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Abstract

Coronary cardiac computed tomography (CCTA) has seen rapid improvements in 
 technology including hardware and postprocessing techniques that have contributed 
to its rapid growth and enabled it to remain in the forefront on diagnostic imaging. 
Important technological advances include wider detectors for greater coverage with less 
gantry rotation times, dual-source computed tomography (CT) with improved temporal 
resolution, dual-energy CT where simultaneous imaging at different energies to increase 
the contrast difference between different tissues enhances diagnostic accuracy, and emer-
gence of spectral CT to enhance atherosclerotic imaging through nanoparticle technol-
ogy. Software advances include iterative reconstruction methodologies to reduce noise 
and radiation doses, plaque imaging and quantification tools to assess plaque morphol-
ogy and stenosis severity. Processing advances using computational fluid dynamics now 
enables the determination of fractional flow reserve (FFR). Another important advance-
ment in CCTA physiologic imaging is CCTA perfusion imaging to detect ischemia and 
compares favorably with myocardial perfusion imaging and coronary angiographic 
 stenosis. Finally, large registry studies and single-center studies have now been pub-
lished assessing the incremental value of coronary calcium score, CT plaque severity of 
disease and have demonstrated that the CCTA carries strong prognostic value over and 
above traditional risk assessment in predicting adverse outcomes.

Keywords: coronary computed tomography angiography, CT advances, CT perfusion 

imaging, CT fractional flow reserve, prognosis

1. Introduction

Cardiac computed tomography (CT), specifically coronary CT angiography (CCTA), has made 
major progress and currently is one of the leading noninvasive modalities for diagnosis of 

coronary artery disease (CAD) during the past years. The progress can be attributed to many 
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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reasons but chief among them are progressive establishment of CCTA as a front-line imaging 

modality for diagnosis and prognosis of coronary artery disease. This was shown by random-

ized trials and multicenter registry-based evidence totaling tens of thousands of patients. The 

second important factor contributing to the rapid rise of CT is advancements in CT technology 

in hardware and new software solutions, such as refined image reconstruction methods. Due 
to such advances, CCTA has enjoyed progressive enhancements in image quality and achieved 

better temporal and spatial resolution. Most importantly, CCTA is now possible with much 
lower radiation doses than a traditional SPECT scan. Furthermore, with some advanced scan-

ners and scanning methodologies current doses approach the 1- milliseivert range which is a 

mind-boggling advance since the inception of the technique not too long ago in early 2000.

2. Historical perspective

The first CCTA was performed using electron-beam CT in the 1990s [1]. X-ray beams were pro-

duced by an electron beam, and were directed toward stationary targets around the patient. This 

image was produced at a temporal resolution of 100 ms but was insufficient to image coronaries 
given a slice thickness of 1.5–3 mm. However, this laid the groundwork for manufacturers to 

move the field forward with the multislice CST (MSCT), and the first four-slice CT in 2000 for 
coronary visualization had a gantry rotation time of 500 ms and a temporal resolution of 250 ms 

[2]. Subsequently, this evolved into 16-, 40-, and then 64-slice CT. There was slight improvement 

in slice thickness but now with an ability to image the heart in 4–8 heart beats. This led to reduc-

tion in less breath hold times, lesser artifacts, higher speed of contrast use, and thus lesser con-

trast volume. Multiple studies have now established the diagnostic accuracy of 64-slice CCTA 
using retrospective helical acquisition techniques [3, 4].

3. Equipment advances in CCTA

Although 64-slice CCTA remains the workhorse of coronary imaging, manufacturers have 

worked continuously to move technology forward. While some have just increased the  number 

of slices in detectors which then translates to greater scan coverage and thus acquisition of the 

image needed in shorter number of heart beats, others have used dual-scanner technology 

(dual-source CT at 90° angle) to enable increasing temporal resolution by a factor of 2.

1. Wide detector CT: By increasing the number of CT scanner detector width (number of 

slices), a great amount of coverage of the heart in a single gantry rotation can be achieved. 

Each detector row has a width (collimation) of 0.5–0.6 mm. So, a 64-slice detector can cover 

64 × 0.5 = about 38 mm of scan coverage. Thus, a wider detector array such as 320-detector  

CT would provide a single gantry rotation coverage of 320 × 0.5 = 160 mm. Since the  

approximate coverage to scan the entire heart is about 120 mm, a 65-slice scanner would need 

about 4 gantry rotations, and a 320-slice scanner could cover the entire heart in one rotation.  

The disadvantage of wide detector CT is that due to extra rotation at the beginning and end 

of scan to avoid cone beam reconstruction artifact (over ranging), there is extra radiation 

burden to patient and also additionally areas not in the field of interest also being exposed 
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to radiation. Table 1 provides a comparison of CT scan characteristics and acquisition pa-

rameters over a wide range of detector widths, and Figure 1 provides a comparative illus-

tration of detector coverage depending on the number of detector rows in MSCT.

2. Dual-source CT: The principle behind dual-source CT scanners is two sources of radia-

tion with the corresponding detectors set at 90° to each other. Thus, image acquisitions are 
much faster cutting short time by 50% which is a key factor in improving image quality 
by decreasing artifacts related to breath hold [5]. Furthermore, temporal resolution is also 
improved (83 ms). Whereas a 64-slice single-detector MSCT requires half of gantry rota-

tion (180°) for image reconstruction, the same information can be obtained with a DSCT 
for one-fourth of the gantry rotation (90°). The heart rate factor also is of less importance 
with DSCT although HR has to be steady and significant tachycardia is not optimal [6]. An-

other important factor is that radiation doses are also decreased even though two radiation 

sources are used because the radiation source is on for less than half of the time narrowing 

electrocardiogram (ECG)-pulsing window for image acquisition given the DSCT technol-

ogy. Investigators have now pushed the limits of this scanner further with recent high-

pitched prospective gated acquisition which enables whole heart acquisition in250 ms  

in a single heart beat [7]. This if combined with excellent heart rate controls (<60 bpm) can 

achieve extremely low radiation doses reaching 1 milliseivert [8]. Figure 2 shows the CT 

image quality with 320-slice and with high-pitch prospective CT-scanning technology.

3. Dual-energy CT: Apart from using dual source, using different energies could have the 
advantage of assessing iodine from other tissues by varying the voltage (kilovolts). This has 

the impact of demonstrating the nonlinear variation of different tissues at varying voltages. 
This could help improve contrast between structures. The dual-energy concept can either 

be with two sources alternating the voltages or by using detectors with elements capable of 

detecting varying energies. Although the full role of this technique is not clear, it could help 

in separating calcium from contrast-enhanced lumen and in detecting perfusion defects in 

CT perfusion imaging [9]. One other intriguing advantage of dual energy is in radiation re-

duction. By using virtual-unenhanced image reconstruction (VUE) techniques employing 

iodine subtraction algorithms, early studies have shown that it is possible to obtain calcium 

score and contrast-enhanced corona angiographic information from a single image which 

can translate to dose reduction ranging from 20 to 50% by avoiding non-contrast calcium 
score scans [10, 11]. Table 2 outlines some of the applications of dual-energy CT technology

4. Spectral CT: Along the same lines as dual-source CT, spectral CT also adopts the principle of 

varying photo energies to characterize different tissues and can be used in conjunction with 
nanoparticles to further characterize atherosclerosis. In contrast to two levels of energy in 

dual source which poses limits to detecting different energy spectra, a photon- sensitive spec-

tral CT detector can sample a bin the incident photon based on the current pulse generated at 

a specific energy level. This allows multiple photon energies to be sampled. This technology 
is in its earliest stages but studies are being done and detector technology is being evaluated 

[12, 13]. Table 2 outlines some of the applications of spectral energy CT technology.

5. Flat panel CT: Flat panel CT as the name implies employ a flat panel of digital detectors 
achieving isotropic resolution (0.2 mm) and represent a totally different technology from 
the current generation of CT scanners in every aspect. These provide volumetric  coverage 
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of the entire heart and deliver extremely high spatial resolution capable of imaging distal 

small coronary arteries, much better stented lumen delineation, and less artifacts from cal-
cium. The major limitations currently are poor temporal resolution (2 s) and poor contrast 

resolution (5–10 Hounsfield units compared to 1 Hounsfield unit for MSCT) [14]. Cur-

rently as most evidence is limited to preclinical and animal studies, further research and 

studies are needed in this field.

Figure 1. Technical progression of scanner technology. Improvement in coverage of the z-axis with 4-, 16-, and 64-slice 

detector rows, relative to wide-range 320-slice detector rows. With the wide-range technology, the entire heart is covered 

in one gantry rotation. Schuleri, K. H. et al. Nat. Rev. Cardiol. 6, 699–710 (2009); doi:10.1038/nrcardio.2009.172.

Number of detector slices 4 16 64 256 320

Detector collimation 

(mm)

4 × 1

4 × 1.25

16 × 0.5

16 × 0.625

16 × 0.75

64 × 0.5

64 × 0.65

2 × 32 × 0.6*

2 × 128 × 

0.625*

320 × 0.5

Slice width (mm) 1.3 0.8–1.0 0.5–0.8 0.6 0.5

Spatial resolution (mm) 1 0.6 0.4–0.6 0.4 0.35

Rotation time (s) 0.5 0.375–0.420 0.33–0.40 0.27 0.35

Temporal resolution (ms) 250 188–210 165–200‡ 135 175§

z-axis coverage (mm) 4–5 8–12 32–40 80 160

Scan time to cover the 

entire heart volume (s)

40 15–20 6–12 1–2 >1

* Double z-sampling. ‡Temporal resolution can be improved to 83 ms with dual source acquisitions in single-energy 

applications. §Temporal resolution can be improved to 58 ms with multisegment acquisition and multisegment 

reconstruction

Abbreviation: MDCT, multidetector CT
Schuleri K.H. et al. Nat. Rev. Cardiol. 6, 699–710 (2009); doi:10.1038/nrcardio.2009.172

Table 1. Technical and acquisition parameters for cardiac examinations with MDCT.
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4. Advances in temporal and spatial resolution

Continuing advances are being made in the development of faster scanners and in the pipe-

line is GE.

Revolution CT TM (GE Healthcare, Milwaukee, WI) with a wider z-axis coverage and a gan-

try rotation time of 0.2 s providing wider z-axis coverage and single beat image acquisition 

(Revolution CT 2014; available at www.gehealthcare) and the Seimens Somatom Force TM 

Parameter Dual source kVp switching Double-layer detector

Method Two X-ray tubes with 

90° offset each tube 
can operate at a two 

different kVp energy 
levels

One X-ray tube voltage 

switches between low- and 

high-energy setting (e.g., 80 
and 140 kVp) continuously 

during spiral 360° acquisitions

One X-ray tube exposes a detector 

system consisting of two layers. The 

first (top) layer encountered by photons 
absorbs most of the low energy (soft 

spectrum), whereas the bottom detector 
layer absorbs the remaining higher 

energy (hard spectrum)

Advantages No significant lag time 
between low-energy 

and high-energy scans

No image mis-registration

Monochromatic image 
acquisitions possible

No time lag for kVP switching; suitable 
for rapid imaging in cardiac motion

Photon counting possible to sort 

spectral subranges in order to form 

images based on their attenuation 
profile; enables high-sensitivity 
acquisitions for targeted contrast agents

Disadvantages Image mis-registration 

possible

Reduced temporal 
resolution

Currently only 

polychromatic image 

acquisitions

Dual-energy time lag between 

low and high energy depends 

on switching time

Limited temporal resolution

Currently only polychromatic 

image acquisitions

X-rays are generated as polychromatic 

beam Limited temporal resolution

Schuleri, K. H. et al. Nat. Rev. Cardiol. 6, 699–710 (2009); doi:10.1038/nrcardio.2009.172

Table 2. Current applications of dual-energy and spectral CT techniques.

Figure 2. (A) Coronary CT with 320-slice CT. (B) Coronary CT with high-pitch prospective scanning. Achenbach S et al. 

Cardiol Clin 30 (2012) 1–8.
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(Seimens AG, Erlangen, Germany) providing very high temporal resolution of 66 ms and 

spatial resolution of 0.24 s and able to image the heart in a single beat with Turbo Flash mode 
with the need for breath hold. These superb technological advances need formal clinical vali-

dation (Somatom Force TM available at www.seimens.com).

Typical MSCT detectors have solid-state ceramic detectors which help to convert X-rays to 
visible light followed by conversion to analog electrical signal which then gets converted to a 

digital signal for image formation. The detectors all have septate electric boards which are all 

then linked to each other.

However, with breakthrough in technology one vendor has introduced a new detector sys-

tem called Stellar Detector (Stellar Detector TM, Seimens AG, Erlangen, Germany) which 
combines all detectors into single electric board and claims superior spatial resolution and 

decrease in image noise.

GE has introduced Gemstone Detector which is a garnet-based substance which has much 

shorter decay and after-glow times enabling much rapid processing of signal improving spa-

tial resolution and decreasing image noise. This concept has proven useful in reading CTAs in 

stent, determining intrastent diameter and area due to decrease in image noise [15]. It appears 

to be compatible with dual-energy scanners too.

5. Software advances in CCTA

a. Iterative reconstruction (IR): Although filtered back-projection remains a common meth-

od of reconstruction, IR techniques are more commonly being used where image infor-

mation is used to simulate expected image based on CT measurements and then these 

simulated data are modified in subsequent image reconstruction. This technique has been 
shown to reduce image noise and reduction in radiation doses [16, 17]. Figure 3 shows an 

example of noise reduction with IR.

b. Motion correction: Motion artifact is one of the most important limitations in CCTA affecting  
overall accuracy. Techniques such as heart rate control and faster scanning with wide detector  

and dual source technologies are ways to limit motion artifact. Recently, GE Healthcare 
has introduced Snapshot FreezeTM where the software evaluates multiple adjacent cardiac  
phases within the same cardiac cycle to evaluate and plot coronary artery motion and eliminate  

residual coronary motion artifact. This promises to further minimize motion artifact im-

proving the image quality and interpretability [18].

c. Arrhythmia detection: Occurrence of arrhythmias causes significant issues with missing 
data and artifacts in CCTA. Advances in arrhythmia detection include using of complex  

arrhythmia detection algorithms to enable stopping the scan when arrhythmia occurs and 

restarting scans after arrhythmia subsides to enable capturing data in the right cardiac cycles  

(Seimens Healthcare, Forcheim, Germany). Other advances include image reconstruction 
using identical filling concepts isovolumetric phases (which contain best image data) are 
used in image reconstruction [19].

Computed Tomography - Advanced Applications8



d. Radiation reduction: Apart from prospective gating, traditional ECG tube current  modulation,  

wide detector coverage, and dual source high-pitch-scanning techniques all of which dra-

matically reduce radiation; further advances are being done to do real-time modulation of 
attenuation-based adjustments in tube potential, thus driving radiation doses down even 
further (Care Dose4D TM; Seimens Healthcare, Forcheim, Germany).

6. Advances in CCTA beyond traditional noninvasive coronary 

angiography

CCTA has been recognized as a cost-effective noninvasive diagnostic modality [20]. Evolving 

literature has established that revascularization has clinical benefit when performed in ste-

nosis with hemodynamic significance [21, 22]. An intermediate stenosis on CT scan is not a 

good predictor of physiological significance [23–25]; this calls for additional tools which can 
provide complementary physiological data to available anatomy. Noninvasive fractional flow 
reserve (FFR) evaluation on CT, myocardial CT perfusion, and transluminal attenuation gra-

dient (TAG) are the three techniques with clinical evidence. We will talk briefly about these in 
this section of the chapter.

6.1. Noninvasive fractional flow reserve evaluation on CCTA: physiology

FFR is defined as the ratio of the mean coronary pressure distal to a coronary stenosis to the 
mean aortic pressure during maximal coronary blood flow. An FFR value of 0.80 or less suggests  

Figure 3. Image noise reduction with iterative reconstruction technology. Achenbach S et al. Cardiol Clin 30 (2012) 1–8.

Advances in Cardiac Computed Tomography
http://dx.doi.org/10.5772/intechopen.68554

9



lesion-specific hemodynamic significance [26]. Incorporation of FFR in CT does not call for 
any modification of CCTA protocols, additional image acquisition, or administration of medi-
cations. The calculation is performed by segmentation of coronary tree and left ventricular 

mass and application of computational fluid dynamics (see Figure 4). While no adenosine 

administration is performed, the conditions to simulate the same can be established.

6.1.1. Clinical evidence

FFR incorporation into routine CT has been compared to visual estimation alone in multiple 
studies. We now have evidence from an integrated analysis of data from three prospective, 

international, and multicenter trials, which assessed the diagnostic performance of FFR
 
CT 

using invasive FFR as a reference standard [27]. The key trials outlining the value of CT FFR 
were the DISCOVER-FLOW, DeFACTO, and the NXT trials. These studies with cumulative 
over 600 patients concluded that with intermediate coronary stenosis, FFR CT remained both 
highly sensitive and specific with respect to the diagnosis of ischemia. Specifically, CT FFR 
had higher sensitivity than CT (81 vs. 53%) Additionally, when compared to invasive FFR 
evaluation, FFR CT had higher diagnostic accuracy (86 vs. 71%) in the identification of hemo-

dynamically significant lesions.

More exciting data have suggested an economic benefit associated with a 12% reduction in 
adverse cardiovascular events at 1 year with the use of CT FFR when compared to angiog-

raphy with stenosis-based PCI [28]. In their study, Hlatky et al. applied a decision analysis 

comparing five clinical strategies constructed as follows: (1) angiography with stenosis-based 
PCI; (2) angiography with FFR-guided PCI; (3) coronary CTA followed by angiography and 

Figure 4. Simplified scheme of computational fluid dynamic techniques for simulating hyperemic flow and pressure 
applied to CTA data. Min JK. JCCT 2011;5(5);301-9.
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stenosis-based PCI; (4) coronary CTA followed by angiography and FFR-guided PCI and (5) 
coronary CTA–FFR CT followed by FFR CT-guided PCI. The projected initial management 
costs were highest for angiography with stenosis-based PCI and lowest for the coronary  CTA–

FFR
 
CT followed by FFR CT-guided PCI. Inspired from this concept, we now have a pro-

spective, controlled utility trial evaluating patients with an intermediate likelihood of CAD 

PLATFORM (Prospective Longitudinal Trial of FFR CT: Outcome and Resource IMpacts) [29]. 

Patients referred for noninvasive evaluation formed the first cohort and those referred for inva-

sive coronary angiogram comprised the second cohort. These were evaluated by using stan-

dard care approach (first phase) and coronary CTA with physiologic FFR evaluation ( second 
stage). The primary result was that among those with intended ICA (FFRCT-guided = 193;  
usual care = 187), no-obstructive CAD was found at ICA in 24 (12%) in the CTA/FFRCT arm 
and 137 (73%) in the usual care arm (P < 0.0001), with similar mean cumulative radiation 

exposure (9.9 vs. 9.4 mSv, P = 0.20). Invasive coronary angiography was cancelled in 61% after 
receiving CTA/FFRCT results. Clinical event rates within 90 days were low in both the arms. 
This is just another example of how CT FFR is a feasible and safe alternative to invasive angi-
ography and was associated with a significantly lower rate of invasive angiography showing 
no-obstructive CAD (Figure 5a and b).

We await the results of the multicentric registry ADVANCE (assessing diagnostic value of 

noninvasive FFRCT in coronary care) which will evaluate the clinical and economic impacts 
of FFR CT (NCT02499679).

6.1.2. Clinical applications

Enhanced specificity and accuracy in the available data has established FFR incorporation to 
CT as a promising new dimension in noninvasive modalities. It may serve as a “gate-keeper” 

to escalation to invasive coronary angiography in suitable patient population. We await many 

more exciting studies to define the niche for its role in daily clinical practice.

6.1.3. Limitations

1. Presence of heavy calcification, mis-registration, and motion artifacts may affect FFR calcu-

lation with CT since the calculation relies on accurate anatomic models.

2. Computational simulation of adenosine-induced hyperemia is performed without the 

 actual use of adenosine which may incorporate errors, especially in the presence of micro-

vascular dysfunction.

3. Presence of viable or scarred myocardium also affects the FFR value.

6.2. Myocardial CT perfusion (myocardial CTP)

Myocardial CTP protocol is composed of a stress phase acquisition and a rest phase acquisi-
tion, as with nuclear myocardial perfusion imaging [30]. Iodinated contrast is administered in 

both the stress and rest acquisition (60–75 ml for each acquisition), for a total contrast dose of 
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approximately 130–150 ml. The pharmacological stress agents include adenosine,  dipyridamole 

or regadenosin. Although it has been shown in many studies that  pharmacological and  exercise 

stress testing have comparable diagnostic characteristics,  exercise is the preferred method of 

stress in myocardial perfusion imaging when possible [31].

There are two ways in which to set up a stress and rest myocardial CTP protocol based on 

the order of scan acquisition, namely stress phase first followed by rest phase, or vice versa 
(as illustrated in Figure 6).

As expected, the main consideration is that the first scan will be a “clean” acquisition, and that 
the contrast used in the first acquisition can cross-contaminate the second acquisition if the 
interval between the scans is less than approximately 30 min. On the other hand, when doing 

a stress phase acquisition first, the detection of myocardial ischemia is optimized by not hav-

ing contamination of contrast; however, the second scan can underestimate the presence of 
infarct in the myocardium if a short scan interval is used. This is so because the contrast from 

the stress scan would accumulate in an area of myocardial infarct due to the slow wash-out  

phenomenon, leading to persistent perfusion defect during rest imaging. Thus, possible underes-

timation of myocardial infarction specifically if the second scan is done within 10 min of the first 
one. A coronary CTA acquisition can be acquired simultaneously with the rest acquisition, and 

beta-blockers and sublingual nitroglycerin can be given to optimize the second scan (Table 3)

6.2.1. Clinical evidence

The smaller initial studies have been conducted at various institutions with differences in pro-

tocols and reference standards. The unifying conclusion is that perfusion defects on myocardial 

Figure 5. (a) Examples of a no-obstructive CAD on CTA and corresponding normal CT FFR and correlative coronary 
angiographic FFR of patient from the DeFACTO study. (b) Example of patient with obstructive coronary disease in left 
anterior descending coronary artery on CTA and corresponding abnormal CT FFR and correlative coronary angiographic 
FFR from the DeFACTO study.
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CTP correlate well with those on SPECT and also in some studies with stenosis on quantitative 

coronary angiography. We briefly present some of these studies.

George et al. [32] used a 64-detector MDCT or a 256-detector MDCT for image acquisition 
with adenosine as the stress agent. The combined analysis of all patients (including both 

scanner types) in this study showed a per-vessel territory sensitivity, specificity, positive-
predictive value (PPV), and negative-predictive value (NPV) of 75, 87, 60, and 93%, respec-

tively, when compared with QCA and SPECT. Using the same stress agent, Blankstein 

et al. [33] acquired myocardial CTP images using a dual-source CT scanner, which has 

higher temporal resolution. They confirmed that myocardial CTP is equivalent to SPECT 
in detecting coronary artery stenosis by QCA, with comparative sensitivity and specificity 
to prior study. One interesting derivation from this study was similar radiation exposure 

with full myocardial CTP when compared to SPECT MPI. Rocha-Filho et al. [34] demon-

strated that adding perfusion information obtained from stress myocardial CTP to coro-

nary CTA improves all diagnostic characteristics of CTA alone, with most significant impact 
on specificity and PPV. The size and severity evaluation of perfusion defect at rest and 

Figure 6. Full CTP Protocol: The protocol includes patient preparation and post-examination checkup (including an 
optional delayed phase acquisition (shaded box). All steps are as listed in sequence. Heart rhythm and symptoms are 

monitored throughout the entire examination. (Adopted with permission from Ref [31]).

Sequence Advantages Disadvantages

Stress → Rest Better sensitivity of stress scan (ability to detect 
ischemia). Coronary CTA can be optimized with 

second acquisition by giving medications without 

interfering with perfusion assessment

Contrast contamination, leading to 

appearance of late-contrast enhancement 

during rest acquisition (decreased 

sensitivity for infarct)

Rest → Stress Ability to stop protocol after rest phase (if no or 

minimal disease is evident). Better sensitivity of 
rest scan (ability to detect infarct)

Contrast contamination, leading to 

appearance of late-contrast enhancement 

during stress acquisition (decreased 

sensitivity for ischemia). Beta-blocker 

given during first acquisition can 
underestimate myocardial ischemia

Table 3. Advantages and disadvantages of different CTP protocol sequences (adopted with permission [30]).
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stress have been shown to be concordant between myocardial CTP and SPECT [35]. This 

concordance has been further validated in the form of excellent validation by a five-point  
scale and a total perfusion deficit score [36]. Myocardial CTP has proven equivalent to 
SPECT in the detection of stenosis found on QCA (sensitivity and specificity: 88 and 79% 
for myocardial CTP and 69 and 71% for SPECT, p = NS) with dipyridamole on a 64-detector 

MDCT scanner [37].

An additional concept is the utilization of dynamic myocardial perfusion. Ho et al. [38] dem-

onstrated that stress and rest dynamic perfusion imaging can detect myocardial perfusion 

defect with good diagnostic accuracy when compared with SPECT MPI (per-segment sensitiv-

ity, specificity, PPV, and NPV of 83, 78, 79, and 82%, respectively) and with QCA (per-segment 
sensitivity, specificity, PPV, and NPV of 95, 65, 78, and 79%, respectively) and allows for defin-

ing time-attenuation curves with the potential for quantification of myocardial blood flow. 
This comes at the price of a much higher radiation dose when compared to static imaging.

6.2.2. Limitations

1. CT-related artifacts should be recognized in an attempt to minimize them. One major 
culprit is beam hardening, which is a phenomenon that occurs when X-ray beams pass 

through objects of high density, leading to a selective attenuation of lower-energy beams 
and increased mean energy of the remaining beams. The resulting appearance is a hypoen-

hanced region that may mimic areas of true perfusion defect. Such hypoenhanced region 

is usually triangular and appears to originate from the region of high attenuation next 
to it, and does not conform to vascular territories [39]. A particularly common location 

includes the basal inferolateral wall, due to proximity to the descending aorta with iodi-

nated contrast and dense vertebral bodies. Attempts to develop an algorithm to minimize  
beam-hardening artifacts are ongoing, with the use of iterative reconstruction.

2. Myocardial CTP is also prone to motion artifacts similar to coronary CTA, particularly dur-

ing the stress phase acquisition, due to the increased heart rate. Cardiac motion during the 

acquisition leads to hypoenhanced areas that can mimic true perfusion defects. Enhanced 

temporal resolution of CT has led to marked decrease in this artifact.

It cannot be emphasized enough that a careful review of multiple phases of the cardiac cycle 

is a robust method to differentiate a true perfusion defect from an artifact.

In summary,

• Myocardial CTP has the potential to become a robust clinical tool for the evaluation of chest 
pain patients.

• The available literature is in a very preliminary stage with only single-center preliminary 

experiences. These are flawed by referral bias and absence of any standardized protocol.

• More research is needed in order to further define, optimize, and validate the modality.
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7. Transluminal attenuation gradient

TAG is a modality that is based upon the kinetics of iodinated contrast media within coronary 

arteries. It is the linear regression coefficient between the lumen attenuation and axial distance 
along the vessel from the ostium. This method is based upon the contrast attenuation differ-

ence across a stenosis which may predict functional significance [40].

7.1. Clinical evidence

Changes in coronary opacification across a stenosis were found to predict abnormal resting 
coronary blood flow in a study by Chow et al. [41]. The comparison of coronary opacifica-

tion after normalization to aorta was performed to severity of stenosis and thrombolysis in 

myocardial infarction flow in the coronary arteries at invasive coronary angiography. TAG 
significantly improves both sensitivity and specificity over CCTA stenosis degree alone [40].

7.2. Clinical applications

The addition of TAG to CCTA may supplement detection of hemodynamic significance of 
coronary stenosis especially in severely calcified lesions. An advantage of TAG over FFR sup-

plementation of CT is that there is no complex computation required [42].

7.3. Limitations

The evidence on the role of TAG in CCTA is limited. Further validation of both diagnostic and 
prognostic role of this approach is required in larger studies.

8. Take home points

The single most attractive characteristic of the summarized techniques is that they provide both 
anatomical and functional assessments of CAD. The current studies have demonstrated that 

these methods are feasible for noninvasive assessment of CAD and have the potential to provide 

incremental value in detecting functionally significant coronary stenosis over CCTA alone. The 
available data are preliminary, but definitely promising. This calls for dedicated research to iden-

tify the prognostic value and clinical outcomes of decision making based on these techniques.

9. CCTA and prognosis

In an era where coronary artery disease (CAD) is the leading cause of death worldwide, nonin-

vasive cardiac imaging is essential for the diagnosis and prognosis of patient with suspected or 

known coronary artery disease. While nuclear positron emission tomography (PET), SPECT, 
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cardiac magnetic resonance imaging, and stress echocardiography are well-established modal-

ity with excellent diagnostic accuracy, coronary computed tomographic angiography (CCTA) 

has emerged in the past couple of decades and is rapidly growing as noninvasive testing 

modality for the detection of coronary artery disease (CAD). CCTA provides excellent ana-

tomic information that is comparable with invasive coronary angiography and in addition can 

provide significantly more information about subclinical atherosclerosis [43–46].

This has attracted particular interest to explore prognostic implication of the CCTA in 
 cardiology field. Several single- and multiple-center studies, including meta-analysis of large 
registry, have been done to evaluate its prognostic value and compare it to the traditional risk 

factors [47].

9.1. Clinical evidence

Prognostic value of the CCTA was studied in a variety of patient population including 

 symptomatic and asymptomatic subset of patients. Hadamitzky et al. analyzed large patient 
population of 17,793 from the international CONFIRM registry in patient with suspected 
 coronary artery disease. Combining the CCTA data and the clinical risk scores, a modeled 

score was developed with end-point assessment being all-cause mortality at 2-year follow-up.  

The optimized score developed improved risk stratification and overall risk prediction beyond 
the clinical risk scores. Incremental prognostic value was noted particularly with plaque bur-

den and vessel stenosis, with a proportional correlation for proximal segment involvement 

[48]. Similar outcome was replicated at longer 5-year follow-up studies [49].

Other studies evaluated the prognostic value of the CCTA based on the plaque location and 

whether the atherosclerotic plaque is obstructive or not and the number of vessels involved. 

Cheruvu et al. analyzed the CCTA prognosis in asymptomatic patients without modifiable 
cardiovascular risk factors [50]. A total number of 1884 patients from 12 different centers were 
enrolled and followed up for approximately 5 years. Both obstructive and non-obstructive 

CADs were found to predict MACE with increased HR associated with higher degree of ste-

nosis. MACE ranged from 5.6% in patients with no CAD to 36.28% in patients with obstruc-

tive CAD. Figure 7 shows the obstructive severity on CTA and clinical implications. Table 4 

provides a summary of some of prognostic studies in CCTA.

The additive information of the CCTA on atherosclerotic plaque features offers the promise 
to provide a more comprehensive view on total plaque burden. In emergent data, atheroscle-

rotic plaque characteristics have been associated with plaque vulnerability; hence, several 
observational and prospective studies are done to correlate their ability to predict future car-

diovascular events [51–54]. Feuchtner et al. characterized CTA features associated with worse 
clinical outcomes. The evaluation of the CTA findings was based on lesion severity, plaque 
types (the spectrum from different degrees of calcified to non-calcified), and high-risk plaque 
criteria (low attenuation by HU, napkin-ring, spotty calcification, and remodeling index). 
The study concluded that the low attenuation plaque of <60 HU and napkin-ring sign were 
the most powerful predictors for MACE. Prognosis was established as excellent long term if 
CTA is negative but worsens with increasing non-calcifying plaque component [55]. Similar 
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concept was entertained by Nadjiri et al., who performed a semi-quantitative analysis of all 

non-calcified plaques or partially calcified plaques to quantify the low attenuation plaque 
volume (LAPV), total non-calcified plaque volume, and remodeling index. All these plaque 
characteristics were associated with increased MACE independently from the clinical risk 
presentation. The strongest prognosis was associated with LAPV, which carried additional 

information beyond the calcium score and the conventional coronary CTA [56]. High-risk 

plaque and plaque progression were also found to be independent risk factors for predict-

ing ACS [57, 58]. Figures 8–10 demonstrate images of different histologic plaque types, their 
quantitative measurements, and plaque-specific-associated risk.

Considering the well-known correlation of the diabetes mellitus and CAD, particular atten-

tion was directed of the CCTA implication in diagnosing diabetic patients with subclinical 

CAD and assessing the prognostic value in this subset of patients. On prospective evaluation 

of 525 asymptomatic diabetic patients, Van den Hoogen et al. found a proportional increase in 

event rates in patients with increased CAC category and coronary stenosis severity. What was 

even more importantly noted was that patients with normal CTA had an excellent prognosis 

[59]. Whether or not asymptomatic diabetic patients would benefit from screening for CAD 
remains controversial. Muhlestein et al. demonstrated in a prospective study of 900 patients 
that CTA screening showed no survival benefit compared to optimized medical therapy in 
asymptomatic patients with type 1 and type 2 diabetes mellitus [60].

Figure 7. Coronary artery disease (CAD) severity identified by coronary CT angiography and recommended 
management. Patients with a normal coronary CT angiography can be safely reassured. Follow-up for preventive 
therapy is recommended for non-obstructive (<50%) CAD. For obstructive CAD (≥50% stenosis), further testing is 
recommended to guide management [55].
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Symptomatic patients are another subgroup of patients where the role of CTA and its clinical 

implication was assessed. ROMICATT II and CCATCH trials [61, 62] addressed the clinical 

impact of CTA-guided therapy in patients with acute chest pain and negative ECG and car-

diac biomarkers were evaluated in 600 randomized patients. Almost half underwent CTA 

guided and other half standard care (exercise MPI/EKG). MACE (cardiac death, myocardial 
infarction, hospitalization for unstable angina, symptom-driven revascularization, and read-

mission for chest pain) was significantly better in CTA group.

In conclusion, the above review has summarized the advances in CCTA and emerging data 

reflecting the very promising role CCTA carries in diagnosis and prognosis over the tradi-
tional risk assessment. Its unique ability to provide complete assessment of anatomy, plaque 

characteristics, and prognosis makes the CCTA’s future very promising and crucial in enhanc-

ing patient care.

Study Study aim Patients (N) Population characteristics Major findings

Puchner S. et al. [58] 

(ROMICATII TRIAL)

Plaque 

characteristics 

predicting ACS.

472 Acute chest pain, low risk 

for ACS.

Presence of high-risk plaques 

was an independent predictor 

of ACS

Hadamitzky M et al. 
[48, 49]

Predict cardiac 

events at 5 years 

follow-up.

1584 Suspected CAD, not 

previously diagnosed

Severity of CAD and total 

plaque score predicted 

cardiac events over standard 

clinical events

Feuchtner G et al. [55] Prospective 

assessment of the 

CCTA and MACE.

1469 Low to intermediate risk 

patients for CAD

Strongest predictors for 

MACE were LAP and 
napkin-ring sign with HR of 
4.96 and 3.85, respectively.

Nadjiri J et al. [56] Plaque 

characteristics 

and associated 

prognosis

1168 Patient with suspected 

CAD

Napkin-ring sign lesions 

and LAVP found to be 

predictors for MACE with 
LAVP carrying the strongest 

prognostic value HR 1.12, p 

< 0.0001

Cheruvu C et al. [50] Predict MACE 
in long-term 

follow-up.

1884 Symptomatic patient with 

angina-equivalent

MACE were 5.6% in patients 
with non-obstructive CAD 

and 36.28% in patients with 
obstructive CAD

Van den Hoogen IJ et al.  

[59]

Prognostic 

assessment of the 

CCTA in patient 

with diabetes 

mellitus

525 Asymptomatic diabetic 

patients with no known 

history of CAD

Excellent prognosis in 

patient with CCTA negative. 

Prognosis was worse and 

directly proportional to the 

number and severity of stenosis

Linde et al. [61] 

(CATCH TRIAL)

CCTA-guided 

management and 

clinical outcomes.

600 Symptomatic patient with 

chest pain but negative 

troponin and ECG

CCTA-guided strategy 

appears to improve clinical 

outcomes in these patient 

population with HR: 0.36; 
p = 0.04

CCTA, coronary computed tomographic angiography; CAD, coronary artery disease; HR, hazard ratio; LAVP, low 
attenuation volume plaque; LAP, low attenuation plaque; MACE, major adverse cardiac events.

Table 4. Major studies assessing prognostic value of CCTA.
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Figure 8. CCTA image of the coronaries with traditional plaque classification and the corresponding histology slides. 
There are non-calcified (A), calcified (B), and mixed plaque (C) noted. Based on plaque attenuation, there is homogeneous 
(D), heterogeneous (E), and napkin-ring sign (F) plaques [56].

Figure 9. Probability of having acute coronary syndrome during the index hospitalization according to coronary 

computed tomography characteristics. Central Illustration: Significant stenosis and high-risk coronary plaque features 
and their association with the probability of having acute coronary syndrome during the index hospitalization. Stenosis 

of ≥50%—Severe stenosis of the mid-left anterior descending coronary artery (Bold arrow). Non-calcified plaque with 
positive remodeling in the distal right coronary artery (arrowhead). Positive remodeling—The two dotted red lines 
(image insert) demonstrate the vessel diameters at the proximal and distal reference (both 1.8 mm) and the full red 

line demonstrates the maximal vessel diameter in the mid portion of the plaque (2.7 mm)—the remodeling index is 1.5 
Low HU plaque—Partially calcified plaque in the mid-right coronary artery with low <30 HU plaque. The red circles 
demonstrate the three regions of interest with the mean CT number of 22, 19, and 20 HU Napkin-ring sign—Napkin-
ring sign plaque in the mid-left anterior descending coronary artery. Schematic cross-sectional view of the napkin-

ring sign. The red line demonstrates the central low HU area of the plaque adjacent to the lumen (ellipse) surrounded 

by a peripheral rim of the higher CT attenuation (arrows). Spotty calcium—Partially calcified plaque in the mid-right 
coronary artery with spotty calcification (diameter of <3 mm in all directions; circles) [58].
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Figure 10. An example of the quantitative plaque measurements. Panel A – The large coronary plaque in the proximal right 

coronary artery (RCA) showed in long-axis view in the multiplanar reformatted image. Panel B – The cross-sectional view of 

the proximal RCA demonstrates a large plaque. The software detects plaque components with low CT attenuation <30HU, 31 
to 60HU and 61 to 130HU. Panel C – The curved multiplanar reformatted image of the RCA. The proximal and distal normal 
cross sections are selected manually by the reader to mark the beginning and end of the plaque. The software automatically 

selects the minimal luminal area (stenosis). Panel D – The software provides quantitative measurements of the selected 

coronary plaque including total plaque volume (127 mm3), remodeling index (2.04), stenosis degree (21%) and plaque length 
(11.7 mm). The volumes of plaque subcomponents are also reported [62].
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