1,967 research outputs found

    Data compression in remote sensing applications

    Get PDF
    A survey of current data compression techniques which are being used to reduce the amount of data in remote sensing applications is provided. The survey aspect is far from complete, reflecting the substantial activity in this area. The purpose of the survey is more to exemplify the different approaches being taken rather than to provide an exhaustive list of the various proposed approaches

    A Comparison of Hybrid Beamforming and Digital Beamforming with Low-Resolution ADCs for Multiple Users and Imperfect CSI

    Get PDF
    For 5G it will be important to leverage the available millimeter wave spectrum. To achieve an approximately omni- directional coverage with a similar effective antenna aperture compared to state of the art cellular systems, an antenna array is required at both the mobile and basestation. Due to the large bandwidth and inefficient amplifiers available in CMOS for mmWave, the analog front-end of the receiver with a large number of antennas becomes especially power hungry. Two main solutions exist to reduce the power consumption: hybrid beam forming and digital beam forming with low resolution Analog to Digital Converters (ADCs). In this work we compare the spectral and energy efficiency of both systems under practical system constraints. We consider the effects of channel estimation, transmitter impairments and multiple simultaneous users. Our power consumption model considers components reported in literature at 60 GHz. In contrast to many other works we also consider the correlation of the quantization error, and generalize the modeling of it to non-uniform quantizers and different quantizers at each antenna. The result shows that as the SNR gets larger the ADC resolution achieving the optimal energy efficiency gets also larger. The energy efficiency peaks for 5 bit resolution at high SNR, since due to other limiting factors the achievable rate almost saturates at this resolution. We also show that in the multi-user scenario digital beamforming is in any case more energy efficient than hybrid beamforming. In addition we show that if different ADC resolutions are used we can achieve any desired trade-offs between power consumption and rate close to those achieved with only one ADC resolution.Comment: Submitted to JSTSP. arXiv admin note: text overlap with arXiv:1610.0290

    Subspace Tracking and Least Squares Approaches to Channel Estimation in Millimeter Wave Multiuser MIMO

    Full text link
    The problem of MIMO channel estimation at millimeter wave frequencies, both in a single-user and in a multi-user setting, is tackled in this paper. Using a subspace approach, we develop a protocol enabling the estimation of the right (resp. left) singular vectors at the transmitter (resp. receiver) side; then, we adapt the projection approximation subspace tracking with deflation and the orthogonal Oja algorithms to our framework and obtain two channel estimation algorithms. We also present an alternative algorithm based on the least squares approach. The hybrid analog/digital nature of the beamformer is also explicitly taken into account at the algorithm design stage. In order to limit the system complexity, a fixed analog beamformer is used at both sides of the communication links. The obtained numerical results, showing the accuracy in the estimation of the channel matrix dominant singular vectors, the system achievable spectral efficiency, and the system bit-error-rate, prove that the proposed algorithms are effective, and that they compare favorably, in terms of the performance-complexity trade-off, with respect to several competing alternatives.Comment: To appear on the IEEE Transactions on Communication

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches?

    Full text link
    Hybrid analog/digital MIMO architectures were recently proposed as an alternative for fully-digitalprecoding in millimeter wave (mmWave) wireless communication systems. This is motivated by the possible reduction in the number of RF chains and analog-to-digital converters. In these architectures, the analog processing network is usually based on variable phase shifters. In this paper, we propose hybrid architectures based on switching networks to reduce the complexity and the power consumption of the structures based on phase shifters. We define a power consumption model and use it to evaluate the energy efficiency of both structures. To estimate the complete MIMO channel, we propose an open loop compressive channel estimation technique which is independent of the hardware used in the analog processing stage. We analyze the performance of the new estimation algorithm for hybrid architectures based on phase shifters and switches. Using the estimated, we develop two algorithms for the design of the hybrid combiner based on switches and analyze the achieved spectral efficiency. Finally, we study the trade-offs between power consumption, hardware complexity, and spectral efficiency for hybrid architectures based on phase shifting networks and switching networks. Numerical results show that architectures based on switches obtain equal or better channel estimation performance to that obtained using phase shifters, while reducing hardware complexity and power consumption. For equal power consumption, all the hybrid architectures provide similar spectral efficiencies.Comment: Submitted to IEEE Acces

    Multi-LSTM Acceleration and CNN Fault Tolerance

    Get PDF
    This thesis addresses the following two problems related to the field of Machine Learning: the acceleration of multiple Long Short Term Memory (LSTM) models on FPGAs and the fault tolerance of compressed Convolutional Neural Networks (CNN). LSTMs represent an effective solution to capture long-term dependencies in sequential data, like sentences in Natural Language Processing applications, video frames in Scene Labeling tasks or temporal series in Time Series Forecasting. In order to further boost their efficacy, especially in presence of long sequences, multiple LSTM models are utilized in a Hierarchical and Stacked fashion. However, because of their memory-bounded nature, efficient mapping of multiple LSTMs on a computing device becomes even more challenging. The first part of this thesis addresses the problem of mapping multiple LSTM models to a FPGA device by introducing a framework that modifies their memory requirements according to the target architecture. For the similar accuracy loss, the proposed framework maps multiple LSTMs with a performance improvement of 3x to 5x over state-of-the-art approaches. In the second part of this thesis, we investigate the fault tolerance of CNNs, another effective deep learning architecture. CNNs represent a dominating solution in image classification tasks, but suffer from a high performance cost, due to their computational structure. In fact, due to their large parameter space, fetching their data from main memory typically becomes a performance bottleneck. In order to tackle the problem, various techniques for their parameters compression have been developed, such as weight pruning, weight clustering and weight quantization. However, reducing the memory footprint of an application can lead to its data becoming more sensitive to faults. For this thesis work, we have conducted an analysis to verify the conditions for applying OddECC, a mechanism that supports variable strength and size ECCs for different memory regions. Our experiments reveal that compressed CNNs, which have their memory footprint reduced up to 86.3x by utilizing the aforementioned compression schemes, exhibit accuracy drops up to 13.56% in presence of random single bit faults

    Self Designing Pattern Recognition System Employing Multistage Classification

    Get PDF
    Recently, pattern recognition/classification has received a considerable attention in diverse engineering fields such as biomedical imaging, speaker identification, fingerprint recognition, etc. In most of these applications, it is desirable to maintain the classification accuracy in the presence of corrupted and/or incomplete data. The quality of a given classification technique is measured by the computational complexity, execution time of algorithms, and the number of patterns that can be classified correctly despite any distortion. Some classification techniques that are introduced in the literature are described in Chapter one. In this dissertation, a pattern recognition approach that can be designed to have evolutionary learning by developing the features and selecting the criteria that are best suited for the recognition problem under consideration is proposed. Chapter two presents some of the features used in developing the set of criteria employed by the system to recognize different types of signals. It also presents some of the preprocessing techniques used by the system. The system operates in two modes, namely, the learning (training) mode, and the running mode. In the learning mode, the original and preprocessed signals are projected into different transform domains. The technique automatically tests many criteria over the range of parameters for each criterion. A large number of criteria are developed from the features extracted from these domains. The optimum set of criteria, satisfying specific conditions, is selected. This set of criteria is employed by the system to recognize the original or noisy signals in the running mode. The modes of operation and the classification structures employed by the system are described in details in Chapter three. The proposed pattern recognition system is capable of recognizing an enormously large number of patterns by virtue of the fact that it analyzes the signal in different domains and explores the distinguishing characteristics in each of these domains. In other words, this approach uses available information and extracts more characteristics from the signals, for classification purposes, by projecting the signal in different domains. Some experimental results are given in Chapter four showing the effect of using mathematical transforms in conjunction with preprocessing techniques on the classification accuracy. A comparison between some of the classification approaches, in terms of classification rate in case of distortion, is also given. A sample of experimental implementations is presented in chapter 5 and chapter 6 to illustrate the performance of the proposed pattern recognition system. Preliminary results given confirm the superior performance of the proposed technique relative to the single transform neural network and multi-input neural network approaches for image classification in the presence of additive noise
    • …
    corecore