Hybrid analog/digital MIMO architectures were recently proposed as an
alternative for fully-digitalprecoding in millimeter wave (mmWave) wireless
communication systems. This is motivated by the possible reduction in the
number of RF chains and analog-to-digital converters. In these architectures,
the analog processing network is usually based on variable phase shifters. In
this paper, we propose hybrid architectures based on switching networks to
reduce the complexity and the power consumption of the structures based on
phase shifters. We define a power consumption model and use it to evaluate the
energy efficiency of both structures. To estimate the complete MIMO channel, we
propose an open loop compressive channel estimation technique which is
independent of the hardware used in the analog processing stage. We analyze the
performance of the new estimation algorithm for hybrid architectures based on
phase shifters and switches. Using the estimated, we develop two algorithms for
the design of the hybrid combiner based on switches and analyze the achieved
spectral efficiency. Finally, we study the trade-offs between power
consumption, hardware complexity, and spectral efficiency for hybrid
architectures based on phase shifting networks and switching networks.
Numerical results show that architectures based on switches obtain equal or
better channel estimation performance to that obtained using phase shifters,
while reducing hardware complexity and power consumption. For equal power
consumption, all the hybrid architectures provide similar spectral
efficiencies.Comment: Submitted to IEEE Acces