
Thesis for The Degree of Licentiate of Engineering

Multi-LSTM Acceleration and CNN Fault Tolerance

Stefano Ribes

Division of Computer Engineering
Department of Computer Science & Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2021

Multi-LSTM Acceleration and CNN Fault Tolerance

Stefano Ribes

Advisor: Ioannis Sourdis, Prof. at Chalmers University of Technology
Co-Advisor: Pedro Trancoso, Prof. at Chalmers University of Technology
Co-Advisor: Vassilios Papaefstathiou, Post Doc. researcher at FORTH-ICS
Examiner: Ulf Assarsson, Prof. at Chalmers University of Technology
Discussion Leader: Theocharis Theocharides, Prof. at University of Cyprus

Copyright ©2021 Stefano Ribes
except where otherwise stated.
All rights reserved.

Technical Report No 197L
ISSN 1652-876X
Department of Computer Science & Engineering
Division of Computer Engineering
Chalmers University of Technology
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii

Abstract
This thesis addresses the following two problems related to the field of Machine
Learning: the acceleration of multiple Long Short Term Memory (LSTM)
models on FPGAs and the fault tolerance of compressed Convolutional Neural
Networks (CNN). LSTMs represent an effective solution to capture long-term
dependencies in sequential data, like sentences in Natural Language Processing
applications, video frames in Scene Labeling tasks or temporal series in Time
Series Forecasting. In order to further boost their efficacy, especially in pres-
ence of long sequences, multiple LSTM models are utilized in a Hierarchical
and Stacked fashion. However, because of their memory-bounded nature, effi-
cient mapping of multiple LSTMs on a computing device becomes even more
challenging. The first part of this thesis addresses the problem of mapping
multiple LSTM models to a FPGA device by introducing a framework that
modifies their memory requirements according to the target architecture. For
the similar accuracy loss, the proposed framework maps multiple LSTMs with a
performance improvement of 3× to 5× over state-of-the-art approaches. In the
second part of this thesis, we investigate the fault tolerance of CNNs, another
effective deep learning architecture. CNNs represent a dominating solution in
image classification tasks, but suffer from a high performance cost, due to their
computational structure. In fact, due to their large parameter space, fetching
their data from main memory typically becomes a performance bottleneck. In
order to tackle the problem, various techniques for their parameters compres-
sion have been developed, such as weight pruning, weight clustering and weight
quantization. However, reducing the memory footprint of an application can
lead to its data becoming more sensitive to faults. For this thesis work, we
have conducted an analysis to verify the conditions for applying OddECC, a
mechanism that supports variable strength and size ECCs for different memory
regions. Our experiments reveal that compressed CNNs, which have their mem-
ory footprint reduced up to 86.3× by utilizing the aforementioned compression
schemes, exhibit accuracy drops up to 13.56% in presence of random single bit
faults.

Keywords

FPGA, Machine Learning, LSTMs, SVD, HLS, Roofline Model, CNNs,

Fault Tolerance, Compression, Caffe

Acknowledgment

To all people I’ve met during my years at Chalmers, thank you. I learned a lot
from each and everyone of you.

Spasibo, babuxka, carstvo tebe nebesnoe.

This work is supported by the European Commission under the Horizon 2020
Program through the ECOSCALE (grant agreement 671632) and SHARCS
(grant agreement 644571) projects as well as by the European Research Council
(ERC) under the MECCA project (Contract No. 340328).

v

List of Publications

Appended publications
This thesis is based on the following publications:

[I] S. Ribes, P. Trancoso, I. Sourdis, C.-S. Bouganis,
“Mapping Multiple LSTM models on FPGAs”,
Int’l Conf. on Field-Programmable Technology (FPT), December, 2020.

[II] S. Ribes, A. Malek, P. Trancoso, I. Sourdis,
“Reliability Analysis of Compressed CNNs”,
Technical Report.

vii

viii

Contents

Abstract iii

Acknowledgement v

List of Publications vii

1 Introduction 1
1.1 Problem Statements . 2

1.1.1 Acceleration of SVD-based multi-LSTMs 2
1.1.2 Reliability Analysis of CNNs Workloads 3

1.2 Thesis Objectives and Contributions 3
1.2.1 Acceleration of SVD-based multi-LSTMs 4
1.2.2 Reliability Analysis of CNNs Workloads 5

1.3 Thesis Outline . 6
References . 6

2 Paper I 9
2.1 Introduction and Motivation . 10
2.2 Background . 11

2.2.1 LSTM Networks . 11
2.2.2 SVD-Based Approximation 12

2.3 Problem Formulation . 13
2.4 Accelerator Design . 15
2.5 Proposed Framework . 17

2.5.1 Methodology . 18
2.5.2 Roofline Model . 19

2.6 Evaluation . 21
2.6.1 Experimental setup . 21
2.6.2 Validation of accuracy, performance and resource models 22
2.6.3 Evaluation of the proposed design 23

2.7 Related Work . 24
2.8 Conclusions . 25
References . 26

ix

x CONTENTS

3 Paper II 29
3.1 Introduction . 30
3.2 Related Work . 31
3.3 Background . 32

3.3.1 Convolutional Neural Networks 32
3.3.2 DNNs Compression . 34
3.3.3 Soft Errors and Accuracy Degradation in DNNs 35

3.4 Design and Methodology . 36
3.4.1 Caffe Macchiato Framework 36
3.4.2 Application Data Regions 37
3.4.3 Sensitivity Analysis and Methodology 38

3.5 Evaluation . 39
3.5.1 Discussion and Limitations 42

3.6 Conclusions . 44
References . 44

A 49
A.1 Distribution of Accuracy Degradation 49

Chapter 1

Introduction

Artificial intelligence and in particular Machine Learning (ML) have gain high
popularity in the recent years. This popularity is due to its outstanding results
in tasks such as image classification, language translation, sentiment analysis
and so on. ML applications rely on Deep Neural Networks (DNNs), special
algorithms which process given inputs through a series of non-linear functions.

The way DNNs are built follows a process called training. In fact, DNNs
can be seen as non-linear function estimators which combine a series of differ-
entiable functions, which may, or may not, include a set of tunable parameters.
Because of that, the network output will depend on the series of functions
and on the values of such parameters. By defining a proper loss function
which associates the network outputs with the expected outputs from a given
probability distribution, one can tune, i.e. train, the network parameters to
model such distribution. In image classification tasks for example, by running
a network through an image set, called training set, and by comparing network
outputs with the labels associated to each image in the set, a DNN can be
trained to classify new unseen images, i.e. outside the training set.

The process of utilizing trained DNNs on novel input data, i.e. never seen
at training time, is defined as inference. Training is typically performed offline,
usually with full precision parameters, and can require days or even weeks
to complete for certain network architectures. Inference on the other hand
requires rapid response times since the network only processes a single input
data (or a small batch), compared to a commonly large training set.

In this thesis we focus on the DNNs inference process. Some of the most
popular networks include Long Short Term Memory (LSTMs) and Convolu-
tional Neural Networks (CNNs). In particular, running inference of LSTMs,
CNNs and ML workloads is in general compute and data intensive. One way of
achieving high performance in inference is through acceleration, typically uti-
lizing GPUs, ASICs or FPGAs. FPGAs in particular can achieve performance
comparable to GPUs, with the advantage of flexibility and high energy efficiency.
Their flexibility often allows to exploit compression techniques applied to DNNs.
In fact, the most common data that DNNs require is in form of matrices or
tensors, which can be compressed, e.g. made sparse. The process of sparsifying
DNNs data without significantly impacting DNNs output is referred as pruning
and consists of an active area of research. Other techniques for compressing

1

2 CHAPTER 1. INTRODUCTION

networks can consist of dimensionality reduction, weight clustering, parameter
quantization, et cetera.

Even when compressed, the large amounts of data that ML applications
require are usually stored in DRAM as they cannot fit on chip. Such data
can be sensitive to attacks or faults, which can lead to Silent Data Corruption
(SDC) faults, i.e. to significant drops in the network output accuracy. In
ML applications running one or multiple DNNs inference processes, faults can
happen in different regions of a network, potentially affecting the output and
so the accuracy of the network. The problem can become even more severe
when the DNN memory footprint is compressed, eventually leading to even
higher accuracy drops.

1.1 Problem Statements

This thesis focuses on two main topics: (i) accelerating and mapping multiple
LSTM models on an FPGA and (ii) the fault tolerance of CNNs applications.

Since LSTM models execution is dominated by vector-matrix multiplications
involving their parameters, i.e. weight and bias values, LSTMs are inherently
memory bound. The problem is further amplified when multiple LSTM networks
are utilized in parallel and accelerated by the same device.

When accelerating CNNs instead, compressing their parameters can lead to
better performance by simply trading-off negligible losses in accuracy. However,
some compression mechanisms can make the networks more sensitive to single
and multi bit flips faults.

1.1.1 Acceleration of SVD-based multi-LSTMs

When accelerating deep neural networks on FPGAs, the limited off-chip memory
bandwidth of a given device may become a significant bottleneck due of the
large amount of data that such applications require. LSTM networks in
particular, not only result in a memory-bound application, but also exhibit
data dependencies across their execution. In fact, compared to other types
of DNNs, LSTMs are best suitable to capture the relations between different
elements in sequences of data, even if “distant” from each. One example of this
are the words in a sentence to be translated: if one attempts to translate “The
cat, which is on the chair, is red ” to Italian, by calling the LSTM on each word,
its internal memory state would easily keep track of the relation between ‘cat’
(a masculine noun in Italian) and the second distant ‘is’ in order to properly
conjugate the adjective ‘red’ to masculine, matching the gender of ‘cat’ (and
not to feminine, which would match the word ‘chair’ in Italian).

One way to tackle the problem of the large memory footprint, and thereby
the data dependency, is approximating the parameters of the given LSTM net-
work, i.e. reducing the amount of data that need to be transferred from and to
main memory. Such approximation can be achieved with numerous techniques,
one of which consists in applying a zero mask to the weight parameters followed
by a retraining step. However, retraining a network is often an expensive task,
both in terms of execution time and compute power. A possible solution that

1.2. THESIS OBJECTIVES AND CONTRIBUTIONS 3

avoids retraining is applying Singular Value Decomposition (SVD) [29, 5, 28]
to the weight matrices of the network.

The parameters of the matrices of LSTMs are typically full rank, meaning
that the full amount of information is encoded in the matrices values. Ap-
plying SVD can reduce the rank of such matrices, thereby filtering excessive
information. Because of that, SVD approximation can significantly compress
the parameter space of an LSTM and has the advantage of being performed
offline. SVD, however, tends to considerably reduce the original accuracy of
the network [10, 3]. On top of that, when machine learning applications utilize
multiple LSTM networks in parallel, e.g. multiple layers on a single device,
time-multiplexing resources, the memory may become a more severe bottleneck.
In such scenarios, SVD alone may not be sufficient to achieve high performance,
thus requiring more advanced algorithms and mechanisms to approximate the
networks parameters.

1.1.2 Reliability Analysis of CNNs Workloads

Safety critical software applications can be found in various domains, like
aerospace, automotive or biomedical, and all demand a high level of fault toler-
ance. Example of such applications are satellite launch, spacecrafts navigation
systems, self-driving cars, medical images devices, et cetera. Because of deep
learning potential and achievements, in recent years DNNs have become an
attractive instrument for the aforementioned applications.

However, it’s hard to efficiently measure the safety of ML applications
running inference, due to their nature of function estimators. On top of that,
ML inference requires large datasets of parameters that are usually stored
in DRAM. DRAM memory cells can be particularly susceptible to faults or
attacks, leading a given ML application to possible crashes or wrong outputs,
e.g. high drops in accuracy, thereby making them even less suitable for safety
critical tasks.

In order to mitigate the problem and design more robust deep learning
applications, ML workloads can be deployed on machines with fixed Error
Correcting Codes (ECCs) DRAM protection. However, such solution suffers
from significant DRAM capacity, latency and energy overheads [19].

With this respect, approximating and/or compressing the network param-
eters can reduce the application memory footprint and in turn improve the
network performance and diminish the ECC size. However, a smaller appli-
cation data region can make the application itself more sensitive to faults.
Because of that, DNNs compression can eventually lead to a less accurate
network, thus requiring costly fault tolerance techniques, i.e. DRAM ECC,
effectively resulting in a vicious cycle.

1.2 Thesis Objectives and Contributions

This thesis is divided in two parts, each of which giving a different set of
contributions, as explained below.

4 CHAPTER 1. INTRODUCTION

1.2.1 Acceleration of SVD-based multi-LSTMs

The objective of the first part of the thesis is to address the problem of
approximating multiple LSTM cells on a single FPGA device so to reduce their
data volume, reduce memory bandwidth pressure and thereby improve their
performance.

Related Work: LSTMs and in general Recurrent Neural Networks (RNNs)
are inherently memory-bounded applications. As such, research has focused
on reducing the amount of data to be either transferred, between the main
memory and the accelerator, or stored, in main memory or directly on the
device.

Early work on compressing LSTMs include ESE [11], which introduces a
load-balancing aware compression methodology based on parameter pruning
and quantization. Such methodology is then exploited by the proposed FPGA
accelerator, able to efficiently process sparse, i.e. pruned, matrices and vectors.

Research in the direction of storing all the parameters on-chip has shown
significant performance gains [4, 15, 25, 24]. In fact, the proposed designs do
not need to access the off-chip memory, since they can accommodate all the
compressed LSTM weights on the device memory. However, this solution is
not viable for large networks.

Finally, a work closer to our approach, which we use to build upon our
contributions, is a SVD-based compression proposed by Kouris et. al. [14] and
Rizakis et. al. [23]. Their solution is applied to LSTMs which are handled
separately by the accelerator, without exploiting possible redundancies in their
weights and thus wasting memory bandwidth.

Thesis Approach: our work takes advantage of the similarities across multiple
LSTMs’ in order to approximate their parameters and reduce the memory
footprint of the entire application. The proposed approximation is based on
a SVD-based algorithm and is included in a framework able to identify the
best design points by trading off performance and network accuracy. After
selecting the best designs, the LSTMs are finally executed on our proposed
FPGA accelerator, written in High Level Synthesis (HLS) language.

Contributions: the thesis contributions reported in the first part can be
summarized as follows:

• an SVD-based algorithm that approximates multiple LSTMs by exploiting
the redundancy of their weight parameters and that does not require any
retraining,

• an FPGA accelerator for executing multiple LSTM models that operate
on a set of synchronized inputs,

• a systematic framework for exploring the large design space that identifies
the best trade-offs in terms of accuracy of the approximated LSTMs and
performance of the FPGA accelerator.

1.2. THESIS OBJECTIVES AND CONTRIBUTIONS 5

1.2.2 Reliability Analysis of CNNs Workloads

The objective of the second part of the thesis is to analyze and investigate the
response to faults, and in turn the tolerance to faults, of highly compressed
DNNs, in particular CNNs. Our final goal is to verify if the conditions for
utilizing an advanced and more scalable ECC protection scheme like Odd-ECC
[19] are met. In fact, if different CNN parameters data have different sensitivity
to faults, one can then take advantage of that and protect the data in DRAM by
using Odd-ECC, which supports variable strength and size ECCs for different
memory regions.

Related Work: Most works on DNN fault tolerance are divided in conducting
a sensitivity analysis of faults targeting accelerators, like GPUs, ASICs and
FPGA, happening in either their datapath [16, 26, 31] or their buffers [22, 16],
or attacks against DNNs storing their parameters in main memory [21, 1], in
particular row hammer, laser beam, gradient descend [17], backdoor [6, 7] or
trojan attacks [30, 32, 2, 18].

Many works analyze not only full precision networks, but also networks
utilizing quantized parameters [22, 16]. In [13], faults are injected in an FPGA
accelerator implementing Binarized Neural Networks (BNN). BNNs represent
an extreme case of network compression where the weights are reduced to either
binary or ternary values (-1, 0 or 1).

Other works also address the general problem of detecting and correcting
faults happening in DNNs accelerators. In Li et al. [16], selective latch
hardening is utilized to detect and correct faults happening in the DNNs
accelerators datapath. Qin et al. [20] instead propose an algorithm for detecting
faults and correct them by setting the affected parameter to zero. They also
introduced a binary representation for real numbers that limits the distortion
caused by bit flips errors. Focusing on ECC mechanisms, the idea of Guan et al.
[8] is to exploit the unused MSB of quantized CNN parameters to store error
check bits. To do so, they developed a new training technique to regularize the
spatial distribution of large weights and thereby control the available unused
space for allocating the ECC bits. A more general approach, i.e. not tailored to
DNNs, for protecting DRAM applications is the one of Malek et al. [19], which
dynamically selects the memory fault tolerance of allocated pages according to
the criticality of the respective data.

The closest work to our research is by Segee et al.[27], in which the authors
test the fault tolerance of a pruned a single-input-single-output feed-forward
neural network.

Thesis Approach: ML acceleration often involves the compression of the
DNN parameters. Techniques such as pruning, weight-sharing and quantization
reduce the amount of data required by the networks. In this work we are
interested in exploring whether such techniques make ML applications and
in particular CNNs more sensitive to faults in specific regions of the reduced
parameter space.

In order to measure the sensitivity of compressed CNNs, we modified Caffe
[12], a popular machine learning framework, to implement Caffe Macchiato,
a framework that applies pruning and weight-sharing to the target network

6 CHAPTER 1. INTRODUCTION

parameters. Caffe Macchiato also exploits Ristretto [9], a forked version
of Caffe, to quantize the network parameters to fixed point representation.
Caffe Macchiato is also able to inject faults in different parts of the ML
applications and collect statistics about the affected accuracy of the networks.
We experimented with different fault types, in particular single and multi bit
flips, injected in either the weight or bias parameters.

Contributions: in this thesis we propose a detailed methodology for compress-
ing CNNs and testing their reliability to faults. In particular, the contribution
of the second part of this thesis are as follows:

• Caffe Macchiato: a framework that provides different compression levels
for deep neural networks and that represents a tool for injecting single
and multi faults,

• a detailed set of fault injection experiments aiming to explore whether
compressing techniques on CNNs, such as pruning, clustering and quanti-
zation, increase their sensitivity to faults, and if so, whether compressed
CNNs have different sensitivity to faults on different parts of their com-
pressed parameter data.

1.3 Thesis Outline
The remainder of the thesis is organized as follows. In Paper I we present our
proposed framework for mapping multiple LSTMs on a FPGA device. Paper
II presents a sensitivity analysis conducted on highly compressed CNNs.

References
[1] Wonseok Choi et al. “Sensitivity based error resilient techniques for energy

efficient deep neural network accelerators”. In: Proceedings of the 56th
Annual Design Automation Conference 2019. 2019, pp. 1–6.

[2] Joseph Clements and Yingjie Lao. “Hardware trojan design on neural
networks”. In: 2019 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE. 2019, pp. 1–5.

[3] Emily L Denton et al. “Exploiting linear structure within convolutional
networks for efficient evaluation”. In: Advances in neural information
processing systems. 2014, pp. 1269–1277.

[4] J. C. Ferreira and J. Fonseca. “An FPGA implementation of a long
short-term memory neural network”. In: 2016 International Conference
on ReConFigurable Computing and FPGAs (ReConFig). 2016, pp. 1–8.

[5] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international
conference on computer vision. 2015, pp. 1440–1448.

[6] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. “Badnets: Iden-
tifying vulnerabilities in the machine learning model supply chain”. In:
arXiv preprint arXiv:1708.06733 (2017).

REFERENCES 7

[7] Tianyu Gu et al. “Badnets: Evaluating backdooring attacks on deep
neural networks”. In: IEEE Access 7 (2019), pp. 47230–47244.

[8] Hui Guan et al. “In-place zero-space memory protection for cnn”. In:
arXiv preprint arXiv:1910.14479 (2019).

[9] Philipp Gysel et al. “Ristretto: A framework for empirical study of
resource-efficient inference in convolutional neural networks”. In: IEEE
transactions on neural networks and learning systems 29.11 (2018),
pp. 5784–5789.

[10] Song Han, Huizi Mao, and William J Dally. “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding”. In: arXiv preprint arXiv:1510.00149 (2015).

[11] Song Han et al. “ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA”. In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. FPGA ’17. Monterey,
California, USA: Association for Computing Machinery, 2017, pp. 75–84.
isbn: 9781450343541. doi: 10.1145/3020078.3021745. url: https:
//doi.org/10.1145/3020078.3021745.

[12] Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature
embedding”. In: Proceedings of the 22nd ACM international conference
on Multimedia. 2014, pp. 675–678.

[13] Navid Khoshavi, Connor Broyles, and Yu Bi. “Compression or Corruption?
A Study on the Effects of Transient Faults on BNN Inference Accelerators”.
In: 2020 21st International Symposium on Quality Electronic Design
(ISQED). IEEE. 2020, pp. 99–104.

[14] Alexandros Kouris et al. “Approximate LSTMs for Time-Constrained In-
ference: Enabling Fast Reaction in Self-Driving Cars”. In: ArXiv abs/1905.00689
(2019).

[15] M. Lee et al. “FPGA-Based Low-Power Speech Recognition with Recur-
rent Neural Networks”. In: 2016 IEEE International Workshop on Signal
Processing Systems (SiPS). 2016, pp. 230–235.

[16] Guanpeng Li et al. “Understanding error propagation in deep learning neu-
ral network (DNN) accelerators and applications”. In: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. 2017, pp. 1–12.

[17] Yannan Liu et al. “Fault injection attack on deep neural network”. In:
2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE. 2017, pp. 131–138.

[18] Yuntao Liu, Yang Xie, and Ankur Srivastava. “Neural trojans”. In: 2017
IEEE International Conference on Computer Design (ICCD). IEEE. 2017,
pp. 45–48.

[19] Alirad Malek et al. “Odd-ECC: on-demand DRAM error correcting codes”.
In: Proceedings of the International Symposium on Memory Systems. 2017,
pp. 96–111.

8 CHAPTER 1. INTRODUCTION

[20] Minghai Qin, Chao Sun, and Dejan Vucinic. “Robustness of neural net-
works against storage media errors”. In: arXiv preprint arXiv:1709.06173
(2017).

[21] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. “Bit-flip attack: Crushing
neural network with progressive bit search”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2019, pp. 1211–1220.

[22] Brandon Reagen et al. “Ares: A framework for quantifying the resilience
of deep neural networks”. In: 2018 55th ACM/ESDA/IEEE Design Au-
tomation Conference (DAC). IEEE. 2018, pp. 1–6.

[23] Michalis Rizakis et al. “Approximate FPGA-Based LSTMs Under Compu-
tation Time Constraints”. In: Applied Reconfigurable Computing. Archi-
tectures, Tools, and Applications - 14th International Symposium, ARC
2018, Santorini, Greece, May 2-4, 2018, Proceedings. 2018, pp. 3–15. doi:
10.1007/978-3-319-78890-6_1. url: https://doi.org/10.1007/
978-3-319-78890-6_1.

[24] V. Rybalkin et al. “FINN-L: Library Extensions and Design Trade-Off
Analysis for Variable Precision LSTM Networks on FPGAs”. In: 2018 28th
International Conference on Field Programmable Logic and Applications
(FPL). 2018, pp. 89–897.

[25] V. Rybalkin et al. “Hardware architecture of Bidirectional Long Short-
Term Memory Neural Network for Optical Character Recognition”. In:
Design, Automation Test in Europe Conference Exhibition (DATE), 2017.
2017, pp. 1390–1395.

[26] F. F. d. Santos et al. “Analyzing and Increasing the Reliability of Convo-
lutional Neural Networks on GPUs”. In: IEEE Transactions on Reliability
68.2 (2019), pp. 663–677.

[27] Bruce E Segee and Michael J Carter. “Fault tolerance of pruned multilayer
networks”. In: IJCNN-91-Seattle International Joint Conference on Neural
Networks. Vol. 2. IEEE. 1991, pp. 447–452.

[28] Yifan Sun et al. “Svdnet for pedestrian retrieval”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 3800–
3808.

[29] Jian Xue, Jinyu Li, and Yifan Gong. “Restructuring of deep neural network
acoustic models with singular value decomposition.” In: Interspeech. 2013,
pp. 2365–2369.

[30] Jing Ye, Yu Hu, and Xiaowei Li. “Hardware trojan in fpga cnn accelerator”.
In: 2018 IEEE 27th Asian Test Symposium (ATS). IEEE. 2018, pp. 68–
73.

[31] Jeff Jun Zhang et al. “Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator”. In: 2018
IEEE 36th VLSI Test Symposium (VTS). IEEE. 2018, pp. 1–6.

[32] Yang Zhao et al. “Memory trojan attack on neural network accelerators”.
In: 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2019, pp. 1415–1420.

Chapter 2

Paper I

S. Ribes, P. Trancoso, I. Sourdis, C.-S. Bouganis,

Mapping Multiple LSTM models on FPGAs,
Int’l Conf. on Field-Programmable Technology (FPT), December,
2020.

Mapping Multiple LSTM
models on FPGAs

Abstract
Recurrent Neural Networks (RNNs) and their more recent variant Long Short-
Term Memory (LSTM) are utilised in a number of modern applications like
Natural Language Processing and human action recognition, where capturing
long-term dependencies on sequential and temporal data is required. However,
their computational structure imposes a challenge when it comes to their
efficient mapping on a computing device due to its memory-bounded nature. As
recent approaches aim to capture longer dependencies through the utilisation
of Hierarchical and Stacked RNN/LSTM models, i.e. models that utilise
multiple LSTM models for prediction, meeting the desired application latency
becomes even more challenging. This paper addresses the problem of mapping
multiple LSTM models to a device by introducing a framework that alters
their computational structure opening opportunities for co-optimising the
memory requirements to the target architecture. Targeting an FPGA device,
the proposed framework achieves 3× to 5× improved performance over state-
of-the-art approaches for the same accuracy loss, opening the path for the
deployment of high-performance systems for Hierarchical and Stacked LSTM
models.

9

10 CHAPTER 2. PAPER I

2.1 Introduction and Motivation

The recent advances in Machine Learning, especially Deep Neural Networks
(DNN), have reignited the interest of researchers and practitioners on Neural
Networks and their variations. With the abundant availability of data and
computational capacity provided by modern GPUs, training of large DNNs
with good generalisation properties became possible and led to unprecedented
performance. Systems that rely on DNNs can efficiently perform a variety
of tasks in applications from computer vision, to image understanding, scene
analysis[3] and Natural Language Processing (NLP)[19].

In the case where long-term dependency capture is desired on sequential
and temporal data, such as in the case of image captioning and NLP, Recurrent
Neural Networks (RNN), a form of Neural Network with feedback connections,
have demonstrated to be a suitable and efficient solution. However, standard
RNNs suffer from vanishing and exploding gradients making their training a
challenging task. An RNN variant, the Long-Short Term Memory (LSTM)
network[9], addresses the above problem by introducing new structures, leading
to their quick adoption in a large number of applications.

In case where the latency or throughput of the developed system is of concern,
the mapping of LSTMs to a computing device is a challenging task, due to
the low computation to communication ratio and the inherent dependencies
in the LSTM operations. An LSTM network is based internally on structures
(i.e. gates) that resemble networks with fully connected layers, that are
manifested through matrix-vector multiplication operations, followed by non-
linear functions. Any exploited parallelism is limited by the computational
dependencies of the LSTM structure (i.e. recurrent connection). Moreover, the
above problem is further amplified when multiple LSTMs need to be deployed
as part of the application in the form of independent parallel executed LSTMs.
Such case is where a number of independent outcomes are required based on
the same input data, or in the utilisation of Stacked LSTMs [21], that extend
the capabilities of LSTMs to longer time intervals. Example of applications
can be found in [32] and [34], where Hierarchical Recurrent Neural Networks
for skeleton-based action recognition are proposed, as well as in [29] where
the authors propose a framework that utilises a two-stream Recurrent Neural
Network pipeline for the task of action recognition. Finally, Li et. al. [18]
propose a hierarchical LSTM model for building coherent long text for natural
language generation and summarization.

Research effort in the efficient mapping of an LSTM to a device has focused
only on the case where a single LSTM is required to be executed at any point
of time [22, 13]. State-of-the-art approaches aim to increase the computation
to communication ratio by reducing the memory accesses and computation cost
through the investigation of parameter quantization and compression, as well
as by pruning of connections (i.e. removing redundant network parameters
[12]). Towards the above effort, the existing space can be divided into methods
that require a re-training stage, allowing the methodologies to produce highly
optimised designs [13], and approaches such as in [22] that assume no availability
of data for retraining, focusing more on the generality of the approach.

This paper departs from the previously published approaches by focusing

2.2. BACKGROUND 11

on the problem of mapping multiple LSTMs in a device, and more specifically
in the case where these LSTMs are independent of each other apart except
that they are part of the same application. Also, focusing on the generality of
the approach, no assumption on the availability of training data is made.

The main contributions of the paper are as follows:

• a methodology is proposed for approximating for the first time multiple
LSTMs together, rather than each separately; the methodology allows
iterative refinement of the LSTMs approximation leading to tunable and
improved computation to communication ratios.

• an approach that exposes the computational and memory capabilities of
the targeted device to the approximation algorithm, through structured
pruning over the introduced refinement stages, leading to an architecture
with improved device utilisation.

To the best of authors’ knowledge this is the first work in the literature that
addresses the important and timely problem of mapping multiple LSTMs on a
device.

2.2 Background

2.2.1 LSTM Networks
An LSTM network processes an input xt and produces an output ht in every
time-step t, where x and h denote vectors. Key to the operation of the LSTM
is its recurrent connection of its output to its hidden units allowing the network
to pass information over a number of time-steps, where regulation of the
information flow is controlled through four modules called gates. Figure 2.1
illustrates the flow of an LSTM, where the details of the LSTM gates are
given in Equation 2.1, where b and � denote a bias vector and the element-
wise multiplication operator. The input gate, it, along with the cell gate ct
determine the amount of input information that propagates to the output
of the network, whereas the forget gate, ft, controls the amount of previous
information that will be maintained by the network. The output gate, ot,
determines how much of the current state will be propagated to the network
output.

The above gates are instantiated through non-linear functions, such as
sigmoid σ(·) or hyperbolic tangent functions tanh(·), that operate on linear
functions of the current input xt and of the previous time-step output ht−1.
Computationally, each gate is based on matrix-vector multiplications, and it is
parameterised with a set of weight matrices, Wcur and Wrec, responsible to
modulate the current input and previous output.

it = σ
(
xt ·Wcuri + ht−1 ·Wreci + bi

)
ft = σ

(
xt ·Wcurf + ht−1 ·Wrecf + bf

)
ct = ft � ct−1 + it � tanh

(
xt ·Wcurc + ht−1 ·Wrecc + bc

)
ot = σ

(
xt ·Wcuro + ht−1 ·Wreco + bo

)
ht = ot � tanh(ct)

(2.1)

12 CHAPTER 2. PAPER I

x
t

Wcur Wrec

σ

h
t-1

Wcur Wrec Wcur Wrec Wcur Wrec

+

σ

+

tanh

+

σ

+

bf bi bc bo

x

x x

tanh x

c
t-1

c
t

h
t

f i

o
c

+

Figure 2.1: LSTM flow for processing output ht and cell state ct at timestep t.

2.2.2 SVD-Based Approximation

Typical DNNs, including LSTMs, utilise matrix-vector multiplication operations
leading to designs whose performance is memory-bounded as a large number
of parameters (i.e. weights matrix) needs to be accessed for the computation
over a single input vector. Techniques to address this problem rely on batching
multiple input vectors, sharing the weights access across multiple inputs, and/or
pruning/approximating the weight matrices, reducing as such the data that
need to be accessed per input. In the case of LSTMs, the former technique
cannot be applied due to their recurrent connections, and effort is placed on
the latter approach in order to improve the computation over communication
ratio.

Possible techniques to prune/approximate the weights matrix include
weights quantization, pruning of certain weights[13], as well as approxima-
tions of the weights matrix through rank-1 decomposition [16].

Decomposition of a matrix through rank-1 approximations expresses a
matrix W as a linear combination of rank-1 matrices. The decomposition
is achieved through the Singular Value Decomposition (SVD) algorithm that
decomposes a given matrix W into 3 orthogonal matrices U, S, V as W =
USVT . The original matrix W can be approximated by selecting to utilise
the first R rank-1 matrices of the decomposition (i.e. the ones that correspond
to the largest eigenvalues), where the SVD algorithm guarantees the optimality
of the approximation under the Mean Square Error (MSE) metric. As such,
the matrix W can be approximated as:

W ≈
R∑
i

si ui vTi

where ui and vi correspond to the ith column and row of the U and VT

matrices respectively, while si is the ith element of the main diagonal of the
diagonal matrix S. The approximation leads to a reduction on the amount of
data that need to be accessed as well as allows the matrix-vector multiplication
computation to be performed through a series of dot-product calculations, as
it will be shown later.

2.3. PROBLEM FORMULATION 13

2.3 Problem Formulation
The work considers the general problem of accelerating the execution of multiple
LSTM models that operate in parallel on synchronised inputs, and the device
of choice is an FPGA. The parameters of the models are assumed to be stored
in the off-chip memory, increasing the applicability of the approach to large
problem sizes. The problem is formulated as follows: given a set of N LSTM
models Mi with weight matrices Wi

type, with type ∈ {curgate, recgate} for
gate ∈ {i, f, o, c}, and a target FPGA device D, derive an implementation that
minimises the latency of their execution. More specifically, the work focuses
on the case of a lossy mapping, where an error in the approximation on the
final results of the computation is allowed but bounded by a user-specified
threshold.

The proposed approach builds upon the work of Rizakis et al. [22], but it
extends their problem formulation to address the case of multiple LSTMs. The
key idea is to provide a decomposition of the weight matrices of the LSTMs
in order to facilitate the necessary computations as a trade-off of latency and
quality of the final result, along side with providing computational structures
that would fully exploit the compute and memory capabilities of the targeted
device.

Towards this, the proposed approach is based on the Singular Value Decom-
position algorithm applied to a set of input matrices W1, ...,WN , producing a
set of rank-1 matrices (i.e. matrices that can be expressed as the product of
two vectors u(i), v(i)) whose linear combination constructs the original input
matrices. Such decomposition guarantees the least error in the approximation
of the input matrices under the Mean Square Error (MSE) metric for a given
number of rank-1 matrices used in the approximation [2].

As such, focusing on our problem formulation, the proposed approach
aims to produce a single set of rank-1 matrices that approximates all the
weight matrices of the same type Wi

type across the N LSTM targeted models.
Thus, our approach allows us to share the u(i) and v(i) components across the
N LSTM models Mj , and in doing so reduces the memory footprint of the
models for a given targeted approximation error. Equation 2.2 indicates the
approximation of a single matrix with R rank-1 matrices, where the type and
gate indices have been dropped for clarity.

WMj ≈
R∑
i=1

sj
(i) �

(
u(i) · v(i)T

)
, j = 1, ..., N (2.2)

Algorithm 1 lists the necessary steps for decomposing N given weight
matrices W1, ...,WN into the R components u(i), sj(i) and v(i). The algorithm
also sparsifies and quantizes such components to improve the mapping to the
device.

The algorithm begins by initializing a set of error matrices E1, ...,EN and
one set of approximated weight matrixes W̃1, ...,W̃N . After initialization,
for each of the refinement steps R, the algorithm first updates the error
matrices by taking the difference between the original matrices and the partially
reconstructed ones, i.e. approximated (line 5). Upon constructing the new
error matrices, at line 6 we apply the decomposition described in [2] to obtain

14 CHAPTER 2. PAPER I

ALGORITHM 1: Decomposition algorithm.
Data: N ×W weight matrices, R number of refinement steps, Tu and Tv number of

tiles, ZTu and ZTv number of tiles to prune.
1 begin
2 Ei ←− 0, i = 1, ..., N

3 W̃i ←− 0, i = 1, ..., N
4 for i in R do
5 Ej ←−Wj − W̃j , j = 1, ..., N

6 u(i), s(i),v(i) ←− decompose(E)
7 for j in ZTu do
8 zu(i)[j]←− argmin

k
{|mean

(
u(i)[k]

)
|}

9 u(i)[zu(i)[j]]←− 0 // pruning
10 end
11 for j in ZTv do
12 zv(i)[j]←− argmin

k
{|mean

(
v(i)[k]

)
|}

13 v(i)[zv(i)[j]]←− 0 // pruning
14 end
15 A←− Q(u(i)) · Q(v(i)T)

16 W̃j ←− Q(W̃j) + Q(s
(i)
j)�A, j = 1, ..., N

17 end
18 end

the u(i), sj(i) and v(i) components. This decomposition aims to minimize the
MSE of the approximated matrices reconstructed from the u(i), sj(i) and v(i)

elements.
It has been shown in the literature that neural networks are able to maintain

their accuracy after the sparsification of their weight matrices, i.e. setting
most of their weight values to zero, thanks to a process called pruning [12]. A
standard de-facto way of pruning a network consists of an iterative process
where a first step applies zero masks to the network matrices, followed by a
fine-tuning step, i.e. retraining process. In this work, we propose a structured
pruning of the u(i) and v(i) vectors that does not require retraining the network.
Please note that sj(i) are scalars and therefore are not pruned. In order to
prune, we first divide the vectors u(i) and v(i) into Tu and Tv tiles respectively.
Afterwards, we select the ZTu tiles from vector u(i) and the ZTv tiles from
v(i) that contain the values with the minimum absolute magnitude, lines 8 and
12. Finally, all the elements of the selected tiles are assigned to zero. Pruning
reduces both the amount of operations needed and the number of tiles, i.e.
weight values, to be accessed.

Furthermore, a quantization operation of the pruned vectors u(i) and v(i)

and the scalars sj(i) (indicated with the Q(·) operator) is performed, before
the algorithm moves to the next refinement step. The quantized vectors are
multiplied together to form a shared matrix A (line 15). The matrix A is then
multiplied by the quantized scalars sj(i) and added to the partial approximation
matrix W̃j .

At the next iteration, the approximation matrices W̃1, ...,W̃N will include
the errors introduced by both the pruning and quatization processes. The
decomposition step will therefore generate components u(i), s(i) and v(i) that

2.4. ACCELERATOR DESIGN 15

account for such errors, minimizing the overall MSE.

2.4 Accelerator Design
In order to accelerate the execution of N LSTM layers, we applied our approxi-
mation algorithm to the weight matrices Wtype, with type ∈ {curgate, recgate}
and gate ∈ {i, f, c, o}. In particular, we approximated the weight matrices of
the same type and gate together, because we empirically found them to have
similar structures. For example, we made all the current forget gates (Wcur

f)
of the N LSTMs share the same u(i) and v(i) vectors (we will refer to this
operation as merging). Merging same type of gate matrices overall yields lower
MSE compared to stacking the gate weight matrices together and then approxi-
mating them. We believe that the reasons for this are twofold: first, the size of
the approximated matrices is smaller, therefore the MSE can decrease quickly
with fewer refinement steps R. Second, the gates across different LSTM models
perform a similar function and so the information filtered out by our algorithm
tends to be the same, thus improving the approximation MSE. Nevertheless,
the above behaviour is application dependent and other constructions should
be considered.

Our FPGA accelerator’s key computation is the approximated vector-
matrix multiplication of the N LSTM inputs with the gate weight matrices, as
exemplified in Equation 2.3, which approximates the multiplication between
the input vectors xtj with the current forget gates weight matrices Wcur

f .

xtj ·W
cur
fj ≈

R∑
i=1

(
xtj · u

(i)
f

)
· sf (i)j

)
� v(i)

f , j = 1, ..., N (2.3)

The matrix-vector multiplication is effectively decomposed in three parts:
a dot product (xtj · u(i)), a scalar-scalar multiplication (·sf (i)j) and finally a
scalar-vector multiplication (�v(i)

f). Equation 2.3 is applied to both the current
and the recurrent gates of the LSTMs, just by using, for the recurrent gates,
the previous output ht−1

j and the properly sized vector components. Notice
that all the elements of the equation are quantized and that the vectors u(i)

and v(i) are also pruned. A visual example of the R dot products of Equation
2.3 is depicted in Figure 2.2. In this example all the u(i) vectors contain exactly
two non-pruned tiles and two pruned tiles. The pruned tiles of the u(i) vectors
are dashed. Only the non-pruned tiles participate to the final computation,
thereby saving time and resources required to perform the product.

The accelerator is designed in a dataflow fashion, illustrated in Figure 2.3.
Inputs and weights are stored in the DRAM external memory and fed to the
FPGA accelerator through the four available high performance AXI ports which
are directly connected to the memory controller. Each AXI port is connected
to a Direct Memory Access (DMA) unit that feeds the processing kernels with
the respective data. The accelerator is composed of the following main building
blocks:

a) SVD-Kernels: they are responsible of the execution of the approximated
matrix-vector operation of the LSTM gates, as reported in Equation 2.3.

16 CHAPTER 2. PAPER I

... ...

Figure 2.2: Reduce products xtj · u(i) with R = 8, Tu = 4 and ZTu = 2.

There are a total of 8 kernels, 4 for the current matrices of the LSTM
gates and 4 for the recurrent ones.

b) Input DMAs and tiles dispatchers : they are in charge of transferring the
inputs of the two LSTMs from main memory to the correct engines. In
addition, they offer temporary on-chip buffers to store the N LSTMs’
inputs xtj and ht−1

j maximizing data reuse. Only the tiles corresponding
to the non-pruned u-vector tiles are then read from the buffers and
broadcasted into the MAC units of the SVD-kernels.

c) u, s, v DMAs: these DMA units fetch the non-zeroed tiles of the u(i),
v(i), sj(i) weight vectors to be streamed into the SVD-kernels.

d) σ-Kernels: their task is to apply the gate biases and the required non
linear operations, listed in Equation 2.1, to the product of the inputs
with the approximated weight matrices. There are N σ-kernels, one for
each LSTM.

e) σ DMAs: these DMAs supply the data to the σ-kernels, i.e. the bias
vectors and the previous LSTMs cell states. They also are used to write
back the final computation to main memory.

The block diagram of the input DMA, tiles dispatchers and SVD-kernel is
shown in Figure 2.4. The SVD-kernel computes Equation 2.3 and is composed
of two types of units: U-unit and V-unit. Within the kernel, there are N
U-units and N V-units. The U-units are responsible for computing the dot
product reported in Equation 2.4.

xu
(i)
j = xtj [nzu

(i)
k] · u(i)[nzu

(i)
k],

j = 1, ..., N ; k = 1, ..., Tu − ZTu
(2.4)

Each U-unit includes Tu − ZTu parallel multiply-accumulate blocks and an
adder tree. In order for the U-units to perform their computation, the N input

2.5. PROPOSED FRAMEWORK 17

-KERNELS

u, s, v DMAs

 DMA
& DISPATCHER

 DMAs

FPGA

M
EM

O
RY

C
O

N
TR

O
LL

ER

 DMA
& DISPATCHER

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

SVD-KERNEL

i GATE f GATE c GATE o GATE

SVD-KERNEL

SVD-KERNEL

Figure 2.3: The proposed dataflow accelerator architecture. The approximated
current and recurrent LSTMs gates are processed in parallel by eight SVD-
kernels. The σ-kernels compute the final steps of the LSTMs algorithm. The
DMAs stream the required inputs and weights from memory to the kernels.

tiles dispatcher supply the non-pruned input tiles, while the u(i) tile dispatcher
broadcasts the non-pruned tiles. Thanks to the list of indexes nzu the N input
tiles dispatchers read the input tiles corresponding to the non-pruned tiles of
u(i) and then stream them from their on-chip buffers to the respective MACs
within the corresponding U-unit (recall Figure 2.2).

The N ×R scalars xu
(i)
j produced by the U-units are then multiplied by the

s
(i)
1 , ..., s

(i)
j scalar components and forwarded to the kernel’s V-units as xs

(i)
j .

The V-units perform the operations in Equation 2.5, i.e. the last step of the
approximation process.

xtj · W̃j ≈
R∑
i=1

xs
(i)
j � v(i)[nzv

(i)
k]

j = 1, ..., N ; k = 1, ..., Tv − ZTv

(2.5)

Like for the U-units, there is a weight dispatcher which is in charge of supplying
the V-unit’s MACs with the non-pruned v(i) vector tiles. In order to multiply
and accumulate the x(i)sj scalars with the non-pruned v(i) weight elements, each
V-unit utilizes a partitioned accumulation buffer. The buffer is partitioned
tile-wise to allow parallel access to it from the MACs. Once the refinement
steps are completed, the V-units stream out the final approximated products
xtj · W̃j from their accumulation buffers.

Finally, the results of the SVD-kernels are streamed to the σ-kernels for
applying the last non-linear functions required by the LSTMs.

2.5 Proposed Framework
In this section we describe a framework for identifying the combination of
design parameters which best tradeoff the accuracy and execution time of
accelerating N LSTM models. The initial part of the section describes our
methodology, while the next and final one details the roofline model we use to
estimate the performance of our accelerator during the design space exploration
phase.

18 CHAPTER 2. PAPER I

x
x

x DMA &
DISPATCHER

U-UNIT x V-UNIT

 WEIGHT TILES
DISPATCHER

DMA

 WEIGHT TILES
DISPATCHER

DMA

DMA

u, s, v DMAs

DMA DMA

...

MAC

MAC

MAC

...

MAC

SH
AR

ED
BU

FF
ER

S

MAC

MAC

MAC

...

MAC

AC
C

U
M

U
LA

TI
O

N
 B

U
FF

ER

 DMA &

DISPATCHER

INPUT
DMA

IN
PU

T
BU

FF
ER

S

MAC

+

MAC

+

...

+

+

+

+

+

+

MAC

MAC

MAC

+

MAC

+

...

+

+

+

+

+

+

MAC

MAC

IN
PU

T
TI

LE
S

D
IS

PA
TC

H
ER

Figure 2.4: Dataflow architecture of one of the eight SVD-kernels for processing
four LSTMs. The kernel is composed of two types of sub-blocks, the U-Unit
and the V-Unit. There is one set of U-Unit and V-Unit per input. All U-Units
(V-Units) are fed by the same u(i) DMA and u(i) weight tiles dispatcher (v(i)

DMA and v(i) weight tiles dispatcher), since the u(i) and v(i) vectors are shared
across the different LSTMs.

2.5.1 Methodology
There is a large number of design parameters, i.e. number of refinement steps,
tile size, pruning percentage and quantization (detailed in Table 2.1), each
having a large range of possible options, which make the design space huge and
impractical to search exhaustively. We have defined the following methodology
to select one, or at most a few, design points, which are promising for achieving
a good performance-accuracy trade-off and fit in the target FPGA device.

First, we set particular performance and accuracy goals, as well as the
resource constraints for our target design. Designs with accuracy below a
certain threshold or excessive need for resources are not further considered.
However, measuring actual accuracy requires heavy application-level simulation
of the particular design point. Similarly, measuring actual resource requirements
and performance requires a design implementation, which is time consuming.
Our experiments indicate that the most critical and limited device resources are
the DSP slices and BRAMs, for which analytical models have been developed.
The proposed approach adopts analytical models that provide indications for
accuracy, need for critical resources, as well as for performance for each design
point. Based on these models we select the most promising design points for
further evaluation and eventually implementation.

Second, we search the design space based on the accuracy criterion. We
get an indication of the accuracy drop compared to the original application
(before SVD approximation, pruning and quantization, etc.) using the average
Mean Square Error (MSE) between the original stacked weight matrices W

2.5. PROPOSED FRAMEWORK 19

Table 2.1: List of design parameters of the framework.

Symbol Description
R Amount of refinement steps.
Tu Number of tiles of the u(i) vectors.
ZTu Number of pruned tiles of the u(i) vectors.
Tv Number of tiles of the v(i) vectors.
ZTv Number of pruned tiles of the v(i) vectors.
B Byte size of the quantized LSTM’s input and weight values.

and the SVD approximated ones W̃, defined in Equation 2.6. Subtraction and
square operations are performed element-wise.

MSE(W,W̃) = mean
(
(W− W̃)2

)
(2.6)

Our conjecture, confirmed in the next section, is that a small MSE is a
necessary condition for low accuracy drop. Consequently, design points with
MSE below a MSE threshold (TMSE) are selected for further evaluation. These
design points are subsequently selected for simulation in order to measure their
actual accuracy drop. Out of those, the design points with actual accuracy
drop below our accuracy threshold (Tacc) are selected to continue in the next
step of our design space exploration process.

Third, the design points that passed the accuracy check are then evaluated
for their resource requirements and performance. In order to avoid generating a
hardware implementation for all of them, the need for DSP slices and BRAMs
is estimated. Designs that need more critical resources than available on the
device are dropped. Subsequently, the attainable performance based on our
roofline model (described in the following subsection) is used to estimate their
execution time as in Equation 2.7.

texe =
Nops

Attperf

[
Ops

Ops/s

]
(2.7)

The designs with the lowest attainable execution time are finally imple-
mented in the FPGA board at hand and their actual performance is measured.

2.5.2 Roofline Model

For estimating the execution time of our FPGA accelerator we derive a roofline
model for calculating the attainable performance of the possible designs [30,
33]. The attainable performance is defined in Equation 2.8 as the minimum
value between the Computational Performance (CP) and the product between
the maximum available bandwidth of the system Bw and the Communication
To Computation ratio (CTC).

Attperf = min
{
CP, CTC ·Bw

}[Ops
s

]
(2.8)

20 CHAPTER 2. PAPER I

The CP can be estimated as in Equation 2.9, where Nops and Ncycles are
the total number of performed fixed point operations and the estimated amount
of execution cycles, respectively.

CP =
Nops

Ncycles · 1
fclk

[
Ops

s

]
(2.9)

For our accelerator, the amount of required operations is reported in Equa-
tion 2.10. In an LSTM there are four gates, each including a pair of current and
recurrent matrices, giving 8 matrices in total, four of which having dimension
I ×H and four H ×H. The U-units and V-units perform a series of MAC
operations, so 1 MAC corresponds to two operations. The amount of non-linear
operations on each hidden value is estimated to be equal to 24, leading to
Nopsσ amount of operations for the σ-kernel.

Nops = N · (Nopsu +Nopss +Nopsv +Nopsσ)

= N · (Nopsu +R · 8 +Nopsv + 24 ·H)

Nopsu = R ·
(
4 · (Tu − ZTu) ·

(I
Tu

+
H

Tu

))
· 2

Nopsv = R · 8 · (Tv − ZTv) ·
H

Tv
· 2

(2.10)

In order to finally compute the CP value, we need to estimate the required
execution cycles, i.e. the accelerator’s latency. The accelerator’s latency is
reported in Equation 2.11. Since the accelerator is designed in a dataflow
fashion, we only consider the slowest accelerator’s module and therefore the
overall latency will be the maximum latency value among the hardware modules.
Please notice that each LSTM weight matrix is mapped to a different SVD-
kernel, so there are 8 SVD-kernels in total running in parallel. The N inputs,
corresponding to N LSTM models, are also processed in parallel within each
SVD-kernel.

Ncycles = max
{
Ulatency, Slatency, Vlatency, σlatency

}
= max

{
Ulatency, R, R (Tv − ZTv), 7

H

Tv

}
Ulatency = R max

{ I

Tu
,
H

Tu
, log2(Tu − ZTu)

} (2.11)

The last value we need for calculating the attainable performance is the
CTC, which is reported in Equation 2.12. The CTC is defined as the ratio
between the total number of operations Nops in Equation 2.10 and the total
amount of transferred data (in Bytes), reported in Equation 2.13.

CTC =
Nops

in+ out+ w + nz + bias

[
Ops

Byte

]
(2.12)

2.6. EVALUATION 21

in+ out = N ·
(
(I +H) + 2 H

)
·B

nz + bias = R · 8 · (Tu + Tv)/8 + 4 ·H ·N ·B
w = usize + ssize + vsize

usize = R · 4 · (Tu − ZTu) ·
(I
Tu

+
H

Tu

)
·B

ssize = R · 8 ·N ·B
vsize = R · 8 · (Tv − ZTv) ·H/Tv ·B

(2.13)

The values that need to be read and written are divided in several groups.
The in and out values comprise the input and output vectors for the N LSTM
models. The weights that the accelerator requires are the bias values, the
non-zero indexes nz (which are bit vectors of size proportional to the amount
of tiles Tu and Tv) and finally the approximated weight values w. The value
of w includes the u, s and v components, which sizes are referred to as usize,
ssize and vsize.

2.6 Evaluation
In this section we describe the experimental setup and present a validation of
the models described in the previous section followed by the evaluation of the
proposed design in terms of performance and obtained accuracy.

2.6.1 Experimental setup
For the evaluation of the proposed framework, a multiple LSTM model that is
trained for the Fashion MNIST dataset [31] is utilised. The Fashion MNIST
dataset is a drop-in substitute for the MNIST dataset, but the classification
task is considered more challenging [6, 1]. The targeted network model consists
of two main branches, each containing an LSTM model [14]. For performance
results, the software runs on the Processing System (PS) of the FPGA, which
features four Cortex-A53 MPCore processors, ARMv8 architecture, running
at 1.2GHz. The accuracy was tested by plugging in our HLS implementation
to the Keras execution flow. The neural network was modeled in Keras 2.2.4
using Tensorflow 1.13.1 as a back-end.

For the evaluation of the proposed hardware architecture (denoted as
SVDn-HW), we used a Xilinx Zynq UltraScale+ MPSoC ZCU104 FPGA. In
order to generate the description of the hardware module from its high-level
representation, we used Xilinx SDSoC 2018.3 tool.

We compared our proposed system against two software and two hardware
implementations:

• LSTM-SW: Software implementation of baseline LSTM models using
GEMV function from OpenBLAS library. Float32 values are used for
both activations and weights.

• LSTM-HW: Hardware (FPGA) implementation of baseline LSTM models
comprised of 8 parallel 1D systolic arrays for the dense matrix-vector
computation (loosely inspired by [8]), followed by a non-linear unit.

22 CHAPTER 2. PAPER I

10 2 10 1

MSE

0

20

40

60

80

Ac
cu

ra
cy

 D
ro

p
[%

]

float-32
fix-16
fix-8

0.002250.00250

0.0

2.5

5.0

7.5

Figure 2.5: Correlation between accuracy drop and MSE of the approximation.

• SVDn-SW: Software implementation of the SVD optimization of the
LSTM models that utilizes the same weight values of SVDn-HW before
quantization. SVDn-SW performs computations on dense weight matrices,
despite having many zero values since the OpenBLAS library does not
support sparse computation.

• SVD1-HW: A hardware (FPGA) implementation following the design
methodology described in [22], where the mapping of each LSTM model
is optimised in isolation.

2.6.2 Validation of accuracy, performance and resource
models

Next, we present a brief validation of the accuracy, performance and resource
models presented in Section 2.5.

Regarding the validation of the accuracy model, in Figure 2.5 we show
different design points for the proposed architecture characterized by the
(average) MSE of its approximated LSTM weight matrices and the accuracy
drop of the result, when compared to the correct output. Note that in this
Figure we include design points for 32-bit floating-point as well as 8- and 16-bit
fixed point implementations.

In general, it is possible to observe that the lower accuracy drop occurs for
the lower values of MSE. Nevertheless, there are design points where a low
MSE results in high accuracy drop. Consequently, choosing a design point
with low MSE is a necessary but not sufficient condition for achieving a low
accuracy drop of the result. An in-depth view is shown with the expansion of
the bottom left corner, where it is possible to observe a correlation between
the MSE and the accuracy drop. The values in that region are though very
small, with very small differences between themselves. The red triangles in the
expanded section show the design points that we have selected to explore in
more detail.

Figure 2.6 shows the roofline model of our accelerator processing two LSTM
layers. The design points in the roofline have different parametrizations of the
elements reported in Table 2.1. We can notice that most of the design points hit
the bandwidth limit, meaning that the computation is mainly memory-bound.
The points highlighted by red triangles are the ones selected in Figure 2.5

2.6. EVALUATION 23

1.78 1.81 1.84 1.87 1.90 1.93 1.96 1.99
CTC [Ops/Byte]

16.5

17.0

17.5

18.0

18.5

At
ta

in
ab

le
 P

er
fo

rm
an

ce
 [G

Op
/s

]

Max Bandwidth (9.36 GB/s)

Figure 2.6: Roofline model for our FPGA accelerator processing two LSTM
layers with I = 1024 and H = 512.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized measured execution time

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
es

itm
at

ed
 e

xe
cu

tio
n

tim
e Design points

Figure 2.7: Normalized observed execution time versus estimated execution
time.

based on accuracy. Based on the attainable performance of the roofline model,
the validation of the execution time estimation model (in equation 2.7) is
depicted in Figure 2.7. The estimated and measured values of execution time
are normalized to each one’s corresponding largest value. From this Figure it is
possible to observe a high correlation between the estimated and the measured
execution time, thus allowing us to use the model as a way to predict which
designs achieve higher performance.

Lastly we validated the model for hardware resources. The DSP utilization
estimate perfectly matches the count reported in place and route. The estimated
BRAM usage shows a 1% relative error on average when compared with HLS
reports and 18% versus post place and route results. We believe that the
high error compared to post place and route BRAM utilization is because the
Xilinx SDSoC 2018.3 tool introduces (when available) additional BRAMs for
optimizations, which are hard to foresee and accurately estimate.

2.6.3 Evaluation of the proposed design

Next, the evaluation of the proposed design is presented in terms of execution
time and accuracy drop of the output result and compare it to the alternative
designs. The results are shown in Figure 2.8. The first observation is that, as
expected, the baseline implementations without approximation (LSTM-SW
and LSTM-HW) are the only ones achieving a 0% accuracy drop. Nevertheless,

24 CHAPTER 2. PAPER I

0 1 2 3 4 5 6
Accuracy Drop [percentage points]

102

103

Ob
se

rv
ed

 E
xe

cu
tio

n
Ti

m
e

[m
s]

SVDn-HW
SVDn-SW
SVD1-HW [9]
LSTM-HW
LSTM-SW

Figure 2.8: Actual exec. time vs. accuracy drop. Orig. network accuracy is
84.4%.

this is achieved at a high latency, higher than any other design presented.
Another expected observation is the fact that all SVDn-SW points have a
higher latency than the corresponding SVDn-HW points. The difference
observed ranges between a factor of 3.1× and 5.6×. Another interesting
comparison is between the proposed SVDn-HW and the previously proposed
SVD1-HW. In particular, it can be observed that the fastest SVDn-HW design
is 1.7× faster than the fastest SVD1-HW, considering all plotted points have
acceptable accuracy. The most accurate SVDn-HW design has 14x lower
accuracy drop than the most accurate SVD1-HW, considering all plotted points
have acceptable performance. This is explained by the fact that SVD1-HW
applies a similar SVD-based methodology as our approach but does not exploit
possible redundancies between weight matrices across LSTM models. As there
is a trade-off between accuracy drop and performance, the best SVDn-HW
design in the pareto-front is 2× faster and 4.5× more accurate than the best
SVD1-HW.

2.7 Related Work

Significant research effort has been focused on the efficient mapping of com-
putationally heavy Convolutional Neural Networks on devices, leading to a
number of automated toolchains [27][25, 26] and compression methods [28,
15, 12]. In contrast to the CNN mapping, mapping of Recurrent Neural Net-
works and their variants (LSTMs) pose different challenges as the systems are
memory-bounded.

As such, previous research aiming to address the memory-bound limitation
of accelerating the execution of given LSTM models have focused in the
reduction of either the data volume transferred between the off-chip memory
and accelerator, or the amount of data that needs to be stored, thus enabling
their complete storage on device. Early representative works in this area are [5,
11]. Common investigated techniques include parameter pruning, parameter
sharing, and compression using lossy and lossless schemes. In parallel, effort
has been put on the design of accelerator architectures that support the sparsity
of the data and the computational patterns introduced by those compression
methods[12, 13].

In the case where the LSTM optimisation can be considered during the

2.8. CONCLUSIONS 25

training stage, research effort has focused on the extreme quantization of the
parameters even to binary values[23]. However, the underlying assumption of
availability of training data prohibits the application of those approaches in a
large number of cases. Thus, effort has been placed on approaches that can be
applied post-training. ESE [13] propose a load-balancing aware compression
methodology, along-side an FPGA-specific architecture for speech processing.
The compression scheme is based on parameter pruning and quantization,
where their proposed architecture can operate directly with irregular patterns.
To further address load balancing challenges stemmed from sparse parameter
matrices, [20] and [4] propose novel sparse matrix formats, which allow improved
load balancing capabilities across the processing elements. Nevertheless, even
though the above methods do not require a training step, access to the training
data is required for the pruning and the fine-tuning of the weights in order
to achieve minimum penalty on the accuracy. Significant performance gains
have been reported for custom hardware-based solutions in the case where
the on-chip device memory can accommodate the parameters of the LSTM
model, removing as such the requirement of accessing off-chip memory [7, 17,
24, 23]. However, such assumption severely restricts the application of these
approaches and only few works [5, 11, 10, 13] address the general problem
where the parameters of the compressed LSTM model do not fit in the on-chip
memory, as is the case of the work presented in this paper.

Closer to this work are the works by Kouris et. al. [16] and Rizakis et. al.
[22], that propose an SVD-based refining scheme for the approximation of the
LSTM weight matrices.

The proposed work considers the more complex problem of mapping on
a computing device multiple LSTM models that operate on synchronised
inputs. The work focuses on exploiting any redundancies within and across
the parameters of the models in order to produce a mapping that co-optimised
the execution of all models. Previous pruning-based approaches can be used
to further extend the impact of the proposed work through their application
on each refinement stage, leading towards sparse computations, rather than
aiming for a structured sparsity.

2.8 Conclusions
The paper presented a framework for the efficient mapping of multiple LSTMs
on an FPGA device. By altering the structure of the computations it allows
the co-optimisation of the scheduling of such computations and the underlying
hardware parameters, while taking into account the resource constraints of
the targeted device. The presented methodology offers the first compression
scheme across multiple LSTM models. It offers better accuracy and performance
compared to handling each LSTM separately and can be integrated with other
existing lossy and lossless compression approaches. Even though a structured
pruning approach is investigated in this work, the framework can be extended
to allow a hybrid approach where each tile can be expressed through a sparse
structure, allowing as such a finer design space exploration of the performance
and computation to communication ratio.

26 CHAPTER 2. PAPER I

References
[1] Basic classification: Classify images of clothing. https://www.tensorflow.

org/tutorials/keras/classification. Accessed: 2020-11-13.

[2] Christos-S Bouganis et al. “Synthesis and optimization of 2D filter designs
for heterogeneous FPGAs”. In: ACM Transactions on Reconfigurable
Technology and Systems (TRETS) 1.4 (2009), pp. 1–28.

[3] W. Byeon et al. “Scene labeling with LSTM recurrent neural networks”.
In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). 2015, pp. 3547–3555.

[4] Shijie Cao et al. “Efficient and Effective Sparse LSTM on FPGA with
Bank-Balanced Sparsity”. In: Proceedings of the 2019 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays. FPGA ’19.
Seaside, CA, USA: Association for Computing Machinery, 2019, pp. 63–
72. isbn: 9781450361378. doi: 10.1145/3289602.3293898. url: https:
//doi.org/10.1145/3289602.3293898.

[5] A. X. M. Chang and E. Culurciello. “Hardware accelerators for recurrent
neural networks on FPGA”. In: 2017 IEEE International Symposium on
Circuits and Systems (ISCAS). 2017, pp. 1–4.

[6] Fashion-MNIST. https://github.com/zalandoresearch/fashion-
mnist. Accessed: 2020-11-13.

[7] J. C. Ferreira and J. Fonseca. “An FPGA implementation of a long
short-term memory neural network”. In: 2016 International Conference
on ReConFigurable Computing and FPGAs (ReConFig). 2016, pp. 1–8.

[8] Johannes de Fine Licht, Grzegorz Kwasniewski, and Torsten Hoefler.
“Flexible Communication Avoiding Matrix Multiplication on FPGA with
High-Level Synthesis”. In: The 2020 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays. 2020, pp. 244–254.

[9] K. Greff et al. “LSTM: A Search Space Odyssey”. In: IEEE Transactions
on Neural Networks and Learning Systems 28.10 (2017), pp. 2222–2232.

[10] Y. Guan et al. “FP-DNN: An Automated Framework for Mapping Deep
Neural Networks onto FPGAs with RTL-HLS Hybrid Templates”. In:
2017 IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). 2017, pp. 152–159.

[11] Y. Guan et al. “FPGA-based accelerator for long short-term memory
recurrent neural networks”. In: 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). 2017, pp. 629–634.

[12] Song Han, Huizi Mao, and William J Dally. “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding”. In: arXiv preprint arXiv:1510.00149 (2015).

REFERENCES 27

[13] Song Han et al. “ESE: Efficient Speech Recognition Engine with Sparse
LSTM on FPGA”. In: Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. FPGA ’17. Monterey,
California, USA: Association for Computing Machinery, 2017, pp. 75–84.
isbn: 9781450343541. doi: 10.1145/3020078.3021745. url: https:
//doi.org/10.1145/3020078.3021745.

[14] Hierarchical RNN (HRNN) to classify MNIST digits. https://github.
com/keras-team/keras/blob/master/examples/mnist_hierarchical_
rnn.py. Accessed: 2020-06-08.

[15] A. Kouris, S. I. Venieris, and C. Bouganis. “CascadeCNN: Pushing the
Performance Limits of Quantisation in Convolutional Neural Networks”.
In: 2018 28th International Conference on Field Programmable Logic and
Applications (FPL). 2018, pp. 155–1557.

[16] Alexandros Kouris et al. “Approximate LSTMs for Time-Constrained In-
ference: Enabling Fast Reaction in Self-Driving Cars”. In: ArXiv abs/1905.00689
(2019).

[17] M. Lee et al. “FPGA-Based Low-Power Speech Recognition with Recur-
rent Neural Networks”. In: 2016 IEEE International Workshop on Signal
Processing Systems (SiPS). 2016, pp. 230–235.

[18] Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. “A Hierarchical Neu-
ral Autoencoder for Paragraphs and Documents”. In: arXiv preprint
arXiv:1506.01057 (2015).

[19] Tomas Mikolov et al. “Recurrent neural network based language model”.
In: INTERSPEECH 2010, 11th Annual Conference of the International
Speech Communication Association, Makuhari, Chiba, Japan, September
26-30, 2010. Ed. by Takao Kobayashi, Keikichi Hirose, and Satoshi
Nakamura. ISCA, 2010, pp. 1045–1048. url: http://www.isca-speech.
org/archive/interspeech%5C_2010/i10%5C_1045.html.

[20] J. Park et al. “Balancing Computation Loads and Optimizing Input Vector
Loading in LSTM Accelerators”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (2019), pp. 1–1.

[21] Razvan Pascanu et al. “How to construct deep recurrent neural networks”.
English (US). In: Proceedings of the Second International Conference on
Learning Representations (ICLR 2014). 2014.

[22] Michalis Rizakis et al. “Approximate FPGA-Based LSTMs Under Compu-
tation Time Constraints”. In: Applied Reconfigurable Computing. Archi-
tectures, Tools, and Applications - 14th International Symposium, ARC
2018, Santorini, Greece, May 2-4, 2018, Proceedings. 2018, pp. 3–15. doi:
10.1007/978-3-319-78890-6_1. url: https://doi.org/10.1007/
978-3-319-78890-6_1.

[23] V. Rybalkin et al. “FINN-L: Library Extensions and Design Trade-Off
Analysis for Variable Precision LSTM Networks on FPGAs”. In: 2018 28th
International Conference on Field Programmable Logic and Applications
(FPL). 2018, pp. 89–897.

28 CHAPTER 2. PAPER I

[24] V. Rybalkin et al. “Hardware architecture of Bidirectional Long Short-
Term Memory Neural Network for Optical Character Recognition”. In:
Design, Automation Test in Europe Conference Exhibition (DATE), 2017.
2017, pp. 1390–1395.

[25] S. I. Venieris and C. Bouganis. “fpgaConvNet: A Framework for Mapping
Convolutional Neural Networks on FPGAs”. In: 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). 2016, pp. 40–47.

[26] S. I. Venieris and C. Bouganis. “fpgaConvNet: Mapping Regular and Irreg-
ular Convolutional Neural Networks on FPGAs”. In: IEEE Transactions
on Neural Networks and Learning Systems 30.2 (2019), pp. 326–342.

[27] Stylianos I. Venieris, Alexandros Kouris, and Christos-Savvas Bouganis.
“Toolflows for Mapping Convolutional Neural Networks on FPGAs: A
Survey and Future Directions”. In: ACM Comput. Surv. 51.3 (June 2018).
issn: 0360-0300. doi: 10.1145/3186332. url: https://doi.org/10.
1145/3186332.

[28] Erwei Wang et al. “Deep Neural Network Approximation for Custom
Hardware: Where We’ve Been, Where We’re Going”. In: ACM Comput.
Surv. 52.2 (May 2019). issn: 0360-0300. doi: 10.1145/3309551. url:
https://doi.org/10.1145/3309551.

[29] Hongsong Wang and Liang Wang. “Modeling Temporal Dynamics and
Spatial Configurations of Actions Using Two-Stream Recurrent Neural
Networks”. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017. IEEE
Computer Society, 2017, pp. 3633–3642. doi: 10.1109/CVPR.2017.387.
url: https://doi.org/10.1109/CVPR.2017.387.

[30] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline:
an insightful visual performance model for multicore architectures”. In:
Communications of the ACM 52.4 (2009), pp. 65–76.

[31] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. Aug. 28,
2017. arXiv: cs.LG/1708.07747 [cs.LG].

[32] Yong Du, W. Wang, and L. Wang. “Hierarchical recurrent neural network
for skeleton based action recognition”. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1110–1118.

[33] Chen Zhang et al. “Optimizing fpga-based accelerator design for deep
convolutional neural networks”. In: Proceedings of the 2015 ACM/SIGDA
international symposium on field-programmable gate arrays. 2015, pp. 161–
170.

[34] S. Zhang, X. Liu, and J. Xiao. “On Geometric Features for Skeleton-Based
Action Recognition Using Multilayer LSTM Networks”. In: 2017 IEEE
Winter Conference on Applications of Computer Vision (WACV). 2017,
pp. 148–157.

Chapter 3

Paper II

S. Ribes, A. Malek, P. Trancoso and I. Sourdis,

Reliability Analysis of Compressed CNNs,
Technical Report.

Reliability Analysis of
Compressed CNNs

Abstract
The use of artificial intelligence, Machine Learning and in particular Deep
Learning (DL), have recently become a effective and standard de-facto solution
for complex problems like image classification, sentiment analysis or natural
language processing. In order to address the growing demand of performance of
ML applications, research has focused on techniques for compressing the large
amount of the parameters required by the Deep Neural Networks (DNN) used
in DL. Some of these techniques include parameter pruning, weight-sharing, i.e.
clustering of the weights, and parameter quantization. However, reducing the
amount of parameters can lower the fault tolerance of DNNs, already sensitive
to software and hardware faults caused by, among others, high particles strikes,
row hammer or gradient descent attacks, et cetera. In this work we analyze the
sensitivity to faults of widely used DNNs, in particular Convolutional Neural
Networks (CNN), that have been compressed with the use of pruning, weight
clustering and quantization. Our analysis shows that in DNNs that employ all
such compression mechanisms, i.e. with their memory footprint reduced up to
86.3×, random single bit faults can result in accuracy drops up to 13.56%.

29

30 CHAPTER 3. PAPER II

3.1 Introduction

In recent years, artificial intelligence, machine learning and in particular deep
learning have seen a steady growth in popularity thanks to their ground-
breaking results. An example of this can be found in Deep Neural Networks
(DNN) and in particular Convolutional Neural Networks (CNNs), a special
kind of DNN models. CNNs revolutionized the field of computer vision by
classifying with high accuracy images from a large set of possible classes. CNNs
do so by repeatedly tensor-multiplying an input image with a set of parameters,
called weights. The resulting tensor can be then further multiplied for the next
set of weights. This is process is repeated for a certain amount of steps, or
layers, each characterized by its own weight parameters. The final result of the
data processed throughout the layers is a probability vector that highlights the
corresponding class which the image belongs to.

In order to achieve their high accuracy, CNNs go through a process called
supervised training, which effectively tunes their parameters by aiming at
minimizing the error between expected image labels (training images) and the
ones produced by the network. Once trained, a CNN can be utilized to classify
images never seen during training. The use and execution of trained networks
is usually referred as inference.

Since CNNs, and DNNs in general, are typically composed of several layers,
made of thousands of weights each, running DNNs inference requires a significant
amount of memory accesses, eventually making the memory a performance
bottleneck. Because of that, accelerating DNNs on general purpose CPUs,
GPUs and FPGAs had proved being a challenging task. This drove a lot of
research effort into compressing the memory footprint of DNNs in order to
improve their performance at inference time in terms of execution time.

However, compressing DNNs, and in particular CNNs, can make the net-
works more sensitive to faults and attacks. For instance, a CNN can be utilized
for classifying objects in images coming from a camera sensor. If the camera
is mounted on a self-driving car, the CNN inference would require fast com-
putation and high accuracy in detecting possible objects (like street signs or
obstacles) [1]. One straightforward way for improving its performance is to
reduce its parameter space, for example by using parameter quantization, i.e.
moving from a floating point representation to a fixed point one, commonly at
16 or 8 bit. In this scenario, a fault happening in any of the layer parameters
of the CNN can eventually propagate, due to the network structure, to the
following layers, thus possibly affecting the classification task (like not being
able to identify an incoming obstacle). The problem can become even more
severe because of the compression in place: a fault, or attack, in a fixed point
parameter, that results in a bit flip, can cause a change in its value of a greater
magnitude compared to faults taking place in floating point values. This can
ultimately increase the chances of the CNN producing wrong outputs, and in
turn to a lower accuracy.

In this work, we investigate if and how single and multi bit flip faults can have
more severe consequences on the output of compressed DNNs running inference,
compared to uncompressed networks. Our hypothesis is that faults happening
in the compressed network parameters may cause CNNs to misclassify inputs

3.2. RELATED WORK 31

at a higher rate compared to their original, uncompressed, counterparts, thus
significantly reducing their accuracy score. Based on that, our final aim is to
check the conditions for utilizing Odd-ECC from Malek et al. [23]. In fact,
Odd-ECC can take advantage of the different fault sensitivity of the data to
provide efficient and light-weight ECC protection to the different application
data regions.

For our analysis, we explore the sensitivity to faults of several DNNs, with
a focus on CNNs widely used in research, that have been compressed down to
×86 their original size, i.e. the memory footprint of their weights. In order to
perform our analysis, we propose a novel framework, named Caffe Macchiato,
which we used to compress the networks and then inject single and multi bit
faults in specific data regions. To the best of authors’ knowledge, this is the first
work to analyze and compare the fault tolerance of several CNNs at different
levels of compression.

In the remainder of this work, Section 3.2 offers an overview of related
works on injecting faults or attacks in deep neural networks. Section 3.3 gives
the necessary background knowledge behind CNNs’ architectures. In Section
3.4 we describe the implementation of Caffe Macchiato and the methodology
we followed to measure the sensibility of compressed CNNs against transient
faults. Finally, in Section 3.5 we evaluate the performance of the networks and
show the results of our experiments, before concluding in Section 3.6 with a
discussion on our findings.

3.2 Related Work

Many authors have investigated the robustness of deep neural networks against
faults. DNNs can be executed and accelerated on a variety of computing devices,
such as GPUs, ASICs and FPGAs. When focusing on faults in accelerators,
faults can happen in the accelerator datapath, such as in MAC units [20, 28,
37], or in buffers [27, 20]. Faults happening in buffers can have a higher impact
on DNNs performance than in the datapath counterpart, since buffers are
usually used to store partial results of an accumulation and so eventual errors
can add up, thereby leading to significant drops in the network accuracy.

Other works focus on studying faults and attacks happening in the network
parameters stored in main memory [26, 4]. One example of attacks are trojan
attacks on CNNs. Trojan attacks attempt to make the networks misclassify
images upon receiving a specific trigger image, while maintaining the same
functionality in all the other cases [36, 38, 5, 22]. Other types of attacks include
row hammer, laser beam, gradient descend [21] or backdoor [6, 7] attacks.

DNNs are traditionally utilizing single precision floating point representation
for their parameters. However, it has been showed that the accuracy of DNNs
is not particularly affected when moving to a fixed point representation, i.e.
after performing a parameter quantization. When testing and analyzing the
sensitivity to faults, Reagen et al. [27] propose a fault-injecting framework
that accounts for this change of precision, while in Li et al. [20] single and
multi bit faults are injected in different positions within the quantized network
parameters. Both works show that quantized parameters are more sensible to
faults compared to floating point values due to their reduced bit width. Along

32 CHAPTER 3. PAPER II

side floating and fixed point values, particular networks called Binarized Neural
Networks (BNN) can utilize parameters reduced to binary or ternary values.
Khoshavi et al. [16] inject cumulative faults in different parts of a BNN that
has been implemented as an FPGA accelerator. In their work, they show that
100 single bit faults can cause a drop of 76.7% when injected in the last fully
connect layers. However, these works do not account for networks in which
multiple compression techniques are applied. In fact, parameter quantization
is orthogonal to pruning and weight sharing.

When it comes to fault detection, prevention and correction instead, Li
et al. [20] selectively apply latch hardening to DNNs accelerators datapath.
Another solution from Qin et al. [25] is instead correcting the detected faulty
parameters by setting them to zero. Along side with that, they also introduce a
binary representation for real numbers that is able to limit the effects of faults.
Regarding ECC mechanisms targeting DNNs, Guan et al. [8] propose to store
error check bits in the unused MSB of quantized CNN 8 bit parameters. Their
approach is based on a novel training algorithm that regularizes the spatial
distribution of large magnitude weights, allowing to exploit unused space for
allocating the ECC bits.

Among approaches for protecting DRAM applications that are not tailored
to DNNs, Malek et al. [23] work, Odd-ECC, dynamically selects and sets
the fault tolerance level of different data regions. The ECC bits are in fact
stored in separate physical pages, but are physically aligned with the data they
protect. This solution allows to access memory efficiently, reducing the energy
consumption and significantly improving memory fault tolerance.

Closest to our analysis is the work of Segee et al. [30], in which a feed
forward neural network is first pruned and then tested for measuring its fault
tolerance. Compared to our work, they are not injecting faults by flipping bits,
but rather by zeroing out the faulty weights. Moreover, they only focus on one
single-input-single-output feed-forward neural network, whereas we analyze a
set of more complex networks classifying images. Finally, we not only consider
pruning, but also more advanced compression techniques such as weight sharing
and quantization.

3.3 Background

3.3.1 Convolutional Neural Networks

Deep neural networks (DNNs) have been extensively applied to many classes
of problems like image classification [19, 18], scene labeling [32] or language
translation [35]. Figure 3.1 shows an example of a Convolutional Neural
Network (CNNs), a particular type of DNNs. DNNs are usually composed
of several layers, which are represented by the various blocks and rectangles
in figure. Layers are typically connected in a pipeline fashion, where data
flows from a layer to the next one. The data produced and consumed by a
layer is usually referred as either Feature Maps (FM) or activations. A layer
can contain a set of parameters called weights, which are used to process the
incoming data. Other layers can process incoming inputs without requiring
weights. Layers including weights are showed as boxes in the figure, they are, for

3.3. BACKGROUND 33

Figure 3.1: An example of Convolutional Neural Network (CNN) called LeNet-
5, from the work of Le Cun et al. The CNN classifies black and white images
of hand-written digits [19].

instance, convolutional (CONV) and fully connected (FC) layers. Weight-free
layers are instead pictured as rectangles: Max Pooling, Rectified Linear Unit
(ReLU) and Softmax layers are some examples of this kind of layers.

Weights can be learned, i.e. finetuned, through a process called training.
Training allows a DNN to tune its weights to solve a specific problem, such as
image classification.

CONV layers in particular perform a convolution of an input feature map
with a weight tensor W of dimension Co×Kh×Kw×Ci. The tensor is divided
in kernel matrixes of height Kh and width Kw, as illustrated in Figure 3.2.
The terms Ci and Co represent the number of input and output channels of
the input and output data. Given a Feature Map FMi as input, e.g. an
image, a CONV layer produces an output Feature Map FMo whose elements
at coordinates (ho, wo, co) can be obtained following Equation 3.1.

FMo(ho, wo, co) = B(co)+

Kh−1∑
kh=0

Kw−1∑
kw=0

Ci−1∑
ci=0

FMi(ho · S + kh, wo · S + kw, ci) ·W (co, kh, kw, ci),
(3.1)

where S corresponds to a stride parameter that can further reduce the output
feature map dimensions and the amount of operations, while B is a bias
term. The idea is to convolve the input feature maps with the kernels, i.e.
weights, saving parameters and preventing overfitting [19]. The usual step
that follows the convolution operation is applying an activation function to
the FMo. Typically, activation functions are non-linear functions which are
applied to the output of a layer before forwarding it to the next one. ReLU is
a popular activation function [24] whose behavior is described in Equation 3.2.

ReLU(x) = max(x, 0) + γ ·min(x, 0), (3.2)

where γ represents the negative slope of the function.
Pooling layers are generally placed after CONV layers and are layers respon-

sible for reducing the size of the feature maps thereby preventing the network
from overfitting [29], i.e. avoids the network learning only the training data.
They do so by downsampling the input tensors, as shown in Figure 3.3.

After a series of CONV layers, a CNN generally includes a set of FC layers
in its ending part, before concluding with a Softmax layer. FC layers perform
Equation 3.3, which consists of a simple matrix-matrix multiplication with a

34 CHAPTER 3. PAPER II

INPUT VOLUME

OUTPUT VOLUME

KERNEL VOLUME

Figure 3.2: Input, output and kernel volumes of a CONV layer.

1

0

0

3

2

1

9

8

1

3

5

6

0

8

2

1

2

9

8

6

Max Pooling

stride = 2
2 2 filters

4 4 32
2 2 32

Figure 3.3: Visual representation of a Max Pooling layer. Pooling layers
downsample a given tensor reducing the number of parameters and improving
the network accuracy.

weight matrix W followed by a bias addition B. Like CONV layers output, the
FC layers output is further modified by applying an activation function like
ReLU.

FMo = FMi ·W +B (3.3)

DNNs including only FC layers are defined as Fully Connected Deep Net-
works (FCDN). A FCDN typically features two to three FC layers with ReLU
activation functions and also terminates with a Softmax layer when solving a
classification problem. Finally, a Softmax layer normalizes the output of the
last network into a probability distribution over the classes to predict. Hence,
the predicted class is identified by picking the class corresponding to the highest
probability.

3.3.2 DNNs Compression

Modern neural network architectures generally include a large amount of
parameters [31]. However, it has been shown that neural networks can tolerate

3.3. BACKGROUND 35

a reduction in the amount of parameters without loosing significant accuracy.
Such removal of elements is referred as pruning [2]. There exists in literature
several ways of pruning a network [9]. One popular and effective technique for
pruning consists of iteratively prune and finetune a network to maintain its
accuracy [11].

Once most of the weights are zeroed out and do not contribute anymore
to the network execution, they can be further compressed by techniques such
as weight-sharing and/or quantization (to fixed point or to half-precision
floating point representations). Weight-sharing [11], or network clustering, is a
technique that attempts to map a limited number of weights in a layer (referred
as centroids) to all the rest of the weights. In this way, each layer weight is
associated to a specific centroid thanks to an index pointing to it. Because of
that, only the centroids and the indexes are required during network execution.
The centroids can be generated with a clustering algorithm and then finetuned
with a backpropagation algorithm to restore the original network accuracy.

Finally, the centroids can be quantized from a floating point 32 or 64
bit representation to 8 or 16 dynamic fixed point representation [10]. The
conversion typically causes drops in the network accuracy and therefore requires
a retraining phase to calibrate the fixed point parameters.

3.3.3 Soft Errors and Accuracy Degradation in DNNs

Focusing on classification tasks, like assigning a label to a given image, the
Softmax layer is a popular final layer for DNNs. The Softmax function is
responsible for normalizing the values of the output vector into a probability
distribution and for highlighting its maximum value. In practice, it applies
Equation 3.4 to all the elements of the output of a DNN.

σ(xi) =
ex

i∑N−1
j=0 exj

, i = 0, 1, ..., N − 1 , xi ∈ RN (3.4)

where N is the length of the vector and so the number of classes. Once the
elements are processed, i.e. all normalized in [0, 1] and all adding up to 1, the
index of the maximum value is selected to identify the class which the input
belongs to. This means that having a maximum value at a different index will
cause the network to classify the input into another class.

In presence of a fault in one of the weight parameters, the faulty value
might generate, in the DNN’s output, a different maximum value than the
expect one, thereby altering the network prediction. An example of such
scenario is depicted in Figure 3.4. Since the FC layer performs a vector-matrix
multiplication, a fault in any of its weight matrix parameters can propagate to
the layer output and so to the final Softmax layer. In case the fault significantly
changes the magnitude of one output parameter, the network will select it
as being the class with the highest probability. Because of the fault, if the
maximum value results in a different class than the expected one, then the
input image is misclassified, thus degrading the accuracy of the DNN.

36 CHAPTER 3. PAPER II

0.07

0.1 0.06

0.17

0.6

0.10.1

0.3

1.2

3.4

0.2 0.06

1.0

CNN
(FIRST LAYERS)

LAST
FC LAYER

Figure 3.4: How a fault in a weight parameter can affect the classification of
an image. A fault in any weight parameter can propagate to the final output
and cause a misclassification.

3.4 Design and Methodology
In this section we describe the implementation of our proposed framework
Caffe Macchiato, its compression scheme, the application data regions that are
sensible to faults and finally how we perform the sensitivity analysis of DNNs.

3.4.1 Caffe Macchiato Framework

We modified Caffe [14] and Ristretto [10] to implement the Caffe Macchiato
framework, illustrated in Figure 3.5. In developing Caffe Macchiato, we followed
the work of Han et al.[11] for designing the steps for network compression
without causing significant drops in accuracy. Caffe Macchiato integrates Caffe
for training a network given a specification file (in Google Protocol Buffer
format [15]), it then performs pruning and clustering before calling Ristretto
for the final quantization1 step. Macchiato also implements a fault injection
system for causing bit flips in any compressed network.

Focusing on the implementation details, starting from pruning, we modified
the CONV and FC layers in Caffe to include a zero mask to prune the parameters
of both weights and bias that are below an adjustable threshold. In order to
prune an entire network, Caffe Macchiato first sets the zero masks of all the
layers, then retrains the network, i.e. finetunes it, while keeping the zero masks
fixed.

Once the network is pruned, Caffe Macchiato proceeds applying weight
sharing by clustering each layer’s weights into a set of k clusters through the
K-means algorithm. Caffe Macchiato then stores all the clusters centroids of a
layer into a codebook, while each weight is substituted by an index, i.e. pointer,
to its corresponding centroid value. After populating the codebook, Caffe
Macchiato retrains the network, thereby finetuning the centroids by following

1Han et al. in [11] define clustering, i.e. weight-sharing, as “quantization". In this work we
instead use the term quantization for indicating the approximation of the network parameters
to fixed point representation.

3.4. DESIGN AND METHODOLOGY 37

TRAINING PRUNING

RETRAINING

CLUSTERING

RETRAINING

Caffe

Macchiato

network
prototxt

Ristretto

QUANTIZATION

RETRAINING network
caffemodel

PARAMETER
INDEXES

QUANTIZED
CODEBOOK

+

Macchiato

BASELINE
NETWORK

PRUNED
NETWORK

PRUNED
CLUSTERED
NETWORK

QUANTIZED
PRUNED

CLUSTERED
NETWORK

PARAMETER MATRIX

Macchiato

pruned
network
prototxt

PRUNED
PARAMETER MATRIX

Macchiato

clustered
network
prototxt

PARAMETER
INDEXES

CODEBOOK

+

Macchiato

quantized
network
prototxt

Figure 3.5: The Caffe Macchiato framework. After training in Caffe, Caffe
Macchiato prunes and clusters the network while Ristretto finally quantizes it.
Besides compression, Caffe Macchiato injects faults in any compression step
parameters, as indicated by the red lightnings on the top.

the methodology described in [11], but maintaining the indexes fixed. At run
time, the codebook values are used as a substitute of the original weight values,
further improving the memory footprint of the network.

Finally, after pruning and clustering, Caffe Macchiato utilizes the Ristretto
framework [10] to quantize the network parameters from single precision floating
point to a dynamic fixed point representation. We maintain the same non
zero parameters and cluster index while quantizing, thus leaving the networks
pruned and clustered. In particular, only the non zero values and the codebook
values are quantized.

In order to perform our experiments, we first train the networks to achieve
a similar accuracy performance as the one reported in literature. We then
proceed to prune them to have more than 87% of their values set to zero while
maintaining an accuracy drop below 2% after finetuning, i.e. retraining. After
pruning we cluster the weight values in codebooks of at most 128 centroids,
still maintaining a 2% accuracy drop after finetuning.

In order to test the sensitivity of the networks, Caffe Macchiato is able to
inject single and multi bit faults in any network layer parameters which has
not been zeroed, i.e. either weights or biases.

3.4.2 Application Data Regions
A deep neural network is typically composed of several layers that transform an
input into either probabilities (classification problem) or real values (regression
problem). A layer can include a set of weights and bias parameters that are
used to process the layer input activations. During execution, these parameters
will need to be available in main memory and so they can be susceptible to
faults or attacks. In this chapter we limit our experiments to faults happening
only offline in the network parameters, i.e. weights and bias values, and not at
run time in the activations. The top part of Figure 3.5 provides a simplified
view of how weight matrices are compressed and where the faults can happen.

38 CHAPTER 3. PAPER II

We assume that a fault does not cause the application to crash, but rather
that can possibly change the network output, i.e. that can affect its accuracy,
thus causing Silent Data Corruption (SDC) faults.

For the baseline networks, we marked the layers’ weights and bias parameters
as a data region for faults to happen. For pruned networks, we further limit
the data region to the non-zero parameters only, since the zero values are not
required for the computations of a layer. If a network is also clustered, the non
zero weights are substituted by a codebook and a list of indexes to the elements
of the codebook (referred as weight indexes). Hence, for clustered networks,
the data region consists of the codebook values, the weight indexes and the
non zero bias parameters. We assume the codebook values being in a protected
fault-free region of memory and so we are not testing faults happening in the
codebook.

For non quantized networks, the weight, bias and codebook parameters are
stored as single precision floating point values, whereas the weight indexes (in
case of clustered networks) are assumed unsigned integers of bitwidth log2(k),
where k is the number of clusters per layer. For quantized networks instead, we
have the parameters quanzited to dynamic fixed point representation [33, 10].

3.4.3 Sensitivity Analysis and Methodology

In order to conduct a sensitivity analysis of DNNs, we follow the methodology
described as follows. Given a network specification, we generate in Caffe
Macchiato a series of network models which are compressed at different levels.
In particular, out of a single network specification we obtain six different
network configurations: a baseline network (B), a pruned network (P), a
pruned and clustered network (P+C), a quantized network (Q), a quantized
pruned network (Q+P) and a quantized pruned clustered network (Q+P+C).
All compressed configurations exhibit a reduction in the accuracy of at most
3.1% with respect to the baseline.

Caffe Macchiato is then able to inject single and multi bit faults in any of the
above network configurations by flipping bits at random locations in randomly
selected parameters. Both the bit position and the targeted parameters for the
faults to occur are uniformly distributed.

For the baseline configuration we use Caffe Macchiato for injecting a single-
bit fault in a single parameter (either weight or bias) in any network layer.
For simulating multi-bit flips instead, the framework swaps the value of two
parameters, either two weight or two bias values. We then follows a similar
approach for injecting faults in pruned networks, but only targeting a parameter
chosen from the non zero ones. In case of pruned and clustered networks instead,
we inject single- and multi-bit faults in either the codebook indexes or the bias
parameters (both aren’t zero). For single-bit flips in clustered networks, we
flips a random bit in either a random weight index or a random non zero bias
value. Multi-bit flips are instead performed by either swapping two weight
indexes or by swapping two non zero bias values.

A summary of the types of faults that can be simulated in Caffe Macchiato
is reported in Table 3.1. Since Quantization is an orthogonal technique, it can
be applied to all the three reported configurations. In case of single bit flips, a

3.5. EVALUATION 39

Table 3.1: Description of fault types per network configuration. The faults
can be injected in Baseline (B), Pruned (P) and Clustered (C) networks
configurations. The location of faults can be either in weights (w) or in bias
values (b). For pruned configurations, only the non-zero (NZ) values are
selected.

Config Loc Single bit fault Multi bit fault

(B) (w) bit flip in random weight swap 2 random weights
(b) bit flip in random bias value swap 2 random bias values

(P) (w) bit flip in random NZ weight swap 2 random NZ weights
(b) bit flip in NZ random bias value swap 2 random NZ biases

(P+C) (w) bit flip in random weight index swap 2 random weight indexes
(b) bit flip in NZ random bias value swap 2 random NZ biases

(Q) (w) bit flip in random quant weight swap 2 random quant weights
(b) bit flip in random quant bias value swap 2 random quant biases

(Q+P) (w) bit flip in random NZ quant weight swap 2 random NZ quant weights
(b) bit flip in NZ random quant bias swap 2 random NZ quant biases

(Q+P+C) (w) bit flip in random weight index swap 2 random weight indexes
(b) bit flip in NZ random quant bias swap 2 random NZ quant biases

fault can only happen within the bitwidth of the parameters.

3.5 Evaluation

In this section we present and evaluate the results of simulating faults in
different networks, compressed in different configurations. For our analysis we
chose a series of networks popular in the field of machine learning: a FCDN,
LeNet-300-100 [19], and two CNNs: LeNet-5 [19] and CaffeNet [3]. Each
network attempts to assign a class to the images from a test dataset. The more
test images are correctly classified, the higher is the network accuracy.

The chosen networks have been pruned and clustered without a significant
loss of accuracy, as reported in Table 3.2a. The configuration of the com-
pressed networks after quantization is instead reported in Table 3.2b, which
illustrates the bitwidth of the quantized parameters and the accuracy of the
quantized networks. A summary of the compression ratios achieved for different
configurations is showed in Table 3.2c. For our experiments, we report the
accuracy drop as the averaged accuracy drop of 1000 fault injection tests. We
report a negative drop in cases where a fault is actually improving the original
non-faulty accuracy.

LeNet-300-100 on MNIST We injected faults in LeNet-300-100, a network
consisting of three fully connected layers classifying the MNIST database, which
contains black and white images of hand-written digits. After injecting single-
bit and multi-bit faults in both weights and bias in each layer of the baseline
network, we do not see any particular drop in accuracy (the drops range from
-0.03% to 0.05%). The pruned version of the network is also not affected by
random single- and multi-bit faults, showing an accuracy drop between 0%
and 0.07%. A similar scenario happens for the clustered network: the accuracy
drop is insignificant when injecting single and multi bit flips in both weights

40 CHAPTER 3. PAPER II

Table 3.2: Different configurations for the analyzed networks and network
accuracy scores. The reported configurations are: Baseline (B), Pruned (P),
Clustered (C) and Quantized (Q).

(a) The percentage amount of non-zero elements (NZ) for the pruned configurations
and the amount of clusters k for FC (kFC) and CONV (kCONV) layers. Notice that
we cluster after pruning the networks and therefore the pruning percentage is the
same in the two configurations.

Network acc (B) NZ acc (P) kCONV kFC acc (P+C)
LeNet-300-100 98.01% 9.7% 98.43% - 8 97.17%

LeNet-5 99.13% 12.1% 99.09% 64 8|16 98.00%
CaffeNet 81.30% 11.7% 78.51% 128 8 79.11%

(b) Quantized networks accuracy and bitwidth for fully connected (BWFC) and
convolutional (BWCONV) layers.

Network BWCONV BWFC (Q) (Q+P) (Q+P+C)
LeNet-300-100 - 4 96.97% 96.60% 94.74%

LeNet-5 4 4 97.53% 97.20% 98.17%
CaffeNet 8 8 81.21% 78.20% 81.21%

(c) Original size and compression ratios for the selected networks in different configu-
rations.

Network Orig Size (P) (P+C) (Q) (Q+P) (Q+P+C)
LeNet-300-100 8.14 MB ×10.3 ×80.3 ×8 ×83.1 ×86.3

LeNet-5 13.16 MB ×8.3 ×80.8 ×8 ×66.4 ×83.0
CaffeNet 2.73 MB ×8.5 ×37.3 ×4 ×34.0 ×41.6

and bias, oscillating between 0% and 0.05%. A detailed report of the accuracy
drops for single precision parameters can be found in Appendix A.1, Figure
A.1.

Table 3.3 shows the result of injecting faults in the quantized network
configurations. We can notice that a single bit-flip of the last fully connected
layer can cause an average drop in accuracy of 3.95% if injected in weights
and 2.68% if injected in bias. For the other layers and fault types we do not
see any particular difference instead. A similar scenario happens with the
quantized pruned network: a single bit flip fault in the last FC layer can cause
a significant drop of 5.12% while a single bit flip in the fc2 layer reduces the
accuracy of 1.03% for injecting in weights and 1.50% in bias. Finally, regarding
the clustered, pruned and quantized network, we experience significant drops
in accuracy when injecting single bit flips faults in both weights and bias
parameters, up to 3.13% and 2.72% for weight and bias respectively.

LeNet-5 on MNIST LeNet-5 is a CNN composed of two CONV layers
followed by two FC layers classifying the MNIST dataset, same as LeNet-300-
100. We first injected faults in both the baseline, pruned and clustered networks
with single precision floating point parameters. In presence of single- and multi-

3.5. EVALUATION 41

Table 3.3: Accuracy drop for LeNet-300-100 in configurations: Quantized (Q),
Pruned (P) and Clustered (C). The accuracy of the faulty networks is averaged
over 1000 tests. The faults are Single bit-flips (S) or Multi bit-flips (M), and
are injected in Weights (w) or Bias (b) parameters.

Faulty Layer Drops: (S in w) (M in w) (S in b) (M in b)
(Q) fc1 0.11% 0.00% 0.26% -0.06%
(Q) fc2 -0.10% 0.00% -0.10% -0.13%
(Q) fc3 3.95% 0.03% 2.68% -0.02%
(Q+P) fc1 0.18% 0.00% 0.19% 0.00%
(Q+P) fc2 1.03% 0.00% 1.50% 0.06%
(Q+P) fc3 5.12% 0.00% - -
(Q+P+C) fc1 2.38% 0.00% 2.38% 0.00%
(Q+P+C) fc2 2.71% 0.00% 2.72% 0.02%
(Q+P+C) fc3 3.13% 0.01% - -

bit faults in either weights or bias parameters, we do not see any significant
drop in accuracy. All drops remain below 1%, from as low as -0.06% up to
0.11%. More accurate accuracy drops results for single precision parameters
can be found in Appendix A.1, Figure A.3.

For the quantized configurations, the results of the fault injection tests are
reported in Table 3.4. The quantized networks appear very resilient to multi
bit flips, with almost all tests scoring no accuracy drops. We can instead notice
significant drops in accuracy when injecting single bit flips, both in weights and
bias parameters. For the quantized baseline, injecting faults in the first two
CONV layers weights produces high drops of 1.55% and 3.92%, while injecting
in the weights of the FC layers does not impact the accuracy. Single-bit faults
happening in the bias parameters of any layer greatly affect the accuracy of
the quantized baseline, resulting in average drops up to 7.38%.

When analyzing the quantized pruned network configuration, single-bit
flips in the weight parameters largely influence the accuracy, causing average
drops up to 17.84%. The pruned CaffeNet has most of its bias parameters
pruned and so the only layer where we injected faults in bias is conv2, causing
a non-negligible drop of 2.71%. Lastly, injecting single bit flips in the codebook
indexes of the quantized, pruned and clustered network leads to high accuracy
drops, as high as 12.37% (except when injecting in the fc1 layer).

CaffeNet on CIFAR10 We injected faults in different configurations of
CaffeNet, a CNN made of three CONV layers followed by a final FC layer.
CaffeNet is classifying the CIFAR10 dataset images, a more challenging database
of colored images [17]. For the network configurations utilizing single precision
floating point values, we could not see any significant accuracy drop after
the fault injection tests. The drops are slightly higher compared to LeNet-
300-100 and LeNet-5, but still well below 1% (between a minimum of -0.07%
and a maximum of 0.53%). All the fault injection results for single precision
parameters can be viewed in Appendix A.1, Figure A.5.

We then proceeded to analyze the quantized configurations of CaffeNet.

42 CHAPTER 3. PAPER II

Table 3.4: Quantized LeNet-5. The accuracy of the faulty network is averaged
over 1000 tests. The faults are Single bit-flips (S) or Multi bit-flips (M), and
are injected in Weights (w) or Bias (b) parameters.

Faulty Layer Drops: (S in w) (M in w) (S in b) (M in b)
(Q) conv1 1.55% 0.00% 1.38% 0.00%
(Q) conv2 3.92% 0.00% 6.18% 0.00%
(Q) fc1 -0.81% 0.00% 7.38% 0.00%
(Q) fc2 -0.32% 0.00% 5.27% 0.00%
(Q+P) conv1 1.22% 0.00% - -
(Q+P) conv2 13.92% 0.00% 2.71% -0.12%
(Q+P) fc1 13.87% 0.00% - -
(Q+P) fc2 17.84% -0.01% - -
(Q+P+C) conv1 1.72% 0.00% - -
(Q+P+C) conv2 1.22% 0.00% 1.48% 0.13%
(Q+P+C) fc1 0.04% 0.00% - -
(Q+P+C) fc2 12.37% 0.01% - -

We followed the same approach as before and injected single- and multi-bit
faults in the parameters of the layers, i.e. in weights and bias. The results of
the tests are shown in Table 3.5. We can see that multi-bit flips do not cause
any particular accuracy drop, similarly to the previous cases (here we have an
average drop between -0.01% and 0.55%). However, we can clearly notice a
consistent drop in accuracy when injecting single bit flips, both in weights and
bias parameters. In particular, for the quantized baseline network, the drop
reaches up to 10.39% in weights and 3.65% in bias (the highest drops show
up when targeting the last FC layer). We experience a similar trend for the
quantized pruned configuration: the drop when injecting in weights is between
4.66% and 40.50%. It appears that random single-bit faults in the last FC layer
can halve the original accuracy of the network. Please note that the pruning
operation set to zero all the bias parameters and so no faults happening in bias
were tested. Finally, the clustered, pruned and quantized CaffeNet shows high
accuracy drops when injecting single bit faults in all layers but conv3 (from
0.77% up to 13.56%). Multi-bit faults do not cause significant drops instead.

3.5.1 Discussion and Limitations
In this work we do not investigate the possible causes that led to the obtained
results. In particular, when looking at networks utilizing single precision 32
bit floating point values, we suppose that the wider bitwidth of the values
might help in mitigating single bit flips. In fact, the faulty bit position is
uniformly distributed and the exponent field, where a bit flip can cause the
largest magnitude change, is only 8 bit wide, as specified in the IEEE-754
standard.

Our best speculation regarding the fault injection runs that show low
accuracy drops, is that the ReLU and Pooling layers might mask specific single
bit-flip faults. In fact, the ReLU function, Equation 3.2, can zero out any
negative value when γ = 0, which was the case for our experiments. Because of

3.5. EVALUATION 43

Table 3.5: Quantized CaffeNet-CIFAR10. The accuracy of the faulty network
is averaged over 1000 tests. The faults are Single bit-flips (S) or Multi bit-flips
(M), and are injected in Weights (w) or Bias (b) parameters.

Faulty Layer Drops: (S in w) (M in w) (S in b) (M in b)
(Q) conv1 0.36% 0.12% 0.42% 0.01%
(Q) conv2 7.31% 0.09% 0.78% -0.01%
(Q) conv3 7.31% 0.07% 0.86% 0.00%
(Q) fc1 10.39% 0.05% 3.65% -0.01%
(Q+P) conv1 4.66% 0.45% - -
(Q+P) conv2 14.91% 0.55% - -
(Q+P) conv3 13.15% 0.39% - -
(Q+P) fc1 40.50% 0.42% - -
(Q+P+C) conv1 4.70% 0.11% - -
(Q+P+C) conv2 13.56% 0.01% - -
(Q+P+C) conv3 0.77% 0.00% - -
(Q+P+C) fc1 3.42% 0.00% - -

Listing 3.1: Fault masking of NaN values through the max operation.
1 #de f i n e MAX(a , b) a > b ? a : b
2

3 MAX(1 . 0 , NaN) ; // Evaluates to : 1 . 0 > NaN ? 1 .0 : NaN, r e tu rn s NaN
4 MAX(NaN, 1 . 0) ; // Evaluates to : NaN > 1.0 ? NaN : 1 . 0 , r e tu rn s 1 .0

that, all single bit faults leading to a negative real value, even with very high
magnitude, can be masked to zero.

If the faulty value turns out to be a NaN (either because of a bit flip or as an
accumulated result), both Max Pooling, Figure 3.3, and ReLU layers can mask
it through their max operation. Listing 3.1 provides a simple example of the
max implementation and the possible outcomes upon processing a NaN value.

Effectively, the IEEE-754 floating point standard does not specify the
outcome of a comparison operation with a NaN [13]. However, our framework
is developed in C++11, following the original Caffe implementation, which
adheres to the IEC-559 standard [12, 34], which defines false as a return value
for any comparison involving a NaN. Because of this, depending on “which side”
the NaN value falls in the comparison, it can result in either a regular floating
point number or a NaN value, thus eventually masking the fault.

Overall, the above conclusions seem to be supported by our findings. In
fact, according to the results in Tables 3.3, 3.4 and 3.5, the last FC layer in all
of the tested networks, which is never followed by a Max Pooling layer nor a
ReLU layer, generally appears to be, on average, the most sensitive to faults,
i.e. leading to the highest accuracy drops.

44 CHAPTER 3. PAPER II

3.6 Conclusions
Our experiments suggest that using single precision floating point values ensures
a high level of fault tolerance against random single- and multi-bit flips. Even
if compressed, DNNs and in particular CNNs are able to correctly classify
images in presence of faults and thus do not require any additional protection
mechanism. Instead, significant drops in accuracy are happening to the quan-
tized network configurations when injecting single bit flips. For the baseline
quantized configuration, the networks are more tolerant to faults happening
in their first layer, while are more affected if happening in the last layer. The
drops of all pruned networks are higher than the ones of pruned and clustered
networks, but both configurations show the highest drops when injecting in the
last layer. We do not see a clear difference in drops caused when injecting single
bit faults in weights or bias parameters, suggesting that both data regions are
highly sensitive to faults. Overall, we observed that the faults causing the
highest drops happen at the back of the network, i.e. in the last layers, whereas
faults effects tend to be mitigated or compensated if happening in the first
layer.

We can conclude that quantizing a DNN can significantly lower the fault
tolerance of FCDNs and CNNs. In addition to this, our experiments show that
further compressing the quantized networks by applying pruning and eventually
clustering can lead to even higher losses in tolerance, thus making the networks
requiring fault protection mechanisms. Based on our findings, as a future work
we will be able to apply and test the Odd-ECC [23] protection mechanisms
tailored to the identified more sensitive data regions.

References
[1] Michael Beyer et al. “Quantification of the Impact of Random Hardware

Faults on Safety-Critical AI Applications: CNN-Based Traffic Sign Recog-
nition Case Study”. In: 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE. 2019, pp. 118–119.

[2] Davis Blalock et al. “What is the state of neural network pruning?” In:
arXiv preprint arXiv:2003.03033 (2020).

[3] CaffeNet on CIFAR10. https://caffe.berkeleyvision.org/gathered/
examples/cifar10.html. Accessed: 2020-07-20.

[4] Wonseok Choi et al. “Sensitivity based error resilient techniques for energy
efficient deep neural network accelerators”. In: Proceedings of the 56th
Annual Design Automation Conference 2019. 2019, pp. 1–6.

[5] Joseph Clements and Yingjie Lao. “Hardware trojan design on neural
networks”. In: 2019 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE. 2019, pp. 1–5.

[6] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. “Badnets: Iden-
tifying vulnerabilities in the machine learning model supply chain”. In:
arXiv preprint arXiv:1708.06733 (2017).

REFERENCES 45

[7] Tianyu Gu et al. “Badnets: Evaluating backdooring attacks on deep
neural networks”. In: IEEE Access 7 (2019), pp. 47230–47244.

[8] Hui Guan et al. “In-place zero-space memory protection for cnn”. In:
arXiv preprint arXiv:1910.14479 (2019).

[9] Kaiyuan Guo et al. “[DL] A survey of FPGA-based neural network infer-
ence accelerators”. In: ACM Transactions on Reconfigurable Technology
and Systems (TRETS) 12.1 (2019), pp. 1–26.

[10] Philipp Gysel et al. “Ristretto: A framework for empirical study of
resource-efficient inference in convolutional neural networks”. In: IEEE
transactions on neural networks and learning systems 29.11 (2018),
pp. 5784–5789.

[11] Song Han, Huizi Mao, and William J Dally. “Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding”. In: arXiv preprint arXiv:1510.00149 (2015).

[12] IEC 559:1989 Binary floating-point arithmetic for microprocessor systems.
https://www.iso.org/standard/19706.html. Accessed: 2021-02-19.

[13] “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019
(Revision of IEEE 754-2008) (2019), pp. 1–84. doi: 10.1109/IEEESTD.
2019.8766229.

[14] Yangqing Jia et al. “Caffe: Convolutional architecture for fast feature
embedding”. In: Proceedings of the 22nd ACM international conference
on Multimedia. 2014, pp. 675–678.

[15] Gurpreet Kaur and Mohammad Muztaba Fuad. “An evaluation of protocol
buffer”. In: Proceedings of the ieee southeastcon 2010 (southeastcon). IEEE.
2010, pp. 459–462.

[16] Navid Khoshavi, Connor Broyles, and Yu Bi. “Compression or Corruption?
A Study on the Effects of Transient Faults on BNN Inference Accelerators”.
In: 2020 21st International Symposium on Quality Electronic Design
(ISQED). IEEE. 2020, pp. 99–104.

[17] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of
features from tiny images”. In: (2009).

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances in
neural information processing systems. 2012, pp. 1097–1105.

[19] Yann LeCun et al. “Gradient-based learning applied to document recog-
nition”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[20] Guanpeng Li et al. “Understanding error propagation in deep learning neu-
ral network (DNN) accelerators and applications”. In: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. 2017, pp. 1–12.

[21] Yannan Liu et al. “Fault injection attack on deep neural network”. In:
2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE. 2017, pp. 131–138.

46 CHAPTER 3. PAPER II

[22] Yuntao Liu, Yang Xie, and Ankur Srivastava. “Neural trojans”. In: 2017
IEEE International Conference on Computer Design (ICCD). IEEE. 2017,
pp. 45–48.

[23] Alirad Malek et al. “Odd-ECC: on-demand DRAM error correcting codes”.
In: Proceedings of the International Symposium on Memory Systems. 2017,
pp. 96–111.

[24] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve re-
stricted boltzmann machines”. In: ICML. 2010.

[25] Minghai Qin, Chao Sun, and Dejan Vucinic. “Robustness of neural net-
works against storage media errors”. In: arXiv preprint arXiv:1709.06173
(2017).

[26] Adnan Siraj Rakin, Zhezhi He, and Deliang Fan. “Bit-flip attack: Crushing
neural network with progressive bit search”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2019, pp. 1211–1220.

[27] Brandon Reagen et al. “Ares: A framework for quantifying the resilience
of deep neural networks”. In: 2018 55th ACM/ESDA/IEEE Design Au-
tomation Conference (DAC). IEEE. 2018, pp. 1–6.

[28] F. F. d. Santos et al. “Analyzing and Increasing the Reliability of Convo-
lutional Neural Networks on GPUs”. In: IEEE Transactions on Reliability
68.2 (2019), pp. 663–677.

[29] Dominik Scherer, Andreas Müller, and Sven Behnke. “Evaluation of
pooling operations in convolutional architectures for object recognition”.
In: International conference on artificial neural networks. Springer. 2010,
pp. 92–101.

[30] Bruce E Segee and Michael J Carter. “Fault tolerance of pruned multilayer
networks”. In: IJCNN-91-Seattle International Joint Conference on Neural
Networks. Vol. 2. IEEE. 1991, pp. 447–452.

[31] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: International Conference
on Learning Representations. 2015.

[32] Oriol Vinyals et al. “Show and tell: A neural image caption generator”.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2015, pp. 3156–3164.

[33] Darrell Williamson. “Dynamically scaled fixed point arithmetic”. In: [1991]
IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing Conference Proceedings. IEEE. 1991, pp. 315–318.

[34] Working Draft, Standard for Programming Language C++. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf.
Accessed: 2021-02-19.

[35] Yonghui Wu et al. “Google’s neural machine translation system: Bridging
the gap between human and machine translation”. In: arXiv preprint
arXiv:1609.08144 (2016).

[36] Jing Ye, Yu Hu, and Xiaowei Li. “Hardware trojan in fpga cnn accelerator”.
In: 2018 IEEE 27th Asian Test Symposium (ATS). IEEE. 2018, pp. 68–
73.

REFERENCES 47

[37] Jeff Jun Zhang et al. “Analyzing and mitigating the impact of permanent
faults on a systolic array based neural network accelerator”. In: 2018
IEEE 36th VLSI Test Symposium (VTS). IEEE. 2018, pp. 1–6.

[38] Yang Zhao et al. “Memory trojan attack on neural network accelerators”.
In: 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE. 2019, pp. 1415–1420.

48 CHAPTER 3. PAPER II

Appendix A

A.1 Distribution of Accuracy Degradation
In this section we provide a detailed set of graphs reporting the distribution
of the accuracy of the networks in presence of faults. For each experiment
we collected 1000 accuracy samples, meaning that we injected 1000 faults per
scenario. The results are grouped by layer and are divided according to the
network configuration, being: Pruned (P), Clustered (C), Quantized to fixed
point (Q) and their combinations. Faults are indicated either as Single or Multi
bit flips in Weights (SW or MW) or Single of Multi bit flips in Bias (SB or
MB).

fc
1_

_P
C_

M
B

fc
1_

_P
C_

M
W

fc
1_

_P
C_

SB

fc
1_

_P
C_

SW

fc
1_

_P
__

M
B

fc
1_

_P
__

M
W

fc
1_

_P
__

SB

fc
1_

_P
__

SW

fc
1_

__
__

M
B

fc
1_

__
__

M
W

fc
1_

__
__

SB

fc
1_

__
__

SW

fc
2_

_P
C_

M
B

fc
2_

_P
C_

M
W

fc
2_

_P
C_

SB

fc
2_

_P
C_

SW

fc
2_

_P
__

M
B

fc
2_

_P
__

M
W

fc
2_

_P
__

SB

fc
2_

_P
__

SW

fc
2_

__
__

M
B

fc
2_

__
__

M
W

fc
2_

__
__

SB

fc
2_

__
__

SW

fc
3_

_P
C_

M
W

fc
3_

_P
C_

SW

fc
3_

_P
__

M
W

fc
3_

_P
__

SW

fc
3_

__
__

M
B

fc
3_

__
__

M
W

fc
3_

__
__

SB

fc
3_

__
__

SW

0.0

0.2

0.4

0.6

0.8

1.0
LeNet-300-100

Figure A.1: Accuracy degradation distribution after injecting faults in LeNet-
300-100.

49

50 APPENDIX A.

fc
1_

QP
C_

M
B

fc
1_

QP
C_

M
W

fc
1_

QP
C_

SB

fc
1_

QP
C_

SW

fc
1_

QP
__

M
B

fc
1_

QP
__

M
W

fc
1_

QP
__

SB

fc
1_

QP
__

SW

fc
1_

Q_
__

M
B

fc
1_

Q_
__

M
W

fc
1_

Q_
__

SB

fc
1_

Q_
__

SW

fc
2_

QP
C_

M
B

fc
2_

QP
C_

M
W

fc
2_

QP
C_

SB

fc
2_

QP
C_

SW

fc
2_

QP
__

M
B

fc
2_

QP
__

M
W

fc
2_

QP
__

SB

fc
2_

QP
__

SW

fc
2_

Q_
__

M
B

fc
2_

Q_
__

M
W

fc
2_

Q_
__

SB

fc
2_

Q_
__

SW

fc
3_

QP
C_

M
W

fc
3_

QP
C_

SW

fc
3_

QP
__

M
W

fc
3_

QP
__

SW

fc
3_

Q_
__

M
B

fc
3_

Q_
__

M
W

fc
3_

Q_
__

SB

fc
3_

Q_
__

SW

0.0

0.2

0.4

0.6

0.8

1.0
Quantized LeNet-300-100

Figure A.2: Accuracy degradation distribution after injecting faults in quantized
LeNet-300-100.

co
nv

1_
_P

C_
M

W
co

nv
1_

_P
C_

SW
co

nv
1_

_P
__

M
W

co
nv

1_
_P

__
SW

co
nv

1_
__

__
M

B
co

nv
1_

__
__

M
W

co
nv

1_
__

__
SB

co
nv

1_
__

__
SW

co
nv

2_
_P

C_
M

B
co

nv
2_

_P
C_

M
W

co
nv

2_
_P

C_
SB

co
nv

2_
_P

C_
SW

co
nv

2_
_P

__
M

B
co

nv
2_

_P
__

M
W

co
nv

2_
_P

__
SB

co
nv

2_
_P

__
SW

co
nv

2_
__

__
M

B
co

nv
2_

__
__

M
W

co
nv

2_
__

__
SB

co
nv

2_
__

__
SW

ip
1_

_P
C_

M
W

ip
1_

_P
C_

SW
ip

1_
_P

__
M

W
ip

1_
_P

__
SW

ip
1_

__
__

M
B

ip
1_

__
__

M
W

ip
1_

__
__

SB
ip

1_
__

__
SW

ip
2_

_P
C_

M
W

ip
2_

_P
C_

SW
ip

2_
_P

__
M

W
ip

2_
_P

__
SW

ip
2_

__
__

M
B

ip
2_

__
__

M
W

ip
2_

__
__

SB
ip

2_
__

__
SW

0.0

0.2

0.4

0.6

0.8

1.0
LeNet-5

Figure A.3: Accuracy degradation distribution after injecting faults inLeNet-5.

co
nv

1_
QP

C_
M

W
co

nv
1_

QP
C_

SW
co

nv
1_

QP
__

M
W

co
nv

1_
QP

__
SW

co
nv

1_
Q_

__
M

B
co

nv
1_

Q_
__

M
W

co
nv

1_
Q_

__
SB

co
nv

1_
Q_

__
SW

co
nv

2_
QP

C_
M

B
co

nv
2_

QP
C_

M
W

co
nv

2_
QP

C_
SB

co
nv

2_
QP

C_
SW

co
nv

2_
QP

__
M

B
co

nv
2_

QP
__

M
W

co
nv

2_
QP

__
SB

co
nv

2_
QP

__
SW

co
nv

2_
Q_

__
M

B
co

nv
2_

Q_
__

M
W

co
nv

2_
Q_

__
SB

co
nv

2_
Q_

__
SW

ip
1_

QP
C_

M
W

ip
1_

QP
C_

SW
ip

1_
QP

__
M

W
ip

1_
QP

__
SW

ip
1_

Q_
__

M
B

ip
1_

Q_
__

M
W

ip
1_

Q_
__

SB
ip

1_
Q_

__
SW

ip
2_

QP
C_

M
W

ip
2_

QP
C_

SW
ip

2_
QP

__
M

W
ip

2_
QP

__
SW

ip
2_

Q_
__

M
B

ip
2_

Q_
__

M
W

ip
2_

Q_
__

SB
ip

2_
Q_

__
SW

0.0

0.2

0.4

0.6

0.8

1.0
Quantized LeNet-5

Figure A.4: Accuracy degradation distribution after injecting faults in quantized
LeNet-5.

A.1. DISTRIBUTION OF ACCURACY DEGRADATION 51

co
nv

1_
_P

C_
M

W

co
nv

1_
_P

C_
SW

co
nv

1_
_P

__
M

W

co
nv

1_
_P

__
SW

co
nv

1_
__

__
M

B

co
nv

1_
__

__
M

W

co
nv

1_
__

__
SB

co
nv

1_
__

__
SW

co
nv

2_
_P

C_
M

W

co
nv

2_
_P

C_
SW

co
nv

2_
_P

__
M

W

co
nv

2_
_P

__
SW

co
nv

2_
__

__
M

B

co
nv

2_
__

__
M

W

co
nv

2_
__

__
SB

co
nv

2_
__

__
SW

co
nv

3_
_P

C_
M

W

co
nv

3_
_P

C_
SW

co
nv

3_
_P

__
M

W

co
nv

3_
_P

__
SW

co
nv

3_
__

__
M

B

co
nv

3_
__

__
M

W

co
nv

3_
__

__
SB

co
nv

3_
__

__
SW

ip
1_

_P
C_

M
W

ip
1_

_P
C_

SW

ip
1_

_P
__

M
W

ip
1_

_P
__

SW

ip
1_

__
__

M
B

ip
1_

__
__

M
W

ip
1_

__
__

SB

ip
1_

__
__

SW

0.0

0.2

0.4

0.6

0.8

1.0
CaffeNet

Figure A.5: Accuracy degradation distribution after injecting faults in CaffeNet.

co
nv

1_
QP

C_
M

W

co
nv

1_
QP

C_
SW

co
nv

1_
QP

__
M

W

co
nv

1_
QP

__
SW

co
nv

1_
Q_

__
M

B

co
nv

1_
Q_

__
M

W

co
nv

1_
Q_

__
SB

co
nv

1_
Q_

__
SW

co
nv

2_
QP

C_
M

W

co
nv

2_
QP

C_
SW

co
nv

2_
QP

__
M

W

co
nv

2_
QP

__
SW

co
nv

2_
Q_

__
M

B

co
nv

2_
Q_

__
M

W

co
nv

2_
Q_

__
SB

co
nv

2_
Q_

__
SW

co
nv

3_
QP

C_
M

W

co
nv

3_
QP

C_
SW

co
nv

3_
QP

__
M

W

co
nv

3_
QP

__
SW

co
nv

3_
Q_

__
M

B

co
nv

3_
Q_

__
M

W

co
nv

3_
Q_

__
SB

co
nv

3_
Q_

__
SW

ip
1_

QP
C_

M
W

ip
1_

QP
C_

SW

ip
1_

QP
__

M
W

ip
1_

QP
__

SW

ip
1_

Q_
__

M
B

ip
1_

Q_
__

M
W

ip
1_

Q_
__

SB

ip
1_

Q_
__

SW

0.0

0.2

0.4

0.6

0.8

1.0
Quantized CaffeNet

Figure A.6: Accuracy degradation distribution after injecting faults in quantized
CaffeNet.

52 APPENDIX A.

