1,210 research outputs found

    Voyager electronic parts radiation program, volume 1

    Get PDF
    The Voyager spacecraft is subject to radiation from external natural space, from radioisotope thermoelectric generators and heater units, and from the internal environment where penetrating electrons generate surface ionization effects in semiconductor devices. Methods for radiation hardening and tests for radiation sensitivity are described. Results of characterization testing and sample screening of over 200 semiconductor devices in a radiation environment are summarized

    The Characterization of a CMOS Radiation Hardened-by-Design Circuit Technique

    Get PDF
    This thesis presents the analysis, implementation and testing of a circuit-level radiation hardened-by-design (RHBD) technique first presented in [1]. Radiation effects heavily influence the cost and design of electronics bound for radiation-rich environments such as in nuclear reactors or space. The circuit-level RHBD technique is presented as a cost-effective way to mitigate total-ionizing dose (TID) radiation in digital complementary metal-oxide-semiconductor (CMOS) transistor circuits. These claims are analyzed and experimentally tested. Devices from a relatively old and a newer semiconductor fabrication process are tested to investigate the impact of device scaling on the RHBD technique’s effectiveness. A rad-tolerant frequency synthesizer that implements this technique is discussed. Challenges in the project included implementing efficient testing procedures at the radiation test facilities. Testing time was limited and in-situ­ test methodologies utilizing LabView programs were used effectively

    Effects of cosmic rays on single event upsets

    Get PDF
    The efforts at establishing a research program in space radiation effects are discussed. The research program has served as the basis for training several graduate students in an area of research that is of importance to NASA. In addition, technical support was provided for the Single Event Facility Group at Brookhaven National Laboratory

    Shortcomings in ground testing, environment simulations, and performance predictions for space applications

    Get PDF
    This paper addresses the issues involved in radiation testing of devices and subsystems to obtain the data that are required to predict the performance and survivability of satellite systems for extended missions in space. The problems associated with space environmental simulations, or the lack thereof, in experiments intended to produce information to describe the degradation and behavior of parts and systems are discussed. Several types of radiation effects in semiconductor components are presented, as for example: ionization dose effects, heavy ion and proton induced Single Event Upsets (SEUs), and Single Event Transient Upsets (SETUs). Examples and illustrations of data relating to these ground testing issues are provided. The primary objective of this presentation is to alert the reader to the shortcomings, pitfalls, variabilities, and uncertainties in acquiring information to logically design electronic subsystems for use in satellites or space stations with long mission lifetimes, and to point out the weaknesses and deficiencies in the methods and procedures by which that information is obtained

    Design of a Radiation-Hardened Optical Transceiver

    Get PDF
    Reliable and efficient communication links are vital in harsh environments where ionizing radiation is present. Optical links specifically are necessary to support the growing need for higher data rates and faster signal processing requirements of devices in these environments. For many years, radiation hardness in electronics has been achieved via specialized manufacturing processes in dedicated foundries. These techniques have failed to scale at the rate of commercial CMOS processes, disallowing for faster and more efficient circuits. One strategy to create radiation tolerant circuits while still retaining the benefits of commercial fabrication is a hard-by-design methodology. Techniques such as enclosed layout (EL) and triple modular redundancy (TMR) can be used to design circuitry tolerant to ionizing radiation. This thesis demonstrates an optical transceiver in a 180nm CMOS process based on a transmit vertical-cavity surface-emitting laser (VCSEL) and a receive photo-detector (PD) with radiation-hardened circuitry. The transceiver has been characterized electrically and comparisons between the radiation hardened and non radiation-hardened versions were performed in the Texas A&M Cyclotron Institute and Nuclear Engineering & Science Center (NESC)

    Radiation and shielding study for the International Ultraviolet Explorer

    Get PDF
    Technical advisory services to ensure integrity of parts and material exposed to energetic particle radiation for the IUE scientific instruments, spacecraft, and subsystems are provided. A significant potential for interference, degradation, or failure for unprotected or sensitive items was found. Vulnerable items were identified, and appropriate tests, changes, and shields were defined

    Solid state microelectronics tolerant to radiation and high temperature

    Get PDF
    The 300 C electronics technology based on JFET thick film hybrids was tested up to 10 to the 9th power rad gamma (Si) and 10 to the 15th power neutrons/sq cm. Circuits and individual components from this technology all survived this total dose although some devices required 1 hour of annealing at 200 or 300 C to regain functionality. This technology used with real time annealing should function to levels greater than 10 to the 10th power rad gamma and 10 to the 16th power n/sq cm

    Microprocessor Seminar, phase 2

    Get PDF
    Workshop sessions and papers were devoted to various aspects of microprocessor and large scale integrated circuit technology. Presentations were made on advanced LSI developments for high reliability military and NASA applications. Microprocessor testing techniques were discussed, and test data were presented. High reliability procurement specifications were also discussed

    Radiation-Hardened Data Acquisition System Based on a Mask-programmable Analog Array

    Get PDF
    Data acquisition systems capable of extreme temperature and radiation environments are of dire need in an era of great nuclear energy generation. Efforts to respond to recent nuclear accidents, such as those caused by natural disasters at Fukushima, have suffered in promptness and effectiveness due to the lack of information gathered from these sites. Currently, there are no systems available that accurately acquire, digitize, and remotely report this data in the presence of harsh radiation. Using a mask-programmable analog array prototype chip designed for Triad Semiconductor and an FMI frequency synthesizer, both verified to beyond 300 kRad and 125ºC and capable of analog signal conditioning and digitization, a radiation-hardened data acquisition system is produced. This system will report three parameters of importance to the assessment of a nuclear reactor environment: gamma radiation, temperature, and pressure. Through a three-task development process, the discrete part selection and overall system will be outlined, detailed board design will be shown, and end-to-end system calibration and radiation testing will be performed and analyzed. The evaluation of target environments will provide specifications for system performance, as well as determine successful completion of the work
    • …
    corecore