198 research outputs found

    Performance Evaluation of 802.15.4 UWB PHY for High Speed Data Rate under IEEE Channel Mode

    Get PDF
    In modern day society the increase of data generation and transfer has been an issue that researchers are working on. This generated and shared data might have a different purpose but one thing is certain, the reception. This communication can cover continents, countries, cities or even just a few meters. For the purpose of the later, personal area networks (PAN) have been created with a main focus to lower the energy consumption. The protocol that is created under IEEE is 802.15.4 and it has multiple applications in the context of next generation sensor networks. This thesis investigates the performance IEEE 802.15.4 UWB PHY for high data rates over IEEE multipath fading channels and introduces receivers aiming to diversity and to mitigate the intersymbol interference (ISI) that might appear. We simulate the protocols highest mandatory data rate over slow, block faded, realistic IEEE channel models such as, residential, office, outdoor and industrial. The simulation includes Reed Solomon (RS) channel coding, optimal successive erasure decoding (SED), and coherent RAKE receivers. We verify that the selective RAKE (sRAKE) perform better than the nonselective RAKE (n-sRAKE) in all environments and also the increase of fingers is mandatory in order to improve performance. In cases with low number of fingers the ISI mitigation techniques like Maximum-Likehood Sequence Estimator (MLSE) & RAKE combination or Maximum Ration Combining (MRC) ISI cancellation receivers, can provide some gain in large delay spread environments. In cases with high number of ingers the MRC received employs its full diversity since the received power is arger than before. Overall the apply of optimal errors and erasures decoding can urther improve the system performance by adding a small gain, lowering existing it Error Probability (BEP) even more.A huge percentage of data has been generated in the last two years and it will grow more, as every one of us is constantly producing and releasing data. The latest years has been an extensive research on capacity maximization, bit rate increment and power optimization. That research lead to the development of various protocols for cellular and personal area networks (PAN), where they each utilizes the frequency spectrum differently. Even if cellular networks have the ability to cover large area, development of multiple personal area networks can be developed for the purpose to offload data from the cellular network. Keeping in mind the research needs, 802.15.4 UWH PHY is a solid candidate when it comes to data transfer in a small area. This protocol offers various mandatory transmission modes that can be selected depending the channel parameters and various data rate needs. Time hopping and spreading sequence offers the existence of multiuser environment where multiple transceivers can co-exist. Overall the complexity, cost and energy consumption for transmission and reception can be kept low, matching the research needs. The main issues regarding 802.15.4 UWH PHY and high speed data rates is first, the energy dispersion of the transmitted symbol to multiple bins and second, the appearance of Inter Symbol Interference (ISI) in high delay profile environments. The solution in the former problem is the necessary implementation of a RAKE receiver. Regarding the latter, literature offers multiple ways to mitigate the ISI but the aim should be to keep the lowest complexity possible regarding the implementation. In this thesis we evaluate the performance of 802.15.4 UWB PHY for high speed data rates under IEEE channel models. Various receivers has been build for the purpose of this thesis, Maximum Ratio Combining (MRC), MRC with Inter Symbol Interference and MLSE & RAKE combination receiver. The MRC is a simple RAKE receiver with maximum diversity, MRC with ISI cancellation is based on the MRC receiver with the ability to mitigate ISI, and MLSE & RAKE combination is an optimum ISI mitigation receiver without the diversity of the MRC

    Wideband Channel Sounding Techniques for Dynamic Spectrum Access Networks

    Get PDF
    In recent years, cognitive radio has drawn extensive research attention due to its ability to improve the efficiency of spectrum usage by allowing dynamic spectrum resource sharing between primary and secondary users. The concept of cognitive radio was first presented by Joseph Mitola III and Gerald Q. Maguire, Jr., in which either network or wireless node itself changes particular transmission and reception parameters to execute its tasks efficiently without interfering with the primary users [1]. Such a transceiving mechanism and network environment is called the dynamic spectrum access (DSA) network. The Federal Communications Commission (FCC) allows any type of transmission in unlicensed bands at any time as long as their transmit power level obeys specific FCC regulations. Performing channel sounding as a secondary user in such an environment becomes a challenge due to the rapidly changing network environment and also the limited transmission power. Moreover, to obtain the long term behavior of the channel in the DSA network is impractical with conventional channel sounders due to frequent changes in frequency, transmission bandwidth, and power. Conventional channel sounding techniques need to be adapted accordingly to be operated in the DSA networks. In this dissertation, two novel channel sounding system frameworks are proposed. The Multicarrier Direct Sequence Swept Time-Delay Cross Correlation (MC-DS-STDCC) channel sounding technique is designed for the DSA networks aiming to perform channel sounding across a large bandwidth with minimal interference. It is based on the STDCC channel sounder and Multicarrier Direct Sequence Code Division Multiple Access (MC-DS-CDMA) technique. The STDCC technique, defined by Parsons [2], was first employed by Cox in the measurement of 910 MHz band [3{6]. The MC-DS-CDMA technique enables the channel sounder to be operated at different center frequencies with low transmit power. Hence, interference awareness and frequency agility are achieved. The OFDM-based channel sounder is an alternative to the MC-DS-STDCC technique. It utilizes user data as the sounding signal such that the interference is minimized during the course of transmission. Furthermore, the OFDM-based channel sounder requires lower sampling rate than the MC-DS-STDCC system since no spreading is necessary

    Underwater acoustic communications

    Get PDF
    The underwater acoustic medium poses unique challenges to the design of robust, high throughput digital communications. The aim of this work is to identify modulation and receiver processing techniques to enable the reliable transfer of data at high rate, at range between two, potentially mobile parties using acoustics. More generally, this work seeks to investigate techniques to effectively communicate between two or more parties over a wide range of channel conditions where data rate is a key but not always the absolute performance requirement. Understanding the intrinsic ocean mechanisms that influence signal coherence, the relationship between signal coherence and optimum signal design, and the development of robust modulation and receiver processing techniques are the main areas of study within this work. New and established signal design, modulation, synchronisation, equalisation and spatial processing techniques are investigated. Several new, innovative techniques are presented which seek to improve the robustness of ‘classical’ solutions to the underwater acoustic communications problem. The performance of these techniques to mitigate the severe temporal dispersion of the underwater channel and its unique temporal variability are assessed. A candidate modulation, synchronisation and equalisation architecture is proposed based on a spatial-temporal adaptive signal processing (STAP) receiver. Comprehensive simulation results are presented to demonstrate the performance of the candidate receiver to time selective, frequency selective and spatially selective channel behaviour. Several innovative techniques are presented which maximise system performance over a wider range of operational and environmental conditions. Field trials results are presented based on system evaluation over a wide range of geographically distinct environments demonstrating system performance over a diverse range of ocean bathymetry, topography and background noise conditions. A real time implementation of the system is reported and field trials results presented demonstrating the capability of the system to support a wide range of data formats including video at useful frame rates. Within this work, several novel techniques have been developed which have extended the state of the art in high data rate underwater communications:- • Robust, high fidelity open loop synchronisation techniques capable of operating at marginal signal-to-noise ratios over a wide range of severely time spread environments. These high probability of synchronisation, low probability of false alarm techniques, provide the means for ‘burst’ open loop synchronisation in time, Doppler and space (bearing). The techniques have been demonstrated in communication and position fixing/navigation systems to provide repeatable range accuracy’s to centimetric order. • Novel closed loop synchronisation compensation for STAP receiver architectures. Specifically, this work has demonstrated the performance benefits of including both delay lock loop (DLL) and phase lock loop (PLL) support for acoustic adaptive receivers to offload tracking effort from the fractional feedforward equaliser section. It has been shown that the addition of a DLL/PLL outperforms the PLL only case for Doppler errors exceeding a few fractions of a knot. • Recycling of training data has been demonstrated as a potentially useful means to improve equaliser convergence in difficult acoustic channels. With suitable processing power, training data recycling introduces no additional transmission time overhead, which may be a limiting factor in battery powered applications. • Forward and time reverse decoding of packet data has been demonstrated as an effective means to overcome some non-minimum phase channel conditions. It has also been shown that there may be further benefits in terms of improved bit error performance, by exploiting concurrent forward and backward symbol data under modest channel conditions. • Several wideband techniques have been developed and demonstrated to be effective at resolving and coherently tracking difficult doubly spread acoustic channels. In particular, wideband spread spectrum techniques have been shown to be effective at resolving acoustic multipath, and with the aid of independent delay lock loops, track individual path arrivals. Techniques have been developed which can effect coherent or non-coherent recombination of these paths with a view to improving the robustness of an acoustic link operating at very low signal-to-noise levels. • Demonstrated throughputs of up to 41kbps in a difficult, tropical environment, featuring significant biological noise levels for mobile platforms at range up to 1.5km. • Demonstrated throughputs of between 300bps and 1600bps in a shallow, reverberant environment, at a range up to 21km at LF. • Implemented and demonstrated all algorithms in real time systems

    A Study of Integrated UWB Antennas Optimised for Time Domain Performance

    Get PDF
    Antennas for impulse radio ultra-wideband based portable devices are required to be compact and able to transmit or receive waveforms with minimal distortion in order to support proximity ranging with a centimetre-scale precision. The first part of thesis characterises several pulse types for use in the generation of picosecond-scale signals in respect to the regulatory power and frequency standards while the principles of antenna transient transmission and reception are stated. The proximity effect of planar conductors on the performance of an ultra-wideband antenna is investigated in both spectral and temporal domain demonstrating the relationship between the antenna-reflector separation and the antenna performance. Balanced and unbalanced antennas are also investigated for integration into asset-tracking tag applications and are designed to operate in close proximity to PCB boards while meeting realistic dimensional constraints and acceptable time domain performances. Monopole antenna designs are reported with performances optimized for minimum pulse dispersion. Minimization of pulse dispersion effects in the antenna designs is achieved using pulses with optimal spectral fit to the UWB emission mask. The generation of these waveforms are reported for the first time. An antenna de-embedding method is reported enabling validation of the simulated fidelity factor of radiated patterns. Novel differentially-fed planar dipole and slot antennas are reported for direct IC output integration. Design objectives and optimisation are focused on bandwidth enhancement and pulse dispersion minimisation. Finally, time- and frequency-domain measurements are carried out using an approach based on the superposition principle

    Analysis and Design of Silicon based Integrated Circuits for Radio Frequency Identification and Ranging Systems at 24GHz and 60GHz Frequency Bands

    Get PDF
    This scientific research work presents the analysis and design of radio frequency (RF) integrated circuits (ICs) designed for two cooperative RF identification (RFID) proof of concept systems. The first system concept is based on localizable and sensor-enabled superregenerative transponders (SRTs) interrogated using a 24GHz linear frequency modulated continuous wave (LFMCW) secondary radar. The second system concept focuses on low power components for a 60GHz continuous wave (CW) integrated single antenna frontend for interrogating close range passive backscatter transponders (PBTs). In the 24GHz localizable SRT based system, a LFMCW interrogating radar sends a RF chirp signal to interrogate SRTs based on custom superregenerative amplifier (SRA) ICs. The SRTs receive the chirp and transmit it back with phase coherent amplification. The distance to the SRTs are then estimated using the round trip time of flight method. Joint data transfer from the SRT to the interrogator is enabled by a novel SRA quench frequency shift keying (SQ-FSK) based low data rate simplex communication. The SRTs are also designed to be roll invariant using bandwidth enhanced microstrip patch antennas. Theoretical analysis is done to derive expressions as a function of system parameters including the minimum SRA gain required for attaining a defined range and equations for the maximum number of symbols that can be transmitted in data transfer mode. Analysis of the dependency of quench pulse characteristics during data transfer shows that the duty cycle has to be varied while keeping the on-time constant to reduce ranging errors. Also the worsening of ranging precision at longer distances is predicted based on the non-idealities resulting from LFMCWchirp quantization due to SRT characteristics and is corroborated by system level measurements. In order to prove the system concept and study the semiconductor technology dependent factors, variants of 24GHz SRA ICs are designed in a 130nm silicon germanium (SiGe) bipolar complementary metal oxide technology (BiCMOS) and a partially depleted silicon on insulator (SOI) technology. Among the SRA ICs designed, the SiGe-BiCMOS ICs feature a novel quench pulse shaping concept to simultaneously improve the output power and minimum detectable input power. A direct antenna drive SRA IC based on a novel stacked transistor cross-coupled oscillator topology employing this concept exhibit one of the best reported combinations of minimum detected input power level of −100 dBm and output power level of 5.6 dBm, post wirebonding. The SiGe stacked transistor with base feedback capacitance topology employed in this design is analyzed to derive parameters including the SRA loop gain for design optimization. Other theoretical contributions include the analysis of the novel integrated quench pulse shaping circuit and formulas derived for output voltage swing taking bondwire losses into account. Another SiGe design variant is the buffered antenna drive SRA IC having a measured minimum detected input power level better than −80 dBm, and an output power level greater than 3.2 dBm after wirebonding. The two inputs and outputs of this IC also enables the design of roll invariant SRTs. Laboratory based ranging experiments done to test the concepts and theoretical considerations show a maximum measured distance of 77m while transferring data at the rate of 0.5 symbols per second using SQ-FSK. For distances less than 10m, the characterized accuracy is better than 11 cm and the precision is better than 2.4 cm. The combination of the maximum range, precision and accuracy are one of the best reported among similar works in literature to the author’s knowledge. In the 60GHz close range CW interrogator based system, the RF frontend transmits a continuous wave signal through the transmit path of a quasi circulator (QC) interfaced to an antenna to interrogate a PBT. The backscatter is received using the same antenna interfaced to the QC. The received signal is then amplified and downconverted for further processing. To prove this concept, two optimized QC ICs and a downconversion mixer IC are designed in a 22nm fully depleted SOI technology. The first QC is the transmission lines based QC which consumes a power of 5.4mW, operates at a frequency range from 56GHz to 64GHz and occupies an area of 0.49mm2. The transmit path loss is 5.7 dB, receive path gain is 2 dB and the tunable transmit path to receive path isolation is between 20 dB and 32 dB. The second QC is based on lumped elements, and operates in a relatively narrow bandwidth from 59.6GHz to 61.5GHz, has a gain of 8.5 dB and provides a tunable isolation better than 20 dB between the transmit and receive paths. This QC design also occupies a small area of 0.34mm² while consuming 13.2mW power. The downconversion is realized using a novel folded switching stage down conversion mixer (FSSDM) topology optimized to achieve one of the best reported combination of maximum voltage conversion gain of 21.5 dB, a factor of 2.5 higher than reported state-of-the-art results, and low power consumption of 5.25mW. The design also employs a unique back-gate tunable intermediate frequency output stage using which a gain tuning range of 5.5 dB is attained. Theoretical analysis of the FSSDM topology is performed and equations for the RF input stage transconductance, bandwidth, voltage conversion gain and gain tuning are derived. A feasibility study for the components of the 60GHz integrated single antenna interrogator frontend is also performed using PBTs to prove the system design concept.:1 Introduction 1 1.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . 1 1.2 Scope and Functional Specifications . . . . . . . . . . . . . . . . . 4 1.3 Objectives and Structure . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Features and Fundamentals of RFIDs and Superregenerative Amplifiers 9 2.1 RFID Transponder Technology . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Chipless RFID Transponders . . . . . . . . . . . . . . . . . 10 2.1.2 Semiconductor based RFID Transponders . . . . . . . . . . 11 2.1.2.1 Passive Transponders . . . . . . . . . . . . . . . . 11 2.1.2.2 Active Transponders . . . . . . . . . . . . . . . . . 13 2.2 RFID Interrogator Architectures . . . . . . . . . . . . . . . . . . . 18 2.2.1 Interferometer based Interrogator . . . . . . . . . . . . . . . 19 2.2.2 Ultra-wideband Interrogator . . . . . . . . . . . . . . . . . . 20 2.2.3 Continuous Wave Interrogators . . . . . . . . . . . . . . . . 21 2.3 Coupling Dependent Range and Operating Frequencies . . . . . . . 25 2.4 RFID Ranging Techniques . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.0.1 Received Signal Strength based Ranging . . . . . 28 2.4.0.2 Phase based Ranging . . . . . . . . . . . . . . . . 30 2.4.0.3 Time based Ranging . . . . . . . . . . . . . . . . . 30 2.5 Architecture Selection for Proof of Concept Systems . . . . . . . . 32 2.6 Superregenerative Amplifier (SRA) . . . . . . . . . . . . . . . . . . 35 2.6.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.6.2 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . 42 2.6.3 Frequency Domain Characteristics . . . . . . . . . . . . . . 45 2.7 Semiconductor Technologies for RFIC Design . . . . . . . . . . . . 48 2.7.1 Silicon Germanium BiCMOS . . . . . . . . . . . . . . . . . 48 2.7.2 Silicon-on-Insulator . . . . . . . . . . . . . . . . . . . . . . . 48 3 24GHz Superregenerative Transponder based Identification and Rang- ing System 51 3.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 SRT Identification and Ranging . . . . . . . . . . . . . . . . 51 3.1.2 Power Link Analysis . . . . . . . . . . . . . . . . . . . . . . 55 3.1.3 Non-idealities . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.1.4 SRA Quench Frequency Shift Keying for data transfer . . . 61 3.1.5 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 63 3.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.2.1 Low Power Direct Antenna Drive CMOS SRA IC . . . . . . 66 3.2.1.1 Circuit analysis and design . . . . . . . . . . . . . 66 3.2.1.2 Characterization . . . . . . . . . . . . . . . . . . . 69 3.2.2 Direct Antenna Drive SiGe SRA ICs . . . . . . . . . . . . . 71 3.2.2.1 Stacked Transistor Cross-coupled Quenchable Oscillator . . . . . . . . . . . . . . . . . . . . . . . . 72 3.2.2.1.1 Resonator . . . . . . . . . . . . . . . . . . 72 3.2.2.1.2 Output Network . . . . . . . . . . . . . . 75 3.2.2.1.3 Stacked Transistor Cross-coupled Pair and Loop Gain . . . . . . . . . . . . . . . . . 77 3.2.2.2 Quench Waveform Design . . . . . . . . . . . . . . 85 3.2.2.3 Characterization . . . . . . . . . . . . . . . . . . . 89 3.2.3 Antenna Diversity SiGe SRA IC with Integrated Quench Pulse Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . 91 3.2.3.1 Circuit Analysis and Design . . . . . . . . . . . . 91 3.2.3.1.1 Crosscoupled Pair and Sampling Current 94 3.2.3.1.2 Common Base Input Stage . . . . . . . . 95 3.2.3.1.3 Cascode Output Stage . . . . . . . . . . . 96 3.2.3.1.4 Quench Pulse Shaping Circuit . . . . . . 96 3.2.3.1.5 Power Gain . . . . . . . . . . . . . . . . . 99 3.2.3.2 Characterization . . . . . . . . . . . . . . . . . . . 102 3.2.4 Knowledge Gained . . . . . . . . . . . . . . . . . . . . . . . 103 3.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 106 3.3.1 Superregenerative Transponders . . . . . . . . . . . . . . . 106 3.3.1.1 Bandwidth Enhanced Microstrip Patch Antennas 108 3.3.2 FMCW Radar Interrogator . . . . . . . . . . . . . . . . . . 114 3.3.3 Chirp Z-transform Based Data Analysis . . . . . . . . . . . 116 4 60GHz Single Antenna RFID Interrogator based Identification System 121 4.1 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.2 RFIC Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1 Quasi-circulator ICs . . . . . . . . . . . . . . . . . . . . . . 125 4.2.1.1 Transmission Lines based Quasi-Circulator IC . . 126 4.2.1.2 Lumped Elements WPD based Quasi-Circulator . 130 4.2.1.3 Characterization . . . . . . . . . . . . . . . . . . . 134 4.2.1.4 Knowledge Gained . . . . . . . . . . . . . . . . . . 135 4.2.2 Folded Switching Stage Downconversion Mixer IC . . . . . 138 4.2.2.1 FSSDM Circuit Design . . . . . . . . . . . . . . . 138 4.2.2.2 Cascode Transconductance Stage . . . . . . . . . . 138 4.2.2.3 Folded Switching Stage with LC DC Feed . . . . . 142 4.2.2.4 LO Balun . . . . . . . . . . . . . . . . . . . . . . . 145 4.2.2.5 Backgate Tunable IF Stage and Offset Correction 146 4.2.2.6 Voltage Conversion Gain . . . . . . . . . . . . . . 147 4.2.2.7 Characterization . . . . . . . . . . . . . . . . . . . 150 4.2.2.8 Knowledge Gained . . . . . . . . . . . . . . . . . . 151 4.3 Proof of Principle System Implementation . . . . . . . . . . . . . . 154 5 Experimental Tests 157 5.1 24GHz System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5.1.1 Ranging Experiments . . . . . . . . . . . . . . . . . . . . . 157 5.1.2 Roll Invariance Experiments . . . . . . . . . . . . . . . . . . 158 5.1.3 Joint Ranging and Data Transfer Experiments . . . . . . . 158 5.2 60GHz System Detection Experiments . . . . . . . . . . . . . . . . 165 6 Summary and Future Work 167 Appendices 171 A Derivation of Parameters for CB Amplifier with Base Feedback Capac- itance 173 B Definitions 177 C 24GHz Experiment Setups 179 D 60 GHz Experiment Setups 183 References 185 List of Original Publications 203 List of Abbreviations 207 List of Symbols 213 List of Figures 215 List of Tables 223 Curriculum Vitae 22

    Ultra-wideband indoor communications using optical technology

    Get PDF
    La communication ultra large bande (UWB) a attiré une énorme quantité de recherches ces dernières années, surtout après la présentation du masque spectral de US Federal Communications Commission (FCC). Les impulsions ultra-courtes permettent de très hauts débits de faible puissance tout en éliminant les interférences avec les systèmes existants à bande étroite. La faible puissance, cependant, limite la portée de propagation des radios UWB à quelques mètres pour la transmission sans fil à l’intérieur d’une pièce. En outre, des signaux UWB reçu sont étendus dans le temps en raison de la propagation par trajet multiple qui résulte en beaucoup d’interférence inter-symbole (ISI) à haut débit. Le monocycle Gaussien, l’impulsion la plus commune dans UWB, a une mauvaise couverture sous le masque de la FCC. Dans cette thèse, nous démontrons des transmet- teurs qui sont capables de générer des impulsions UWB avec une efficacité de puissance élevée. Une impulsion efficace résulte dans un rapport de signal à bruit (SNR) supérieur au récepteur en utilisant plus de la puissance disponible sous le masque spectral de la FCC. On produit les impulsions dans le domaine optique et utilise la fibre optique pour les transporter sur plusieurs kilomètres pour la distribution dans un réseau optique pas- sif. La fibre optique est très fiable pour le transport des signaux radio avec une faible consommation de puissance. On utilise les éléments simples comme un modulateur Mach-Zehnder ou un résonateur en anneau pour générer des impulsions, ce qui permet l’intégration dans le silicium. Compatible avec la technologie CMOS, la photonique sur silicium a un potentiel énorme pour abaisser le coût et l’encombrement des systèmes optiques. La photodétection convertit les impulsions optiques en impulsions électriques avant la transmission sur l’antenne du côté de l’utilisateur. La réponse fréquentielle de l’antenne déforme la forme d’onde de l’impulsion UWB. Nous proposons une technique d’optimisation non-linéaire qui prend en compte la distorsion d’antenne pour trouver des impulsions qui maximisent la puissance transmise, en respectant le masque spectral de la FCC. Nous travaillons avec trois antennes et concevons une impulsion unique pour chacune d’entre elle. L’amélioration de l’énergie des impulsions UWB améliore directement la SNR au récepteur. Les résultats de simulation montrent que les impulsions optimisées améliorent considérablement le taux d’erreur (BER) par rapport au monocycle Gaussien sous propagation par trajet multiple. Notre autre contribution est l’évaluation d’un filtre adapté pour recevoir efficacement des impulsions UWB. Le filtre adapté est synthétisé et fabriqué en technologie microstrip, en collaboration avec l’Université McGill comme un dispositif de bande interdite électromagnétique. La réponse fréquentielle du filtre adapté montre une ex- cellente concordance avec le spectre ciblé de l’impulsion UWB. Les mesures de BER confirment la performance supérieure du filtre adapté par rapport à un récepteur à conversion directe. Le canal UWB est très riche en trajet multiple conduisant à l’ISI à haut débit. Notre dernière contribution est l’étude de performance des récepteurs en simulant un système avec des conditions de canaux réalistes. Les résultats de la simulation montrent que la performance d’un tel système se dégrade de façon significative pour les hauts débits. Afin de compenser la forte ISI dans les taux de transfert de données en Gb/s, nous étudions l’algorithme de Viterbi (VA) avec un nombre limité d’états et un égaliseur DFE (decision feedback equalizer). Nous examinons le nombre d’états requis dans le VA, et le nombre de coefficients du filtre dans le DFE pour une transmission fiable de UWB en Gb/s dans les canaux en ligne de vue. L’évaluation par simulation de BER confirme que l’égalisation améliore considérablement les performances par rapport à la détection de symbole. La DFE a une meilleure performance par rapport à la VA en utilisant une complexité comparable. La DFE peut couvrir une plus grande mémoire de canal avec un niveau de complexité relativement réduit.Ultra-wideband (UWB) communication has attracted an enormous amount of research in recent years, especially after the introduction of the US Federal Communications Commission (FCC) spectral mask. Ultra-short pulses allow for very high bit-rates while low power eliminates interference with existing narrowband systems. Low power, however, limits the propagation range of UWB radios to a few meters for indoors wireless transmission. Furthermore, received UWB signals are spread in time because of multipath propagation which results in high intersymbol interference at high data rates. Gaussian monocycle, the most commonly employed UWB pulse, has poor coverage under the FCC mask. In this thesis we demonstrate transmitters capable of generating UWB pulses with high power efficiency at Gb/s bit-rates. An efficient pulse results in higher signal-to-noise ratio (SNR) at the receiver by utilizing most of the available power under the FCC spectral mask. We generate the pulses in the optical domain and use optical fiber to transport the pulses over several kilometers for distribution in a passive optical network. Optical fiber is very reliable for transporting radio signals with low power consumption. We use simple elements such as a Mach Zehnder modulator or a ring resonator for pulse shaping, allowing for integration in silicon. Being compatible with CMOS technology, silicon photonics has huge potential for lowering the cost and bulkiness of optical systems. Photodetection converts the pulses to the electrical domain before antenna transmission at the user side. The frequency response of UWB antennas distorts the UWB waveforms. We pro- pose a nonlinear optimization technique which takes into account antenna distortion to find pulses that maximize the transmitted power, while respecting the FCC spectral mask. We consider three antennas and design a unique pulse for each. The energy improvement in UWB pulses directly improves the receiver SNR. Simulation results show that optimized pulses have a significant bit error rate (BER) performance improvement compared to the Gaussian monocycle under multipath propagation. Our other contribution is evaluating a matched filter to receive efficiently designed UWB pulses. The matched filter is synthesized and fabricated in microstrip technology in collaboration with McGill University as an electromagnetic bandgap device. The frequency response of the matched filter shows close agreement with the target UWB pulse spectrum. BER measurements confirm superior performance of the matched filter compared to a direct conversion receiver. The UWB channel is very rich in multipath leading to ISI at high bit rates. Our last contribution is investigating the performance of receivers by simulating a system employing realistic channel conditions. Simulation results show that the performance of such system degrades significantly for high data rates. To compensate the severe ISI at gigabit rates, we investigate the Viterbi algorithm (VA) with a limited number of states and the decision feedback equalizer (DFE). We examine the required number of states in the VA, and the number of taps in the DFE for reliable Gb/s UWB trans- mission for line-of-sight channels. Non-line-of-sight channels were also investigated at lower speeds. BER simulations confirm that equalization considerably improves the performance compared to symbol detection. The DFE results in better performance compared to the VA when using comparable complexity as the DFE can cover greater channel memory with a relatively low complexity level

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures
    • …
    corecore