408 research outputs found

    Particle-Based Modeling of Reliability for Millimeter-Wave GaN Devices for Power Amplifier Applications

    Get PDF
    abstract: In this work, an advanced simulation study of reliability in millimeter-wave (mm-wave) GaN Devices for power amplifier (PA) applications is performed by means of a particle-based full band Cellular Monte Carlo device simulator (CMC). The goal of the study is to obtain a systematic characterization of the performance of GaN devices operating in DC, small signal AC and large-signal radio-frequency (RF) conditions emphasizing on the microscopic properties that correlate to degradation of device performance such as generation of hot carriers, presence of material defects and self-heating effects. First, a review of concepts concerning GaN technology, devices, reliability mechanisms and PA design is presented in chapter 2. Then, in chapter 3 a study of non-idealities of AlGaN/GaN heterojunction diodes is performed, demonstrating that mole fraction variations and the presence of unintentional Schottky contacts are the main limiting factor for high current drive of the devices under study. Chapter 4 consists in a study of hot electron generation in GaN HEMTs, in terms of the accurate simulation of the electron energy distribution function (EDF) obtained under DC and RF operation, taking into account frequency and temperature variations. The calculated EDFs suggest that Class AB PAs operating at low frequency (10 GHz) are more robust to hot carrier effects than when operating under DC or high frequency RF (up to 40 GHz). Also, operation under Class A yields higher EDFs than Class AB indicating lower reliability. This study is followed in chapter 5 by the proposal of a novel π-Shaped gate contact for GaN HEMTs which effectively reduces the hot electron generation while preserving device performance. Finally, in chapter 6 the electro-thermal characterization of GaN-on-Si HEMTs is performed by means of an expanded CMC framework, where charge and heat transport are self-consistently coupled. After the electro-thermal model is validated to experimental data, the assessment of self-heating under lateral scaling is considered.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Optical isolation by temporal modulation: size, frequency, and power constraints

    Full text link
    Optical isolators are indispensable components of optical networks. Magneto-optic isolators have excellent operating characteristics, including low-to-no power consumption, but are not well suited for on-chip integration. The technique of temporal modulation of dielectric constant offers an alternative way to achieve isolation without magnetic field but is not without its own drawbacks. In this work I examine diverse methods of optical isolation via temporal modulation and show that independent on whether modulation is achieved by carrier injection, Pockels and acousto-optic effects, or any other conceivable method, there is essentially the same set of constraints on footprint, modulation frequency, and, most important, on power consumption required to achieve full isolation without excessive insertion loss. This power is estimated to be on the order of at least a hundred of milliwatts and whether this requirement is acceptable will depend on ongoing progress of both magneto-optic and time modulated integrated technologies

    A 185-215-GHz Subharmonic Resistive Graphene FET Integrated Mixer on Silicon

    Get PDF
    A 200-GHz integrated resistive subharmonic mixer based on a single chemical vapor deposition graphene field-effect transistor (G-FET) is demonstrated experimentally. This device has a gate length of 0.5 ÎŒm and a gate width of 2x40 ÎŒm. The G-FET channel is patterned into an array of bow-tie-shaped nanoconstrictions, resulting in the device impedance levels of ~50 Ω and the ON-OFF ratios of ≄4. The integrated mixer circuit is implemented in coplanar waveguide technology and realized on a 100-ÎŒm-thick highly resistive silicon substrate. The mixer conversion loss is measured to be 29 ± 2 dB across the 185-210-GHz band with 12.5-11.5 dBm of local oscillator (LO) pump power and >15-dB LO-RF isolation. The estimated 3-dB IF bandwidth is 15 GHz

    Optical pulse generation and signal processing for the development of high-speed OTDM networks

    Get PDF
    Due to the continued growth of the Internet and the introduction of new broadband services, it is anticipated that individual channel data rates may exceed lOOGbit/s in the next 5-10 years. In order to operate at such high line rates new techniques for optical pulse generation and optical signal processing will have to be developed. As the overall data rate of an OTDM network is essentially determined by the temporal separation between data channels, an optical pulse source that is capable of producing ultra-short optical pulses at a high repetition rate and with wavelength tunability will be important, not only for OTDM, but for vanous applications in WDM and hybrid WDM/OTDM networks. This work demonstrates that by using the gain-switching technique, commercially available laser diodes can be used in the development of nearly transform-limited optical pulses that are wavelength tunable over nearly 65nm with durations ranging from 12-30ps and a Side-Mode Suppression Ratio (SMSR) exceeding 60dB. New optical signal processing techniques will also have to be developed in order to operate at individual data rates in excess of lOOGbit/s. Only nonlinear optical effects, present in fibres, semiconductors and optical crystals, can be employed as these occur on time scales in the order of a few-femtoseconds (10“15 5), with an example being Two-Photon Absorption (TPA) in semiconductors. This thesis describes a specially designed microcavity that can enhance the Two-Photon Absorption (TPA) response by over three orders of magnitude at specific wavelengths. A theoretical model demonstrating error-free demultiplexing of a 250Gbit/s OTDM signal via a TPA microcavity has been developed. Experimental work is also presented demonstrating the use of a TPA microcavity for optical sampling of 100GHz signals with a temporal resolution of 1 ps9 and system sensitivity of 0 009 (mW)2 This value for the sensitivity is the lowest ever reported for a TPA-based sampling system

    High Frequency Electrical Transport Properties of Carbon Nanotubes

    Get PDF
    Carbon nanotubes (CNTs) have extraordinary electronic properties owing to the unique band structure of graphene and their one-dimensional nature. Their small size and correspondingly small capacitances make them candidates for novel high-frequency devices with cut-off frequencies approaching one terahertz, but their high individual impedance hampers measurements of their high-frequency transport properties. In this dissertation, I describe the fabrication of carbon nanotube Schottky diodes on high-frequency compatible substrates and the measurement of their rectification at frequencies up to 40GHz as a method of examining the high-frequency transport of individual CNTs despite their high impedance. The frequency dependence of the rectified signal is then used to extract the Schottky junction capacitance as a function of applied bias and ambient doping and to look for resonances which might be a signature of a room-temperature Luttinger Liquid

    Novel gallium arsenide monolithic microwave devices and their applications

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX185536 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • 

    corecore