorithms, making it a more viable clinical option. The advantages of static first-pass non-stress perfusion are several; the main one is that it can be done to each and every patient who undergoes CCT for the assessment of coronary artery tree. Future advances in CTP will likely improve the diagnostic accuracy of CTP + CTA, and will better estimate the severity of ischemia Therefore, it is simple and comprehensive. However, it has several limitations. In this review we will discuss the technique with its advantages and limitations

    Advances in Cardiac Computed Tomography

    Get PDF
    Coronary cardiac computed tomography (CCTA) has seen rapid improvements in technology including hardware and postprocessing techniques that have contributed to its rapid growth and enabled it to remain in the forefront on diagnostic imaging. Important technological advances include wider detectors for greater coverage with less gantry rotation times, dual-source computed tomography (CT) with improved temporal resolution, dual-energy CT where simultaneous imaging at different energies to increase the contrast difference between different tissues enhances diagnostic accuracy, and emergence of spectral CT to enhance atherosclerotic imaging through nanoparticle technology. Software advances include iterative reconstruction methodologies to reduce noise and radiation doses, plaque imaging and quantification tools to assess plaque morphology and stenosis severity. Processing advances using computational fluid dynamics now enables the determination of fractional flow reserve (FFR). Another important advancement in CCTA physiologic imaging is CCTA perfusion imaging to detect ischemia and compares favorably with myocardial perfusion imaging and coronary angiographic stenosis. Finally, large registry studies and single-center studies have now been published assessing the incremental value of coronary calcium score, CT plaque severity of disease and have demonstrated that the CCTA carries strong prognostic value over and above traditional risk assessment in predicting adverse outcomes

    New Imaging Protocols for New Single Photon Emission CT Technologies

    Get PDF
    Nuclear cardiology practitioners have several new technologies available with which to perform myocardial perfusion single photon emission CT (MPS). These include dedicated small-footprint cardiac scanners, new stationary or semi-stationary three-dimensional detectors, and advanced software algorithms for optimal image reconstruction. These new technologies have been employed to reduce imaging time and radiation exposure. They require less technologist and camera time and offer improved patient comfort. They have potential for the overall cost reduction of MPS and at the same time for improved accuracy by increased resolution, or accurate attenuation correction. Furthermore, these new technologies offer potential for new protocols such as simultaneous dual isotope, new combinations of isotopes, stress only MPS, or dynamic first-pass imaging. In addition, new imaging technologies in coronary CT angiography (CCTA) allow novel hybrid stress only MPS/CCTA protocols with reduced radiation burden. Additional developments further improving efficiency and diagnostic accuracy of MPS are on the horizon

    Low radiation dose in computed tomography: the role of iodine

    Get PDF
    Recent approaches to reducing radiation exposure during CT examinations typically utilize automated dose modulation strategies on the basis of lower tube voltage combined with iterative reconstruction and other dose-saving techniques. Less clearly appreciated is the potentially substantial role that iodinated contrast media (CM) can play in low-radiation-dose CT examinations. Herein we discuss the role of iodinated CM in low-radiation-dose examinations and describe approaches for the optimization of CM administration protocols to further reduce radiation dose and/or CM dose while maintaining image quality for accurate diagnosis. Similar to the higher iodine attenuation obtained at low-tube-voltage settings, high-iodine-signal protocols may permit radiation dose reduction by permitting a lowering of mAs while maintaining the signal-to-noise ratio. This is particularly feasible in first pass examinations where high iodine signal can be achieved by injecting iodine more rapidly. The combination of low kV and IR can also be used to reduce the iodine dose. Here, in optimum contrast injection protocols, the volume of CM administered rather than the iodine concentration should be reduced, since with high-iodine-concentration CM further reductions of iodine dose are achievable for modern first pass examinations. Moreover, higher concentrations of CM more readily allow reductions of both flow rate and volume, thereby improving the tolerability of contrast administration

    Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom : comparison between IQ-SPECT and LEHR

    Get PDF
    BACKGROUND: Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF(True)). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. RESULTS: The CT verification showed that the phantom EF settings were repeatable and accurate with the EF(True) being within 1% point from the manufacture’s nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom’s volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. CONCLUSIONS: The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.Peer reviewe

    My future and I:cardiovascular risk stratification of asymptomatic individuals

    Get PDF

    Evaluation of digital PET/CT system for myocardial perfusion imaging

    Get PDF
    Myocardial perfusion imaging (MPI) with Positron Emission Tomography (PET) allows quantitative measurements of absolute myocardial blood flow (MBF). PET system count-rate capabilities, reconstruction techniques, and other technical factors may influence MBF quantification reproducibility and accuracy. In this thesis the aims were to evaluate the effect of different reconstruction parameters on [15O]H2O MPI using a flow phantom and clinical retrospective data from patients who had undergone [15O]H2O MPI for suspected obstructive coronary artery disease. Also, the digital and analog PET system count-rate capabilities were assessed in high count-rate studies. Finally, the aim was to establish the contribution of technical factors on quantitative reproducibility and accuracy on two digital PET systems. The different reconstruction parameters resulted in a 7 % relative error with the image-derived flow values compared to the reference flow values in phantom studies. Similar differences were measured in MBF values in patients. Also, different reconstruction algorithms resulted in similar classification of myocardial ischemia in 99 % of the subjects. The digital PET resulted in 12.8 Mcps total prompts and 0.47 Mcps trues, and the analog PET in 6.85 Mcps total prompts and 1.15 Mcps trues with the highest injected activities. The modelled flow values were reproducible on digital PET systems but future studies need to be conducted to develop a standardized and repeatable bolus injection protocol. The results of these studies showed that the digital PET system can be reliably used in MPI in terms of system count-rate capabilities and novel reconstruction techniques with small contribution from technical factors. The findings offer a basis for assessing reproducibility in MPI in multi-center studies
    • …
    corecore