1,282 research outputs found

    Integrated Transversal Equalizers in High-Speed Fiber-Optic Systems

    Get PDF
    Intersymbol interference (ISI) caused by intermodal dispersion in multimode fibers is the major limiting factor in the achievable data rate or transmission distance in high-speed multimode fiber-optic links for local area networks applications. Compared with optical-domain and other electrical-domain dispersion compensation methods, equalization with transversal filters based on distributed circuit techniques presents a cost-effective and low-power solution. The design of integrated distributed transversal equalizers is described in detail with focus on delay lines and gain stages. This seven-tap distributed transversal equalizer prototype has been implemented in a commercial 0.18-µm SiGe BiCMOS process for 10-Gb/s multimode fiber-optic links. A seven-tap distributed transversal equalizer reduces the ISI of a 10-Gb/s signal after 800 m of 50-µm multimode fiber from 5 to 1.38 dB, and improves the bit-error rate from about 10^-5 to less than 10^-12

    Design trade-offs for cost-effective multimode fiber channel equalizers in optical data center applications

    Get PDF
    A 10-Gb/s transmission over 1-km standard multimode fiber for data center applications is casestudied in terms of the design considerations for low-complexity and cost-effective equalizers which can increase the reach of multimode fiber links

    Application of MIMO DF equalization to high-speed off-chip communication

    Get PDF
    In this contribution, we present a multiple-input multiple-output (MIMO) equalizer with decision feedback (DF) for high-speed chip-to-chip communication. We derive an elegant closed-form expression for the minimum mean square error (MMSE) equalization filters and show that the application of MIMO DF equalization (DFE) allows to significantly improve the reliability of high-speed communication over low-cost electrical interconnects

    A Low-Complexity Decision Feedforward Equalizer Architecture for High-Speed Receivers on Highly Dispersive Channels

    Get PDF
    This paper presents an improved decision feedforward equalizer (DFFE) for high speed receivers in the presence of highly dispersive channels. This decision-aided equalizer technique has been recently proposed for multigigabit communication receivers, where the use of parallel processing is mandatory. Well-known parallel architectures for the typical decision feedback equalizer (DFE) have a complexity that grows exponentially with the channel memory. Instead, the new DFFE avoids that exponential increase in complexity by using tentative decisions to cancel iteratively the intersymbol interference (ISI). Here, we demostrate that the DFFE not only allows to obtain a similar performance to the typical DFE but it also reduces the compelxity in channels with large memory. Additionally, we propose a theoretical approximation for the error probability in each iteration. In fact, when the number of iteration increases, the error probability in the DFFE tends to approach the DFE. These benefits make the DFFE an excellent choice for the next generation of high-speed receivers.Fil: Pola, Ariel Luis. Universidad Nacional de Cordoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Electronica. Laboratorio de Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Cousseau, Juan Edmundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahía Blanca. Instituto de Investigación En Ingeniería Eléctrica; Argentina. Universidad Nacional del Sur; ArgentinaFil: Agazzi, Oscar E.. Irvine Center Drive. ClariPhy Communications; Estados UnidosFil: Hueda, Mario Rafael. Universidad Nacional de Cordoba. Facultad de Cs.exactas Fisicas y Naturales. Departamento de Electronica. Laboratorio de Comunicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Inter-carrier interference mitigation for underwater acoustic communications

    Get PDF
    Communicating at a high data rate through the ocean is challenging. Such communications must be acoustic in order to travel long distances. The underwater acoustic channel has a long delay spread, which makes orthogonal frequency division multiplexing (OFDM) an attractive communication scheme. However, the underwater acoustic channel is highly dynamic, which has the potential to introduce significant inter-carrier interference (ICI). This thesis explores a number of means for mitigating ICI in such communication systems. One method that is explored is directly adapted linear turbo ICI cancellation. This scheme uses linear filters in an iterative structure to cancel the interference. Also explored is on-off keyed (OOK) OFDM, which is a signal designed to avoid ICI

    Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network

    Get PDF
    Indoor diffuse optical wireless (OW) communication systems performance is limited due to a number of effects; interference from natural and artificial light sources and multipath induced intersymbol interference (ISI). Artificial light interference (ALI) is a periodic signal with a spectrum profile extending up to the MHz range. It is the dominant source of performance degradation at low data rates, which can be removed using a high-pass filter (HPF). On the other hand, ISI is more severe at high data rates and an equalizing filter is incorporated at the receiver to compensate for the ISI. This paper provides the simulation results for a discrete wavelet transform (DWT)—artificial neural network (ANN)-based receiver architecture for on-and-off keying (OOK) non-return-to-zero (NRZ) scheme for a diffuse indoor OW link in the presence of ALI and ISI. ANN is adopted for classification acting as an efficient equalizer compared to the traditional equalizers. The ALI is effectively reduced by proper selection of the DWT coefficients resulting in improved receiver performance compared to the digital HPF. The simulated bit error rate (BER) performance of proposed DWT-ANN receiver structure for a diffuse indoor OW link operating at a data range of 10-200 Mbps is presented and discussed. The results are compared with performance of a diffuse link with an HPF-equalizer, ALI with/without filtering, and a line-of-sight (LOS) without filtering. We show that the DWT-ANN display a lower power requirement when compared to the receiver with an HPF-equalizer over a full range of delay spread in presence of ALI. However, as expected compared to the ideal LOS link the power penalty is higher reaching to 6 dB at 200 Mbps data rate

    FPGA implementation of a MIMO DFE in 40 GB/S DQPSK optical links

    Get PDF
    In this paper, an FPGA implementation of a Multi Input Multi Output (MIMO) Decision Feedback equalizer (DFE) is proposed, for the electronic compensation of the impairments in 40Gb/s Intensity Modulated Direct Detection (IM/DD) optical communication links employing NRZ DQPSK signaling. The proposed equalizer is used for the electronic compensation the residual Chromatic Dispersion (CD) along the installed optically compensated optical paths. The required processing rate is achieved by applying intensive pipelining and parallelism in the original architecture of the equalizer. At the given processing rate, a 8-input 2-output DFE involving three taps feedforward filtering and two taps backward filtering is implemented on a single, cutting edge technology, Xilinx FPGA device
    corecore