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Abstract

In recent years, cognitive radio has drawn extensive research attention due

to its ability to improve the efficiency of spectrum usage by allowing dynamic

spectrum resource sharing between primary and secondary users. The concept of

cognitive radio was first presented by Joseph Mitola III and Gerald Q. Maguire,

Jr., in which either network or wireless node itself changes particular transmission

and reception parameters to execute its tasks efficiently without interfering with

the primary users [1]. Such a transceiving mechanism and network environment

is called the dynamic spectrum access (DSA) network. The Federal Communi-

cations Commission (FCC) allows any type of transmission in unlicensed bands

at any time as long as their transmit power level obeys specific FCC regulations.

Performing channel sounding as a secondary user in such an environment becomes

a challenge due to the rapidly changing network environment and also the limited

transmission power. Moreover, to obtain the long term behavior of the channel

in the DSA network is impractical with conventional channel sounders due to fre-

quent changes in frequency, transmission bandwidth, and power. Conventional

channel sounding techniques need to be adapted accordingly to be operated in

the DSA networks.

In this dissertation, two novel channel sounding system frameworks are pro-

posed. The Multicarrier Direct Sequence Swept Time-Delay Cross Correlation

(MC-DS-STDCC) channel sounding technique is designed for the DSA networks

aiming to perform channel sounding across a large bandwidth with minimal in-

terference. It is based on the STDCC channel sounder and Multicarrier Direct

Sequence Code Division Multiple Access (MC-DS-CDMA) technique. The STDCC

technique, defined by Parsons [2], was first employed by Cox in the measurement of

910 MHz band [3–6]. The MC-DS-CDMA technique enables the channel sounder

to be operated at different center frequencies with low transmit power. Hence,

interference awareness and frequency agility are achieved. The OFDM-based chan-

nel sounder is an alternative to the MC-DS-STDCC technique. It utilizes user data

as the sounding signal such that the interference is minimized during the course

of transmission. Furthermore, the OFDM-based channel sounder requires lower

sampling rate than the MC-DS-STDCC system since no spreading is necessary.
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Chapter 1

Introduction

1.1 Research Motivation

The current demand for high spectrum resource utilization has grown dramat-

ically, with spectrum resources becoming increasingly scarce. Dynamic spectrum

access (DSA) techniques are promising candidates for improving the spectrum

utilization efficiency in order to achieve higher data rates. The ultimate goal of

dynamic spectrum access is for the secondary users (i.e., unlicensed users) to use

the unoccupied frequency band while introducing minimum interference to the

primary users. This idea has already been used by the Federal Communications

Commission (FCC) in the United States on the TV band, where unlicensed users

can “fill” in frequency gaps to share spectrum with the primary TV signal trans-

mission [7]. In this scenario, as long as the secondary user is aware of the primary

user’s existence, the interference should be kept at a minimum since TV signals are

fairly consistent in terms of time and frequency band of transmission. However,

in more complicated scenarios, where primary users can hop between frequencies,

and the period of frequency band occupation is more random, designing a wire-

1



less communication system that is suitable for such a network environment can

be challenging.

In order for the wireless communication systems to maximize the data rate,

one has to have adequate information on the radio channel, which is done by per-

forming channel sounding. Conventional channel sounding techniques require a

licensed band to perform the measurements, which is expensive and inefficient in

terms of spectrum utilization, since only the licensed user can perform operations

within this band, and there is no guarantee that the band is always occupied. Dy-

namic spectrum access networks allow secondary users to share a licensed band

with the primary users without interfering. On the other hand, the transmit power

in DSA networks is also regulated by government agencies, such as the FCC in the

United States. Some new technologies have been developed to overcome this chal-

lenge, such as software defined radio (SDR), cognitive radios (CR)1, adaptive an-

tennas, and space time coding. These techniques have been extensively researched

over the past several years, such as the Next Generation (XG) program, by the

Defense Advanced Research Projects Agency (DARPA) [8], and the European

research project on Spectrum Efficient Uni- and Multicast Services over Dynamic

Multi-Radio Networks in Vehicular Environments (OverDRiVE) [9,10]. However,

conventional channel sounding techniques are not suitable for DSA networks, for

instance, the narrowband pulse sounding technique [11], since the transmitted

energy is pulsed and requires a high power amplifier (AP) in the transmitter that

increases the cost and complexity of the system. Matched filter and pulse com-

pression channel sounders are superior to pulse sounding as far as system cost is

concerned. However, once the system is built, it is limited to the use of a cer-

1Cognitive radio is designed based on SDR, where it has the ability to aware of spectrum
availability.
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tain frequency. Hence, to design a channel sounder for DSA networks based on

cognitive radios is demanded.

Sliding correlator -based channel sounding techniques are frequency efficient in

terms of spectrum utilization since bandwidth compression allows us to perform a

wideband measurement with a relatively small bandwidth (slow A/D sample rate)

compared to pulse sounding. However, sliding correlator -based techniques still

require a licensed band and high transmit power to perform measurements. Thus,

operating a sliding correlator channel sounder in the DSA network is impractical.

Moreover, most of the conventional channel sounders are not SDR-based, which

means that once the system is built, the parameters can be changed, but with

difficulty. To operate in DSA networks, where frequent changes of transmission

and reception parameters are required, conventional channel sounders have to be

designed and implemented based on cognitive radios.

The existing problems motivate us to design an adaptive channel sounder for

DSA networks, in which the channel sounder can be operated at different center

frequencies depending on spectrum availability (either policy-based or measurement-

based) with extremely small transmit power relative to the conventional tech-

niques or adaptively varying transmit power without interfering with other users.

The swept time-delay cross correlation (STDCC) sounding technique is relatively

simple to implement, since it does not require a high sampling rate due to the

pulse compression technique, and only requires an m-sequence generator at the

transmitter and a cross-correlator at the receiver. Moreover, advanced signal

processing algorithms also enable us to eliminate the intermediate frequency op-

eration from the hardware domain to the software domain, which means that

the correlation and other signal processing can either be done by an end termi-
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nal computer or by the on-board FPGA, depending on the requirements. By

combining the STDCC technique with the MC-DS-CDMA technique, called the

MC-DS-STDCC channel sounder, the transmit power is reduced by a factor of

the spreading sequence length. Moreover, the measurements can be employed at

different center frequencies with varying transmit power.

An alternative solution to the combination of spread spectrum and multicar-

rier techniques is to use the orthogonal frequency division multiplexing (OFDM)

technique as the channel sounding platform and utilize the user data to perform

channel sounding without introducing a dedicated sounding signal, such that in-

terference is minimized. The other advantage of this approach is that the sampling

rate requirement is not as high as that of the MC-DS-CDMA technique, since the

bandwidth is not traded for performance.

1.2 Implementation: A Whole New Story

Designing an algorithm may bring to light theoretical problems. One can

tackle those problems by making reasonable assumptions. However, implementing

a design will force us to face those problems and issues. For example, the sampling

rate of the device is restricted by the DAC and the ADC, while when designing

the algorithm we can assume that the DAC sampling rate is sufficient. Also,

the baseband bandwidth requirement of the design may be too ambitious for the

hardware device.

In this dissertation, the implementation issues will be assessed and studied

by observing the combination of the theoretical design and hardware capability.

The hardware platform for the implementation is the Universal Software Radio

Peripheral (USRP), which was developed by Ettus Research [12], and we use the
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GNU Radio software to accomplish every single functionality of the system other

than the RF front end. This approach provides us many convenient features, such

as fast system reconfigurability, pure software implementation of algorithms, low

cost, etc. However, this approach is subject to the hardware capabilities when

considering the system design.

1.3 Current State-of-the-Art

Channel sounding techniques and devices have been used by researchers, wire-

less service providers, and spectrum regulation agencies for many years to capture

and study radio channel characteristics. In the early 1970s, a radio channel mea-

suring device based on sliding correlator was first developed by Cox [3–6]. This

was the first radio channel sounder that could measure both time and frequency

domain characteristics of a wireless channel, and it was also the first “wide-band”

channel sounder ever developed. The measurement was conducted at the 910

MHz band in an urban area of New York City, which later provided distributions

for multipath delay spread and average excess delay expected by wireless device

and systems. In 1991, Parsons named Cox’s channel sounder the swept time-delay

cross-correlator channel sounder [11]. He discovered the evolution of the slid-

ing correlation channel sounding techniques and also did a comparison between

different channel sounding techniques. In his paper, the channel sounders are

categorized into wide-band and narrow-band based on the width of the frequency

band of interest. The channel sounders are also divided into time and frequency

domain based on their functionality.

As wireless communication systems become more and more complicated, ac-

curate and comprehensive channel information becomes the key for the entire

5



system design. Depending on different applications, environment, and their op-

eration center frequencies, radio channel characteristics may vary from one to

another. Many researchers have conducted extensive measurements and analysis

for different radio channel environments and applications [13–28]. In addition to

radio channel measurement, statistical analysis on the data collected by the mea-

suring devices plays an important role in the entire system design. Not only does

statistical analysis help in understanding the radio channel, but it also provides a

way of predicting the channel [21,29–37].

Researchers have also shown that the performance in terms of delay resolution

and accuracy of the first proposed channel sounder by Cox can be improved by

designing a better sounding signal, applying signal processing on the collected

data, as well as by eliminating the unnecessary hardware (IF stage). With modern

communication technologies, the channel sounders can identify delay resolution

of sub second nano seconds for indoor environments [19, 33], as well as couple

hundreds of megahertz bandwidths [15]. G. Martin showed that the dynamic

range of a sliding correlator can be improved by a new algorithm [38]. It was also

shown in literature [23, 31, 39–44] that system performance can be improved by

designing a better sounding signal as well as by the use of signal processing.

1.4 Dissertation Contributions

This dissertation presents the following novel contributions:

• Characterized the user access randomness in both frequency and time do-

main. Addressed challenges in designing the channel sounding system for

the DSA network environment. Tasks needing to be solved were how to
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perform channel sounding without interfering with other users, and how

to perform channel sounding efficiently when frequent frequency and time

switching is required.

• A multicarrier direct sequence spreading based channel sounding system

framework combined with the STDCC channel sounder, also termed as

MC-DS-STDCC, is presented. The MC-DS-STDCC utilizes direct sequence

spreading to minimize the interference to other users within the same fre-

quency band, and multicarrier modulation to achieve frequency agility. To

be more specific, each subcarrier is able to adjust the transmit power by

increasing or decreasing the spreading sequence length in order to satisfy

the power limit. Moreover, the use of spread spectrum also increases the

inherent processing gain of the system, and hence, the dynamic range of the

channel sounder is enlarged.

• In contrast to the MC-DS-STDCC channel sounding technique, the OFDM-

based channel sounding technique is focused on reducing the system com-

plexity, mainly sampling rate. The OFDM-based channel sounder has the

ability to use user data as the sounding signal, which eliminates the sounding

signal generator, and hence the system complexity is reduced. However, the

performance is directly related to the autocorrelation of the user transmit

data, that is, the optimal sounding signal is achieved when the data across

all subcarriers are equal to one. A tradeoff study is conducted by interpo-

lating performance loss versus randomness of the user data. On the other

hand, since the OFDM-based channel sounding technique uses user data as

the sounding signal, no extra interference will be introduced as long as the
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user has permission to the frequency band. However, system performance

is traded off for system complexity.

• Channel sounder is a measurement device, and hence, it is only useful if im-

plemented. In this dissertation, implementation of the STDCC is presented

based on the USRP and GNU radio. Implementation of the MC-DS-STDCC

and OFDM-based channel sounder is outside the scope of this dissertation

because of hardware and software limitations; The USRP platform supports

a maximum bandwidth of 32 MHz by adopting a custom FPGA bitstream

file to bypass the bandpass filter built in on the daughter board. This band-

width limitation is the major obstacle to implementing the MC-DS-STDCC

channel sounder, which requires much higher bandwidth in order to perform

spread spectrum. Indoor experiments were conducted inside Nichols Hall in

Lawrence, KS. The experiment results were studied and analyzed.

1.5 Dissertation Organization

This dissertation is organized as follows: Chapter 2 discusses radio channel

environments including large-scale fading and small-scale fading. Mathematical

models of the radio channel are given, as well as the relationships between them.

The main focus of this chapter is radio channel characteristics in both time and fre-

quency domains. Several important channel parameters will be studied in detail,

such as channel impulse response, channel frequency response, doppler spread,

etc. The relationship and transform between time and frequency domain channel

characteristics are emphasized. In the last section, dynamic spectrum access net-

works is emphasized. The challenges and necessity in designing a channel sounding
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system for such a network environment are addressed.

Chapter 3 consists of a literature survey of channel sounding techniques, each

of which is discussed in detail as to advantages and disadvantages, and the fun-

damentals of the sliding correlator theory and the STDCC technique. Problems

when utilizing conventional channel sounders in the DSA network environment

are addressed. The need for new channel sounding techniques for the dynamic

spectrum access networks is discovered, with emphasis on the challenges that

conventional channel sounding techniques encounter when being applied to such

network environments.

In Chapter 4, wideband channel sounding techniques are discussed. The pro-

posed technique is a combination of the multicarrier modulation technique and

the STDCC technique. Each technique is focused on solving a particular research

question. The MC-DS-STDCC technique is mainly designed for frequency-agile

and interference awareness as well as channel sounding performance. Drawbacks

of the MC-DS-STDCC technique are also presented, which become the motivation

for the OFDM-based channel sounding technique.

High sampling rate requirement and system complexity are the two major

drawbacks of the MC-DS-STDCC technique. In Chapter 5, an OFDM-based

channel sounding technique is presented in contrast to the previous technique.

The OFDM-based channel sounder does not require dedicated sounding signal

generation and signal processing, and hence, system complexity is reduced, and

the sampling rate required is relatively low, since time domain spreading is not

necessary. However, system performance is traded off for simplicity.

In Chapter 6, hardware and software implementation of the STDCC channel

sounder is presented. Implementation issues due to hardware and software limita-
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tions are also discussed. Indoor channel measurements were conducted in Nichols

Hall, and measurement results were analyzed and studied.

The dissertation is concluded by future work and contributions in Chapter 7.
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Chapter 2

Radio Propagation Channel

2.1 Fundamentals of Mobile Radio Channel

The mobile radio channel can be attributed to large-scale path loss channel

and small-scale fading (multipath fading channel). Large-scale path loss is used

to study electromagnetic wave propagation characteristics. As the name implies,

the propagation model is usually used to predict the mean signal strength for an

arbitrary transmitter-receiver separation. On the other hand, small-scale fading is

used to describe the rapid fluctuations of amplitudes, phases, or multipath delays

of a radio signal over a short period of time or travel distance, and hence the

large-scale path loss effects may be neglected when studying small-scale fading

channels. Unlike the deterministic feature of large-scale fading, small-scale fading

is a stochastic process that depends on many factors. Figure 2.1 illustrates a sim-

ulated small-scale fading and the more gradual large-scale average signal strength

variation versus transmitter-receiver separation. The average signal strength does

not change rapidly for a relatively short distance, hence, for studying small-scale

fading, the signal strength variations due to transmission distance is ignored.
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Figure 2.1. Small-scale and large-scale fading.

2.2 Multipath Fading Channel

Small-scale fading channel, sometimes referred to as multipath fading chan-

nel is a phenomenon caused by interference between multiple transmitted signals

arriving at the receiver with random delays. The time-shifted versions of the

transmitted signals are added up either constructively or destructively at the re-

ceiver, which causes both signal strength and phase fluctuation. In general, the

causes of multipath fading can be summarized as:

• Transmitter movement

• Receiver movement

• Object movement
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• Signal reflected by objects.

Depending on the speed and direction of the movement, the multipath fading chan-

nel is defined as fast and slow fading channel, which is characterized by Doppler

shift [45]. Due to the random nature of the transmission channel, capturing and

modeling such a channel environment can be difficult. In the following sections,

the mobile radio channel is studied in three domains: temporal, frequency, and

space, with each having its own parameters.

2.3 Time and Frequency Domain Characteristics

2.3.1 Delay Spread, Power Delay Profile and rms Delay Spread

Delay spread, power delay profile, and rms delay spread are the most important

time domain characteristics of a wireless multipath fading channel. They are

indicators of the type of the channel, i.e., indoor channel, or outdoor channel,

and also frequency selective or nonselective. Let x (t) represent the transmitted

signal, y (t) the received signal, and h (t, τ) the impulse response of the time-

varying multipath fading channel. The variable t represents time variations due

to motion, whereas τ represents the channel multipath delay for a fixed value of

t. The received signal y (t) can be expressed as a convolution of the transmitted

signal x (t) with the channel impulse response:

y (t) =

∫ −∞
∞

x (τ) · h (t, τ) · dτ = x (t)⊗ h (t, τ) . (2.1)

In order to model the channel impulse response, the multipath delay has to be

discrete, which means the delay axis τ is divided into equally spaced delay bins,
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where each bin has a time delay width equal to τi+1 − τi = ∆τ . If we ignore

the propagation delay between the transmitter and the receiver, one can assume

that the first multipath component has delay of zero, τ0 = 0. Let N be the total

number of multipath components, so the maximum excess delay of the channel is

given by N∆τ . This channel is known as the tapped delay line model [46], which

is shown in Figure 2.2:

Z-1 Z-1 Z-1 Z-1. . .

. . .

x(t)

y(t)

h
1
(t) h

2
(t) h

n-1
(t) h

n
(t)

Figure 2.2. Tapped delay line model.

In general, the time-varying nature of the channel can be modeled as a wide-

sense stationary (WSS) random process in the time variable t [47], and the at-

tenuation and the phase shift associated with different delays are assumed to be

uncorrelated, called the uncorrelated scattering (US) assumption [46, 47]. The

autocorrelation function of the time-varying channel is defined as [46]:

Rc̃ (τ1, τ2,∆t) = E [c̃∗(τ1, t) · c̃ (τ2, t+ ∆t)] , (2.2)

where Rc̃ denotes the autocorrelation function of a WSS random process, E [·] rep-

resents the expectation operator, and c̃ (τ, t) describes the time-varying, complex

lowpass-equivalent impulse response of the multipath fading channel. By applying

the US assumption, Equation (2.2) becomes:

Rc̃ (τ1, τ2,∆t) = Rc̃ (τ1,∆t) · δ (τ1 − τ2) . (2.3)
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Equation (2.3) indicates that the autocorrelation function depends only on the

difference between τ1 and τ2. By replacing τ1 − τ2 with τ in the above equation,

Equation (2.2) can be written as:

Rc̃ (τ,∆t) = E [c̃∗ (τ, t) · c̃ (τ, t+ ∆t)] . (2.4)

Equation (2.4) is a time domain representation of the multipath fading channel. It

indicates that the autocorrelation function of the channel can be derived from the

expected value of the complex baseband impulse response. It would be helpful if

there existed a function that can simultaneously provide both time and frequency

domain description of the channel with respect to the delay variable τ and fre-

quency domain variable ω. It is obvious that such a function can be obtained by

applying the Fast Fourier Transform (FFT) on ∆t, which yields:

S (τ, ω) = F∆t [Rc̃(τ,∆t)] =

∫ ∞
−∞

Rc̃ (τ,∆t) · e−2πω∆t · d∆t, (2.5)

where F [·] denotes the Fourier transform with respect to ∆t. Function S(τ, ω) is

defined as the scattering function of the channel, which is the Fourier transform of

the channel autocorrelation function. Individually, the time and frequency domain

parameters can also be derived from the scattering function.

The power delay profile (PDP) is defined as the intensity of a signal received

through a multipath channel as a function of time delay. It can be calculated from

the complex impulse response c̃ (τ, t) [45]:

p (τ) = E
[
| c̃ (τ, t)2 |

]
= Rc̃ (τ, 0) , (2.6)
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which is equal to the channel autocorrelation function evaluated at zero time

instance, Rc̃ (τ,∆t) |∆t=0. Assuming the scattering function is known, the power

delay profile can be derived by averaging S (τ, ω) over the frequency domain:

∫ ∞
−∞

∫ ∞
−∞

S (τ, ω) =

∫ ∞
−∞

∫ ∞
−∞

Rc̃(τ,∆t) · e−j2πω∆t · d∆t · dτ

= Rc̃(τ, 0). (2.7)

Similarly, integrating the scattering function over the time domain yields the

frequency domain representation, Doppler spectrum:

S (ω) =

∫ ∞
−∞

S (τ, ω) · dτ. (2.8)
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Figure 2.3. Doppler shift vs. delay spread.

16



Figure 2.3 demonstrates the relationship between the delay spread, the Doppler

shift, and the amplitude of a multipath fading channel. The delay spread is

modeled by the exponential function e−τ , where the Doppler spectrum is based

on the Jakes model. The delay spread determines the bandwidth of the channel,

and the Doppler spectrum reflects the velocity of the mobile.

The relationship between the scattering function S (τ, ω) and the time and

frequency domain functions is summarized in Figure 2.4:

Figure 2.4. Relationship between scattering function, channel cor-
relation functions, power delay profile, and Doppler power spectrum.

As shown in Figure 2.4, the time domain parameter power delay profile and the

frequency domain parameter frequency correlation function are a Fourier Trans-

form pair, so are the Doppler power spectrum and time correlation function. This

relationship provides us an additional path to obtaining the channel parameter

of one domain to another. Specifically, if one wants to get the frequency domain
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channel parameter by using a time domain channel sounder, the FFT should be

applied. Given the development of efficient FFT algorithms and digital signal pro-

cessing (DSP) chips, implementing FFT on a hardware platform across all levels

becomes cheap and feasible. Moreover, this relationship also provides a funda-

mental support of the OFDM-based channel sounder, which will be discussed in

Chapter 5.

Channel delay spread and power delay profile are usually measured by using a

channel sounding device. In order to compare different multipath channels and to

develop general design guidelines for wireless systems, parameters such as mean

excess delay, rms delay spread, and excess delay spread (X dB) are used. Those

parameters are derived from a power delay profile. A often used parameter is rms

delay spread, since the channel coherence bandwidth Bc ≈ 1
50στ

[46]. The rms

delay spread is the square root of the second central moment of the power delay

profile and it is defined to be [45]:

στ =

√
τ 2 − (τ)2, (2.9)

where

τ 2 =

∑
k

a2
k · τ 2

k∑
k

a2
k

=

∑
k

P (τk) · τ 2
k∑

k

P (τk)
. (2.10)

2.4 Channel Coherence

2.4.1 Coherence versus Selectivity

Fading is a general term used to describe a wireless channel affected by some

type of selectivity. A channel has selectivity if it varies as a function of either
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time, frequency, or space. The opposite of selectivity is coherence. A channel has

coherence if it does not change as a function of time, frequency, or space over a

specified “window” of interest.

Indeed, wireless channels may be functions of time, frequency, and space. The

most fundamental concept in channel modeling is classifying the three possible

channel dependencies of time, frequency, and space as either coherent or selective

in order to keep track of these dependencies in the wireless channel. As described

in the previous sections, delay spread and channel coherence bandwidth are pa-

rameters which describe the time-dispersive nature of the channel. When the

time-varying nature of the channel is caused by either relative motion between

the mobile and base station, or by movement of objects in the channel. Doppler

spread and coherence time are the parameters which describe the channel.

2.4.2 Temporal Coherence

A wireless channel has temporal coherence if the envelope of the unmodulated

carrier wave does not change over a time window of interest. Mathematically, we

express this condition in terms of a narrow band (no frequency dependence), fixed

(no spatial dependence) channel, h̃(t) [48]:

∣∣∣h̃(t)
∣∣∣ ≈ V0, for |t− t0| ≤

Tc
2
, (2.11)

where V0 is some constant voltage, Tc is the size of the time window of interest, and

t0 is some arbitrary moment in time. The largest value of Tc, on average, for which

Equation ( 2.11) holds is called the “coherence time ” and is the approximate time

window over which the channel appears static.

Note that the channel in Equation (2.11) is in complex phasor form and is
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independent of carrier frequency. Naturally, a transmitted wave will produce si-

nusoidal oscillations as a function of time, but the definition of temporal coherence

is concerned with the “envelope” of those oscillations. Temporal coherence is an

indication of how fast the channel response changes versus time, hence, the chan-

nel can be categorized into slow and fast fading. Slow and fast fading are relative

to the transmit symbol rate. If the channel impulse response does not vary during

one symbol period of the signal, the channel is considered as slow fading channel

to the signal, and vice versa.

To overcome the fast fading effect, one can transmit a signal with higher symbol

rate than the channel coherence time, that is, Tc ≤ Ts, where Tc represents the

channel coherence time, and Ts represents the symbol rate of the signal, so that

the channel impulse response is flat over one symbol period. In general, in order

to increase system throughput, we always transmit at high symbol rate. However,

this approach results in frequency domain fading, which will be discussed in the

next section.

2.4.3 Frequency Coherence

A wireless channel has frequency coherence if the magnitude of the carrier wave

does not change over a frequency window of interest. This window of interest is

the bandwidth of the transmitted signal. As we defined the time coherence of a

radio channel, the condition of frequency coherence in terms of the static, fixed

channel, h̃(f) [48] is:

∣∣∣h̃(f)
∣∣∣ ≈ V0, for |fc − f | ≤

Bc

2
, (2.12)
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where V0 is again some constant amplitude, Bc is the size of the frequency window

of interest, and fc is the center carrier frequency.

The frequency coherence characteristic is described by the frequency correla-

tion function P (∆f), which represents the correlation between the channel re-

sponse to two narrowband signals with the frequencies f1 and f2. Channel coher-

ence bandwidth, Bc, is a statistical measure of the range of frequencies over which

the channel can pass all spectral components with approximately equal power and

linear phase. Channel coherence bandwidth reflects the correlation between two

frequency components across the frequency range of interest. Hence, the correla-

tion coefficient determines the coherence bandwidth. The greater the correlation

coefficient, the narrower the coherence bandwidth. Assuming that the correlation

between two frequency responses depends only on the frequency difference, that

is ∆f = f1 − f2, the normalized frequency correlation coefficient is then defined

as:

ρ∆f =
E [H (f) ·H (f + ∆f)∗]

E
[
|H (f)|2

] . (2.13)

The frequency correlation function can be thought of as the transfer function of

the channel; hence, it is the inverse Fourier Transform of the channel impulse

response, and as a result, ∆f can be represented as: [46]:

∆f ≈ 1

τmax

, (2.14)

Equation (2.14) reveals the relationship between the power delay profile and the

frequency correlation function, that is, they are Fourier transform pairs. However,

a general relationship between the coherence bandwidth and rms delay spread

only exists for the specific channel models and must be derived from the actual
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dispersion characteristics of the channels or statistical measurements and simula-

tion [45].

As mentioned in the previous section, transmitting a signal at high symbol

rate requires larger bandwidth, and hence if the channel coherence bandwidth

is smaller compared with the signal bandwidth, the received signal suffers from

frequency selectivity. Many techniques are available to compensate for the fad-

ing effects caused by frequency selectivity, one classic example being equalization.

Equalization is achieved by estimating the channel frequency response from the

distorted signal with various combining techniques [46]. Although equalization

can assist in improving signal quality and reducing bit error rate, it requires com-

plicated equalizer design at the receiver. When a communication system is to be

operated in a certain wireless environment, the channel characteristics need to be

acknowledged by performing channel sounding, which provides prior information

of the radio channel to the communication system designer.

2.5 Radio Channel Characteristics of the Dynamic

Spectrum Access Network Environment

As discussed in the previous sections, the characteristics of a radio channel

depend on many factors. Researchers have addressed factors that affect these

characteristics in both time and frequency domains. However, as the DSA network

comes into play, the radio channel can behave differently. For example, the channel

bandwidth can change from several megahertz to several hundred megahertz when

then channel type changes from outdoor to indoor. This phenomenon is caused

by the random access of the unlicensed users. In particular, the unlicensed users
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can appear at a certain frequency band at any time as long as their activities

are legitimate. Figure 2.5 shows an example of the random access of unlicensed

user under licensed and unlicensed bands. The figure uses color scale to represent
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Figure 2.5. Example of an unlicensed user appearing in a DSA net-
work environment.

the transmit power level of a certain user in both time and frequency domains.

Zero on the power scale (in dark blue) shows that the slots are inaccessible by

the unlicensed user due to primary user reservation or power restriction. Different

color stands for different power level restrictions. In the time domain (x-axis in

the figure), the unlicensed user may occupy a certain band for a period of time

until the licensed users appear or other unlicensed users request to share the band.

That unlicensed user either has to wait until the band is available again, or hop
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to another frequency band. This approach is suitable for applications that are

latency sensitive, such as file transfer, peer-to-peer, etc. Switching to a different

frequency band will guarantee continuity of connection at the cost of hardware

complexity, since the RF front end has to have the capability to switch between

center frequencies as well as be accommodative to different bandwidths.

The Unlicensed National Information Infrastructure (U-NII) radio bands and

the Industrial, Scientific and Medical (ISM) radio bands are two commonly used

unlicensed bands (IEEE 802.11), which cover a wide range of frequencies. Ta-

ble 2.1 lists the transmission parameters for each frequency range of the ISM and

U-NII bands.

Table 2.1. U-NII and ISM band specifications.

U-NIIa ISMb

Low Mid Worldwide Upper ISM

Band (GHz) 5.15-5.25 5.25-5.35 5.47-5.725 5.725-5.825 2.4-2.5

Power Limit 50 mW 250 mW 250 mW 1 W Varies

aU-NII is an FCC regulatory domain for 5 GHz wireless device, for complete reference please
see reference [49].

bISM bands listed here only indicate the most commonly used bands (WiFi band). The
complete ISM band definition can be found in [50].

For a cognitive radio device to operate in the frequency bands listed in Ta-

ble 2.1, not only must the device RF front end have the ability to tune accordingly,

but also the radio channel characteristics must vary as well. For example, the max-

imum Doppler shifts for a device operating at 5.15 and 5.85 GHz with velocity of

25 M/h are equal to 429.17 Hz and 487.5 Hz, respectively. In addition, the user

bandwidth may change according to the center frequency and maximum band-

width available. Hence, the user signal may suffer from different multipath fading
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channels. For example, if the user signal bandwidth changes from 5 MHz to 500

KHz, and the channel coherence bandwidth remains 2 MHz, the multipath fading

channel for the user changes from frequency selective to frequency nonselective,

and it may change over time and frequency. This challenge requires cognitive

radios to have the ability to learn the radio channel and adjust their parameters

rapidly and adaptively before the radio channel changes.

In addition to the frequency and bandwidth restrictions, operating environ-

ment also plays a critical role in cognitive radio design. For an indoor environment,

the radio channel may be a frequency selective channel for the communication sys-

tem, while frequency nonselective when being operated outdoors. This is because

of the change in the maximum delay spread, which results in channel bandwidth

change. Moreover, the path loss factor varies from indoor to outdoor as well

as different channel models. Some devices may work for an indoor environment

but not for outdoors due to the change in channel type. In Chapter 6, channel

sounding experiments will be discussed in detail, the experiment results for both

indoors and outdoors will be shown. Briefly speaking, the USRP with 2.4 GHz

daughterboard works well for indoor applications. However, it fails to perform

channel sounding measurements for outdoor wireless channels.

2.6 Chapter Summary

In this chapter, conventional radio channel characteristics are presented with

focus on the time and frequency coherence of the multipath channel, since they are

the fundamentals of the signal processing portion of channel sounding techniques.

The relationship between time and frequency domain multipath channel charac-

teristics are presented in Figure 2.5. This relationship diagram reveals how the
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parameters are interwoven together by the Fourier Transform. Key factors affect-

ing cognitive radio design are described, such as center frequency, user bandwidth,

velocity, and operating environment. Due to the network environment in which

cognitive radios are operated, channel sounding becomes especially critical, and

yet difficult to accomplish. Furthermore, the challenges to performing channel

sounding in a DSA network environment become the motivation of the research.

How to perform channel sounding efficiently, frequently, and quietly is to be an-

swered in the following chapters.
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Chapter 3

Channel Sounding Techniques

Channel sounding is a technique that transmits a known signal to excite the

channel and observes the signal variations in amplitude and phase at the receiver.

It enables us to study and understand the radio channel characteristics. Early

channel sounding systems send a single tone (unmodulated CW carrier) to excite

the channel, and variations in power and phase are measured with a moving or a

stationary receiver. This is referred to as a narrow-band sounding technique [11].

When considering multipath fading channels, where two frequencies are correlated,

narrow-band sounding techniques become inefficient and impractical since a single

tone has to be transmitted at various frequencies of interest to be able to capture

the frequency and time coherence behavior of the channel [11].

In this section, a literature survey of existing channel sounding techniques is

provided, with the problems associated with each technique described. A widely

used technique, called STDCC, is emphasized.
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3.1 Radio Channel Sounding

Radio channel sounding techniques, in general, can be categorized into narrow-

band and wideband sounding techniques, depending upon the transmit band-

width [11, 51]. Modern radio communication systems, such as WiFi and WiMax,

are normally operated in a wideband channel environment, where the desired sig-

nal is in the presence of several delayed versions of itself with random fading in

amplitude and phase offset. It can also be divided into time and frequency domain

channel sounding, where the time domain sounding is in the interest of capturing

the channel impulse response, and the frequency domain sounding aims to cap-

ture the frequency characteristics of the channel. Depending on the domain of

interest, the channel sounder design of the sounding signal and sounder structure

can be different. However, the time and frequency domain parameters are closely

related to each other, with several parameters being interderivable. For example,

the frequency correlation function can be obtained from a time domain channel

sounder by applying the Fast Fourier Transform (FFT) on the channel impulse

response. However, this operation requires additional processing. The frequency

domain measurement can also be obtained by using coherent measurement tech-

niques [52].

In order to capture the wideband channel parameters, such as the root mean

square (RMS) delay spread, the maximum delay spread, and the coherence band-

width, a sounding signal occupying wide bandwidth is required. Carrying out

narrowband measurements at a large range of frequencies of interest is expen-

sive in terms of hardware complexity, moreover the performance is limited by the

interference and hardware, since the hardware may be designed for a particular
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center frequency, which may not be used for the others. Several wideband channel

sounding techniques have been devised, based on the periodic short duration pulse

approach, and the pulse compression technique [11]. Pulse compression-based

techniques, depending on different receiver structures, are realized by matched fil-

ter or cross correlation. Both methods will be discussed in details in the following

sections.

3.2 Periodic Pulse Channel Sounding

The principle behind the periodic pulse sounding technique is that a narrow

(short duration) pseudo-impulse is periodically transmitted to excite the chan-

nel (Figure 3.1), and the signal attenuation is measured by an envelop detector.

The impulse must be sufficiently narrow to ensure that the signal bandwidth is

larger than the channel coherence bandwidth to capture all the echoes. On the

other hand, two adjacent pulses have to be close enough observe the time-varying

behavior of each echo.

Tp

Tr

Figure 3.1. Periodic pulse sounding signal.

In Figure 3.1, Tp is the pulse duration, which represents the minimum identi-

fiable delay path resolution, and Tr is the pulse repetition period that is equal to
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the maximum resolvable delay path. Each short pulse provides a ‘snapshot’ of the

multipath channel at a certain time instance. Combining a series of repetitions of

pulses together gives the channel behavior over the measurement duration.

The pulse sounding technique uses an envelope detection technique, which

means only the amplitude variations are recorded, and phase information is dis-

carded. Theoretically, the narrow pulse sounding technique is an ideal technique

if the pulse duration approaches zero, since the delay resolution is infinitely small.

However, the pulse sounding technique requires high unit transmit power to de-

tect weak signals, since all the energy is contained within the narrow pulse. High

peak-to-average power ratio (PAPR) is one of the major drawbacks of this tech-

nique, since it requires a large dynamic range of the transmit power amplifier in

order to guarantee accurate measurements. The cognitive radio and DSA enabled

devices are generally portable and compact, and large power consumption and

high sampling rate are avoided. The narrow pulse sounder is disqualified without

further modification.

3.3 Frequency Domain Channel Sounder: Chirp Sounder

As an alternative to the time domain channel sounder, we can estimate the

transfer function instead by using the chirp sounder. The main criterion for its

design is that is has a power spectrum |P (jω)|2, which is approximately constant

in the bandwidth of interest, and it allows interpretation of the measurement

result directly in the frequency domain. The time domain transmit waveform is

given as:

p(t) = exp

[
2πj

(
f0t+ ∆f

t2

2Tchirp

)]
0 ≤ t ≤ Tchirp, (3.1)
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consequently, the instantaneous frequency is:

f0 + ∆f
t

Tchirp

, (3.2)

and thus has a linear relationship with time. The receiver filter requires a matched

filter to extract the transfer function. Intuitively, the chirp filter “sweeps” through

frequency range of interest, measuring different frequencies at different times. We

can improve the the sounding efficiency by performing measurement on different

frequencies at the same time. However, due to hardware costs, calibration issues,

etc., analog generation of p(t) using multiple oscillators to generate multiple fre-

quencies is not practical. Generating such signals digitally seems feasible, since

only a single oscillator is required, and the signal can be upconverted to the desired

passband.

3.4 Pulse Compression

The pulse compression is based on the theory of linear systems [11, 53]. It

provides a way to reduce the sampling rate by compressing the wideband signal

bandwidth. The measurement time is increased as a tradeoff due to the extra

processing time of pulse compression. If we consider the white noise n(t) as the

input to a linear system with impulse response of h(t), the output signal s(t) is

the convolution of n(t) and h(t):

s(t) =

∫
h(τ) · n(t− τ)dτ. (3.3)
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If the output signal s(t) is cross correlated with a delayed version of the input,

the resulting cross correlation coefficient is proportional to the impulse response

of the system h(τ):

E [s (t) · n∗ (t− τ)] = E

[∫
h(ξ) · n(t− ξ) · n∗(t− τ)dξ

]
=

∫
h (ξ) ·Rn (τ − ξ) dξ, (3.4)

where Rn(τ) is the autocorrelation function of white noise n(τ), which is equal to

the single-sided noise power spectral density, N0. Hence, Equation (3.4) can be

expressed as:

E [s (t) · n∗ (t− τ)] = N0 · h (τ) . (3.5)

Equation (3.5) indicates that the impulse response of a linear system can be

obtained using white noise as the input, and correlation technique. Generating

white noise is unrealistic in practical applications. However, pseudo-random (PN)

sequences have been studied and researched due to its noise-like characteristic [54].

To be explicit, the autocorrelation and cross correlation functions of the maximum

length PN sequence (m-sequence) are periodic and binary valued, and the m-

sequence is easy to generate with the linear shift feedback registers (LSFR). The

m-sequence is also balanced, meaning that the number of ones is one greater than

the number of zeros in each period of the sequence, which can limit the degree of

carrier suppression [55]. Another advantage of using PN sequences is the inherent

processing gain achieved by the cross correlation process, which will be discussed

in detail in Section 3.5.2.2.
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3.4.1 Convolution Matched Filter

The convolution matched filter technique falls into the pulse compression cate-

gory. It uses a filter that matches the sounding signal to achieve pulse compression.

A commonly used matched filter is the surface acoustic wave (SAW) filter. The

SAW filter on the receive side is matched to the transmit m-sequence, which re-

duces the hardware cost of the system, since it eliminates the generation of the

identical m-sequence at the receiver. The output of the matched filter is a series

of snapshots of channel impulse responses, which allows the system to operate

in real time [11]. However, the performance of the SAW filter is limited by the

devices. When the m-sequence length is long, it is difficult to generate spurious

acoustic signals. Imperfect surface acoustic waves degrade the sounder perfor-

mance in terms of delay resolution and dynamic range [53]. Some other effects

can also cause sensitivity degradation, such as temperature, filter materials, etc.

In general, SAW filters are designed for a particular center frequency with a cer-

tain bandwidth. The hardware cost constrains the application of SAW filters in

DSA networks, where operation frequency and bandwidth may change in random

manners.

3.5 The STDCC Technique

The STDCC channel sounding technique is the most widely used technique by

researchers and industry due to the outstanding features [4, 11, 53]. First, it can

perform channel sounding over a wide bandwidth, which is suitable for modern

wideband communications. Second, it reduces the sampling rate at the receiver

compared with the matched filter and chirp sounders. Matched filter and chirp
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sounder require sampling at the Nyquist rate where the STDCC only uses a single

sample at the maximum of the autocorrelation function. Third, the STDCC does

not suffer from high PAPR, because of the use of the spread spectrum technique.

Last but not least, signal processing can either be done by the hardware or software

depending on the requirement. If realtime channel sounding is required, the signal

processing algorithms can be uploaded to the FPGA, so that realtime channel

impulse responses can be observed. Off-line signal processing saves expense on

board memory, and one can develop complicated signal processing algorithms to

obtain better channel sounding performance.

3.5.1 Overview

The STDCC is based on the sliding correlator theory [4]. It is simple to imple-

ment and does not require a high sampling rate compared with conventional cor-

relative channel sounders [11]. Conventional correlative channel sounders sample

at the Nyquist rate, while the STDCC takes one sample value for each m-sequence

at the maximum amplitude of the autocorrelation function. The position of the

maximum peak of the autocorrelation function changes for each transmission cycle

of the m-sequence. STDCC pulse compression is done by correlating the received

sequence with an identical sequence clocked at a slightly lower rate. The difference

in chip rate is called slip rate, which is defined as:

fslip = fTx − fRx. (3.6)

The difference in chip rate results in different time bases between the transmit-

ted and the received sequences. The slower sequence (received sequence) will be
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aligned with the transmitted sequence again after a duration:

Tslip =
1

fslip

. (3.7)

The time domain representation, Kscale gives us the number of samples for a single

impulse response h(τi), and it is defined as:

Kscale =
fTx

fslip

>> 1, (3.8)

the larger the number of samples, the better the delay resolution. On the down

side, the measurement duration is also increased by a factor of Kscale. The trade-

off between measurement time and delay resolution needs to be considered for

different radio channel environments. However, the sliding correlator can be sub-

stituted by a stepping correlator [40,56,57] in order to use digital signal processing

techniques for improving the system performance. The STDCC transmitter and

receiver schematics are shown in Figure 3.2. The schematic shown in Figure 3.2 is

oversimplified, as it does not contain all the components, for example the interme-

diate frequency (IF) stage. The IF frequency at the transmitter employed by Cox

is 10 MHz [3]. Both the Kansas University agile radio (KUAR) [58] and universal

software radio peripheral (USRP) offer baseband bandwidth greater than 10 MHz.

For the implementation consideration, we do not have to have the IF block as long

as the sounding signal bandwidth is less than the maximum baseband bandwidth

that the hardware can offer. The transmitter consists of a Pseudo-random Binary

Sequence (PRBS) and a Radio Frequency (RF) end. An m-sequence generator is

driven by a local clock with varying clock rate depending on the requirement. The

m-sequence is then modulated and fed into the RF end and transmitted. At the
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Figure 3.2. Schematic of the STDCC transceiver.

receiver end, the received signal is filtered and passed through a low noise ampli-

fier (LNA), the inphase (I) and the quadrature (Q) of the signal are individually

correlated with an identical PRBS signal except that the m-sequence generator

is clocked at a slightly lower rate. The schematic shown previously provides a

full hardware implementation of the STDCC. If a software and hardware hybrid

implementation is used, anything beyond the RF front end can be implemented

in the software to minimize the hardware scale.

3.5.2 System Parameters

In this section, several critical system parameters of the STDCC channel

sounder are presented. The relationship between the parameters and the system
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performance is addressed.

3.5.2.1 Multipath Resolution

The multipath resolution capability of the channel sounder is summarized as:

the maximum delay resolution and the minimum identifiable multipath resolution.

The maximum delay resolution is defined as the capability to detect the max-

imum unambiguous multipath component by the sounder, which is a function of

the m-sequence length. The maximum path delay that can be measured by the

sounder is smaller than L/Rc, where Rc is the m-sequence clock rate, and L is the

sequence length (in chips). The sequence period L/Rc has to be greater than the

τmax to ensure that no echoes are neglected.

The minimum identifiable multipath resolution is the difference between two

adjacent multipath components, and it is a function of the m-sequence chip rate

as well as the slip rate fslip.

3.5.2.2 Dynamic Range

The dynamic range, in decibels, is defined as the ratio of the magnitude of the

correlation peak and the magnitude of the maximum spurious correlation value:

DR = 10 log10(L2), (3.9)

where L is the m-sequence length [53]. It represents the ability to detect weak

signals. The ideal dynamic range for m-sequence with L varying from 127 to

2047 is shown in Table 3.1. For an AWGN channel, the dynamic range can be

represented as the ratio of the peak power level and the noise power level, and as
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Table 3.1. Ideal dynamic range of m-sequence.

Sequence Length L Dynamic range (dB)

127 41.1

255 48.1

511 54.2

1023 60.2

2047 66.2

a result, Equation (3.1) becomes:

DRAWGN = 10 log10

(
L2

N0B

)
, (3.10)

where N0 denotes the noise power spectral density, and B is the bandwidth of the

m-sequence.

The correlation process at the receiver provides a processing gain1 (similar to

the Code Division Multiplexing Access (CDMA) system), which means the dy-

namic range of the estimated impulse responses is better than the signal-to-noise

ratio (SNR) observed at the receiver end [59]. However, the dynamic range is

restricted by several factors, such as system noise, power amplifier nonlinearities,

and the chip rate difference. The difference in chip rate introduces autocorrela-

tion function distortion, which means the maximum value of the autocorrelation

function is inversely proportional to fslip. A small value of fslip leads to a longer

measurement duration, but better delay resolution. Cox notes that Kscale = 5000

produces a good correlation with minor distortion, whereas distortion is consider-

1The processing gain in decibels is defined as: 10 log10N , where N is the spreading sequence
length.
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able when Kscale = 1000 [3]. Martin discusses the relationship between achievable

dynamic range and correlation noise by using a novel sliding correlation algorithm

in the correlation process, and quantifies dynamic range as a function of the ratio

of Kscale (time scaling factor) and L (the m-sequence length). This contribution

provides us a systematic method of designing sliding correlators [38].

3.5.2.3 Time Scaling Factor

As mentioned in the previous section, a large time scaling factor provides good

minimum identifiable delay performance and minimum distortion, but also results

in longer correlation time and larger memory sizes to store the data. The choice of

the time scaling factor is dependent only on the requirement and channel environ-

ment. For example, for outdoor channel sounding, the number of reflected paths

and maximum delay are substantially larger than those of indoor environments,

but the minimum delay is on the order of microseconds. Such an radio channel

would require a channel sounder with longer sounding sequences, and slower chip

rate and vice versa for an indoor channel. However, both outdoor and indoor

channel sounding always need a larger dynamic range, which is directly related to

the sequence length.

3.5.2.4 Doppler-shift Resolution

The Doppler-shift resolution is a function of the transmitter and receiver ve-

locity (v), carrier frequency (fc), m-sequence length (L), clock rate (τc), and time

scaling factor (Kscale). The relationship between these values can be summarized

as follows:
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• Maximum Doppler shift experienced by a moving receiver with velocity v is:

fD =
v · fc

c
, (3.11)

where c = 3× 108m/s is the free space velocity of electromagnetic waves.

• The maximum Doppler shift that can be measured by STDCC is given by:

fD =
1

2Kscale · L · τc

. (3.12)

Inserting Equation (3.12) into Equation (3.11) yields:

v =
c

2Kscale · L · τc · fc

. (3.13)

Equation (3.13) indicates that v is inversely proportional to the m-sequence

length for fixed Kscale, τc, and fc:

v ∝ 1

L
. (3.14)

The derivation above leads to a new problem of finding the tradeoff between

delay resolution and Doppler-shift resolution. Longer m-sequence provides better

minimum identifiable delay resolution, but sacrifices the Doppler-shift resolution.

For situations in which both transmitter and receiver are stationary, the Doppler-

shift resolution can be ignored, such that better dynamic range performance can

be achieved.
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3.6 Frequency Domain Characterization

The frequency correlation function is a measure of the correlation between two

spaced carrier frequencies. This function is generated from the values of P (τi)

through FFT techniques [60]. The coherence bandwidth, defined as the maximum

frequency difference for which two signals have a specified value of correlation,

is a frequency domain parameter that is used for assessing the performance of

various modulation or diversity techniques. No definitive value of correlation has

been established for the specification of coherence bandwidth. However, channel

coherence bandwidth values of 0.9 (B0.9) and 0.5 (B0.5) are the two most widely

used values [45]. The resolution in the frequency domain, however, is related

to the pulse repetition frequency (PRF) of the spread spectrum sounding signal,

which is defined as:

PRF =
1

Lτ0

, (3.15)

e.g., for L = 127 and τ0 = 0.1 µs, the PRF is 78.74 kHz. If the frequency resolution

is not sufficient, detail may be lost in the estimation of the frequency correlation

function resulting in erroneous values for B0.9 and B0.5. In essence, this is the

same problem that afflicts the spaced-tone sounding techniques.

One obvious method of counteracting this problem is to increase the length

of the m-sequence, thereby maintaining the same time resolution. However, the

drawback for adopting this approach, as discussed previously, limits the maximum

practical value of m.

An alternative and more elegant solution has been proposed by Haese [20].

Since it is assumed that all distinguishable echoes in the power-delay profile occur

within a certain time delay window, if the length of the m-sequence is doubled,
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the new power-delay profile will contain exactly the same information up to a

delay of 12.7 µs with only the system noise floor extending to 25.4 µs. However,

the frequency resolution capability will improve from 78.74 kHz to 39.37 kHz.

In practice, therefore, the frequency resolution capability can be improved by

increasing the length of the time delay window off-line, i.e., after completion of

the field trials, by taking the system noise floor and extending it in time, prior to

using the FFT.

As opposed to the case where m is increased, the only penalty of increasing

the length of the time delay window off-line is the increased time of computation.

3.7 Chapter Summary

In this chapter, an overview of the radio channel sounding techniques is pro-

vided. Both the advantages and disadvantages of each technique were outlined.

The reasons why the STDCC channel sounding technique is chosen as the pro-

totype technique for DSA networks are addressed. The swept time-delay cross

correlation technique was emphasized, system parameters were discussed from a

design point of view. The inherent processing gain makes STDCC the nearest to

optimum sounding technique for DSA networks. However, some necessary mod-

ifications to the STDCC systems are required before applying to DSA networks,

such as transmit power, sounding efficiency, which will be discussed more in detail

in later chapters.
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Chapter 4

Multi-carrier Swept Time Delay

Cross Correlation Channel

Sounder

Multicarrier modulation (MCM) techniques are promising candidates for DSA

networks due to their spectrum utilization efficiency and robustness. Two ma-

jor types of MCM techniques are Orthogonal Frequency Division Multiplexing

(OFDM) and Multicarrier Code Division Multiple Access (MC-CDMA). For each

type, there are many different versions in terms of implementation, especially

for the MC-CDMA systems. Depending on how the spreading is achieved, MC-

CDMA systems can be divided into Multicarrier Direct Sequence Code Division

Multiple Access (MC-DS-CDMA) and MC-CDMA (in general). If the spreading

is performed in the time domain, the system is called MC-DS-CDMA, while in

contrast, the system is named MC-CDMA for frequency domain spreading.

Both systems have their own advantages and disadvantages, which have been
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fully studied in [61]. The motivation of collaborating multicarrier system and

STDCC system is to improve the channel sounding efficiency, since with MCM

techniques, one can operate at different center frequencies simultaneously. In

addition, a Direct Sequence (DS) technique allows us to change the signal power

by varying the spreading sequence length. This property fits in the DSA network

perfectly, where secondary users can only have access to certain bands at certain

time with limited power based on FCC regulations.

In this chapter, a novel channel sounding technique, named MC-DS-STDCC,

is introduced, starting by a brief introduction to the MC-DS-CDMA system, and

followed by the MC-DS-STDCC system structure. A comparison study between

conventional STDCC and MC-DS-STDCC is conducted, including simulation re-

sults on channel sounding performance and mathematical analysis. Further issues

of the MC-DS-STDCC is addressed.

4.1 MC-DS-CDMA System

In this dissertation, the MC-DS-CDMA system is not only considered as a data

transmission system, but also as a platform for the STDCC technique. Figure 4.1

shows the MC-DS-CDMA transceiver block diagrams.

In Figure 4.1, x(t) and s(t) stand for the input and output signal of the trans-

mitter. Similarly, x′(t) and s′(t) are the input and the output of the receiver. N

represents the total number of subcarriers, which is also the FFT size. T0 is the

input signal x(t) symbol duration, Ci, i = 1 . . . N is the spreading code space, and

the codes do not have to be orthogonal in this case, since the time domain signal is

not summed up before transmit. The value Mi, i = 1 . . . N , represents the length

of each individual spreading sequence. Generally, they all have the same length,
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Figure 4.1. MC-CDMA transceiver.

but it is possible to use various length spreading sequences to achieve signal power

adjustment for each subcarrier.

On the transmitter side, a serial data sequence is first M-PSK modulated and

then converted into parallel before being fed into the spreading and the inverse

fast Fourier Transform (IFFT) blocks. After serial to parallel (S/P) conversion,

data on each subcarrier is multiplied with corresponding spreading sequence, Ci,

and then the signal on individual subcarrier is modulated onto different carrier
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frequencies by the IFFT. The parallel signal is serialized and transmitted. The

receiver performs the reverse operation, except that the despreading process uses

the complex conjugate version of the spreading sequence. The schematic does not

include Cyclic Prefix (CP) block, which is used to eliminate the effects of Inter-

Symbol Interference (ISI). Since we are employing the MC-DS-CDMA system as

a channel sounding system, we are interested in capturing the entire channel be-

havior. Thus, we do not employ CP, since all the channel information is contained

in the distorted signal.

4.2 Combined STDCC MC-DS-CDMA Implementation

The proposed technique employs multicarrier direct sequence spread spectrum

modulation and STDCC channel sounding to tailor the channel sounding signal

transmit power level across frequency, thus minimizing the amount of interference

introduced per subband. Each subcarrier in an MC-DS-CDMA system is consid-

ered as a branch, on which a complete STDCC system is operating. The system is

similar to a conventional MC-DS-CDMA system, except some changes are made to

integrate the STDCC system. MC-CDMA systems have various implementations

depending on which domain the spreading is performed. Time domain spreading

can minimize the interference caused to other subcarriers and users at cost of high

sampling rate. Frequency domain spreading enhances the immunity to frequency

errors, which is critical to any type of multicarrier system. Since reducing interfer-

ence to the interference tolerance of other users is one of our main objectives, the

MC-DS-CDMA system is selected to be collaborated with the STDCC channel

sounding technique. The transmitter and receiver block diagrams are illustrated

in Figure 4.2.
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On the transmitter side, Figure 4.2(a), a pseudo-random binary sequence

(PRBS) of data rate Rb is copied N times, where N is the number of subcar-

riers corresponding to different frequency bands, and propagated in parallel such

that the data rate of each subcarrier signal is the same as the original signal.

The subcarrier signals are then spread in the time domain with an independent

spreading code. The selection of the spreading code depends on the system re-

quirement. The data rate for each subcarrier after spreading becomes the chip

rate MiRb, where Mi is the spreading sequence length of the ith subcarrier. Note

that Mi could be different for each subcarrier depending on the power level limit

of each frequency band or interference tolerance.

In this dissertation, the Orthogonal Variable Spreading Factor (OVSF) codes

and m-sequence are studied and compared as the spreading codes for the sounder.

OVSF codes are recommended for Wideband-CDMA (W-CDMA) systems [62].

One important property of OVSF codes is that the orthogonality between codes

is guaranteed regardless of spreading factors, which reduces the intercarrier inter-

ference. It was first designed to achieve various symbol rates for different users in

W-CDMA systems [29,63]. This property of the OVSF codes guarantees orthog-

onality between codes for the case where spreading codes with different lengths

are used.

Due to the chip rate difference after spreading, shorter output sequences are

zero-padded to compensate for the chip rate differences with respect to the largest

spreading sequence length Mm = max{Mi}, such that all the output sequences are

aligned in time before the IFFT operation. Hence, the chip rate is equal to MmRb

for each subcarrier signal. Extra information on the power level limit for each

frequency band also needs to be transmitted to the receiver. This information
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Figure 4.3. Multicarrier sounding signal power spectrum density
with 256 subcarriers and varying spreading gain.

can also be interpreted as the spreading sequence length Mi for each subcarrier.

The power spectrum density (PSD) of each subcarrier signal occupies an equal

bandwidth but with different power levels [64]. Figure 4.3 shows an example of

the PSD of a 256-subcarrier MC-DS-STDCC with different spreading gains across

the whole frequency band. The entire band is divided into seven subbands, where

each subband may contain multiple numbers of subcarriers, and each subband

has its power level limit. Depending on the total transmission bandwidth, as

well as the bandwidth for each user, the number of subcarriers can be adjusted

accordingly.

Last, the modulated parallel data streams are serialized using a Parallel to

Serial (P/S) converter and transmitted, and the transmitted sequence chip rate is

reduced to MmRb/N .

For example, the normalized complex envelop of an baseband M-PSK mod-

ulated MC-CDMA signal is represented for the duration of a symbol period T
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as:

s(t) =
1√
N

N−1∑
n=0

Mn−1∑
m=0

bn · cn [m] · ej2πFnRn
bmt,

where N is the number of subcarriers, Mn represents spreading sequence length

of each subcarrier, bn is the information bit of the nth subcarrier, and cn[m] is

the mth chip of the spreading sequence associated with the information bit on the

nth subcarrier. The square bracket [·] denotes the discrete index of the spreading

sequence, since Mn is a variable according to different subcarriers, and the length

of cn[m] is also different for each subcarrier. For calculating the envelope power

of the signal, we only consider nonzero values, which means we only consider

the elements satisfying |cn[m]| = 1. Fn is defined as the subcarrier separation

parameter, in other words, it is the ratio between the spreading sequence length

(spreading gain) and the number of subcarriers: Fn = Mn/N [65]. When F =

1, the subcarrier separation is the symbol rate Rb, the MC-DS-CDMA signal

spectrum has the same shape, as in an MC-CDMA system. When F is a variable,

the signal spectrum is no longer the same. To maintain the subcarrier separation

constant, but vary the signal power on each subcarrier, the symbol rate Rb is also

changed accordingly by zero-padding, and those two variables are represented as

Fn and Rn
b.

The received signal is converted into N parallel data streams and fed into each

subcarrier. The extra zeros are removed based on information Mi before FFT

demodulation. The cross-correlation operation is done on a subcarrier basis, where

the demodulated signal is cross-correlated with an individual PRBS signal at chip

rate of MmRb. The PRBS signal used at the receiver is obtained by spreading

the output of an identical PRBS generator with respect to the spreading sequence

length for each subcarrier.
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At the receiver, shown in Figure 4.2, the distorted signal is parallized into N

streams, and the time domain signal is then converted to the frequency domain

by FFT demodulation. The cross-correlation process is done on a subcarrier ba-

sis, since each branch carries a complete STDCC unit. After the cross-correlation,

each branch gives a series of channel impulse responses for the center frequency as-

sociated with it, and they are expressed as ĥi(τ), i = 1 . . . N . The cross-correlation

process produces a direct estimation of the time domain channel response. The

transfer function can be obtained by applying FFT on the power delay profile

(PDP) on each branch. Note that the receiver does not despread the received sig-

nal prior to cross-correlation in order to maintain a high sampling rate such that

the delay resolution is improved. Moreover, despreading the received signal will

discard the desired channel information. The disadvantage is that the autocorre-

lation property of the m-sequence is ruined. However, channel sounding accuracy

can still be guaranteed if the spreading sequence length is properly selected. The

locally generated m-sequence is correlated with the distorted spread spectrum sig-

nal to recover the channel impulse response. The impact on the performance will

be quantified in the later section.

4.2.1 Channel Impulse Response Estimation

Intuitively, it is possible to obtain the channel frequency response by taking

advantage of the FFT operation built in the MC-CDMA system. However, one

common assumption for multicarrier modulation systems, i.e., OFDM and MC-

CDMA, is that the carrier separation should be large enough to make sure the

signal on each subcarrier undergoes the independent fading. In contrast, for the

MC-DS-STDCC system, the frequency response might only be obtained under the
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condition where fading on one subcarrier is correlated to another. Furthermore, in

order to achieve this approach, the sounding signal needs to be carefully designed

depending on the channel environments, especially the total signal bandwidth

and number of subcarriers. These two parameters determine the type of fading

effects that will be experienced by the signal. Since the subcarrier separation is

reduced to introduce the correlation between subcarriers, the total bandwidth is

also reduced.

The overall estimation of the channel impulse response (CIR) is the combina-

tion of each subcarrier’s estimation. To ensure a good minimum delay resolution,

the cross-correlation is performed at a chip rate of MmRb, since channel informa-

tion will be lost if the estimation process is done after despreading. Hence, the

minimum delay resolution is expressed as:

∆τ =
2

MmRb

. (4.1)

Comparing Equation (4.1) with the minimum delay resolution of an STDCC sys-

tem, which is 2/Rb, the minimum delay resolution of the MC-DS-STDCC system

is increased by a factor of Mm. This is due to the inherent processing gain pro-

vided by the direct sequence spread spectrum system. Given a certain power level

threshold, the maximum multipath delay spread can be detected is given by:

τmax =
LN

MmRb

. (4.2)

Comparing Equation (4.2) with the maximum delay resolution of the STDCC

channel sounder, L/Rb, the MC-DS-STDCC sounding technique increases the

measurement performance by a factor of Mm. In other words, the longer the
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spreading sequence, the better the performance. However, this approach is at the

cost of high sampling rate and system complexity. As discussed in Chapter 3,

the PRBS used at the receiver is generated locally, which introduces the potential

issue of synchronization. If the received signal and locally generated signal are

not synchronized in time before they correlate with each other, the estimation will

result in a time-shifted version of the channel impulse response. However, this can

be compensated for by estimating the phase rotation of the out-of-phase signal.

4.2.2 Dynamic Range Performance

Ideally, the autocorrelation function (ACF) of an m-sequence is a near-optimal

approximation to a train of Kronecker delta function.1 Spreading the sounding

signal (m-sequence) at the transmitter increases delay resolution. However, the

autocorrelation function of the sequence after spreading is no longer Kronecker

delta like. This is because the insertion of the spreading sequence partially breaks

the property of the original m-sequence, which results in a “noisy” autocorrelation

function. However, the autocorrelation function of the resulting sequence can be

calculated by using the partial autocorrelation property of the m-sequence [66].

It is well known that the periodic autocorrelation function of an m-sequence b is

given by [67]:

θb(k) =

 1, k = lN

− 1
N
, k 6= lN

, (4.3)

where θb(k) denotes the value of the autocorrelation function at the kth lag , and

N represents the sequence period and l is an integer. Note that Equation (4.3)

1Kronecker delta function δ is defined as: δi =
{

1, if i = 0
0, if i 6= 0 .

53



is defined over a complete cycle of the sequence. If the correlation estimate is

based on a correlation over a partial period, Equation (4.3) is no longer valid. It

is shown in [66] that the partial autocorrelation function of an m-sequence b is

given by:

θb(k, k
′,W ) =

1

W

k′+W−1∑
m=k′

amam+k, (4.4)

where k′ is the starting index of the window, and W denotes the window size.

Observe that the partial autocorrelation function is not well behaved as was the

full-period autocorrelation function, since the partial-period autocorrelation is not

two-valued and it is a function of window size and the position of the window. Due

to the random behavior of the partial autocorrelation function, it is convenient

to use the variance over k′ of θb(k, k
′,W ) to determine the partial autocorrelation

function. The variance is defined as [66]:

var [θb(k, k
′,W )] = θ2

b (k, k
′,W )−

[
θb(k, k′,W )

]2

=
1

W

(
1− W − 1

N

)
− 1

N2
. (4.5)

Figure 4.4 demonstrates the partial window size of a 15-chip m-sequence. Ide-
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Sequence period, N

Figure 4.4. Partial autocorrelation with different window size W .
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ally, if the autocorrelation is estimated over the sequence period N , the partial

autocorrelation function is then equal to Equation (4.3), and Equation (4.4) is

equal to zero. Spreading the original m-sequence {ai}, 0 ≤ i ≤ N − 1 with the

spreading m-sequence {bj}, 0 ≤ j ≤ K − 1 can be considered as concatenating

the spreading m-sequence N times, and hence the resulting sequence is ai{bj}.

Note that ai contains ±1s, which means that the partial autocorrelation function

θb(k, k
′,W ) becomes aiθb(k, k

′,W ).

Figure 4.5 shows an example of the relationship between the variance and the

window size of a 15-chip m-sequence. Observe that the magnitude of variance is

equal to 0.01778 with window size of 12. The window size can also be interpolated

as the lag with respect to zero lag (window size of 15), and hence, the variance is
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Figure 4.5. Variance of the partial autocorrelation function as a
function of window size; m-sequence length = 15.
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Figure 4.6. Dynamic range performance with different spreading
sequences.

equal to 0.01778 at lag 3. Let θa be the maximum out-of-phase autocorrelation

peak level. The analysis indicates that if θa appears at lag 3, the peak magnitude

is equal to
√

0.01778 ≈ 0.1333. However, the position of θa is not unique, and

it depends on the feedback polynomial of the linear feedback shift register. A
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simulation is conducted to validate the previous analysis. Assuming that a 255-

chip m-sequence is spread by using a 15-chip m-sequence and a 16-chip OVSF

code, as well as an m-sequence of 63-chip and an OVSF code of 64-chip. The

partial autocorrelation function is shown in Figure 4.6. As we can see from the

top figure in Figure 4.6(a), θa is equal to 0.13 at lag 3, which matches the analytical

result. Although the position of the θa is not unique, Sarwate provided a general

lower bound and upper bound for any periodic and aperiodic binary sequences

in [67,68].

As shown in Table 3.1, the dynamic range is a function of sequence length L.

In reality, m-sequence can only be length of 2r− 1, where r is an integer. To eval-

uate the dynamic range performance degradation, we assume that the dynamic

range of the sequence after spreading is also a function of sequence length. In Fig-

ure 4.6, m-sequence spreading outperforms OVSF codes spreading. This is due to

the fact that the ACF of an m-sequence is an impulse. Moreover, Figure 4.6(b)

indicates that a longer spreading sequence results in a better performance when

m-sequence spreading is used. Although the OVSF codes do not have superior

autocorrelation property as m-sequence does, they are easy to generate. OVSF

codes are generated recursively, which means once the code tree is built, shorter

codes are also accessible from the deeper branches of the tree. This feature in-

creases the degree of freedom for code selection. If the power level limit changes

frequently across frequencies, an m-sequence has to be generated individually for

each subband to meet the transmit power limit. Figures 4.7 and 4.8 show the rela-

tionship between dynamic range performance and spreading sequence length. As

discussed previously, m-sequence spreading promises greater dynamic range than

OVSF code spreading especially with a longer spreading sequences; m-sequence
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spreading outperforms OVSF code spreading by 7 dB with spreading factor of

64. It is also seen from Figure 4.7, the dynamic range difference between the
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Figure 4.7. Dynamic range performance using m-sequence as
spreading sequence.

ideal and non ideal values gets smaller as the spreading sequence length increases.

The dynamic range difference is less than 3 dB for all three cases. The opposite

trend is observed from Figure 4.8; shorter spreading sequence results in minimum

dynamic range degradation. However, the difference for 16-chip spreading is still

more than 6 dB. This analysis explains the reason why m-sequence is chosen as

superior to other spreading sequences. Moreover, the combination of the sound-

ing sequence and spreading sequence could provide the same delay resolution as

the sequence with the same length can. For example, a sounding sequence with

degree of 12 (4095 chips) is equivalent to a sounding sequence with degree of 8
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Figure 4.8. Dynamic range performance using OVSF codes as
spreading sequence.

(255 chips) spread by another sequence with degree of 4 (16 chips) in terms of

delay resolution.

There are other pseudo-random binary sequences other than the m-sequence,

such as Kasami sequences, gold sequences, Barker sequences and Williard se-

quences [69]. The choice of m-sequence is because it has the best autocorrelation

property among other PN sequences, which promises the largest dynamic range,

and periodicity. The m-sequence can be generated with a Linear Feedback Shift

Register (LFSR), which can be easily implemented on an FPGA or other pro-

grammable logic devices.
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4.2.3 Assessing the Impact of the Proposed Channel Sounding

Technique

In addition to the performance, interference introduced by the sounding signal

to the primary and secondary users cannot be neglected. The total interference

caused by the sounding signal is evaluated by employing the primary user signal-

to-noise inteference ratio (SINR), which is defined by:

SINR (dB) = 10 log10

N∑
i=1

Pi
Ii +BN0

, (4.6)

where Pi is the transmit power for a certain primary user within the ith subcarrier

bandwidth, N0 is the noise power spectral density, and it is assumed to be the

same for all the subcarriers, Ii is the interference power introduced by the sound-

ing signal on the ith subcarrier, and N is the number of subcarriers. Since the

sounding signal is spread in the time domain, the resulting sounding signal power

becomes P
(i)
s − Gi, where Gi is the spreading gain for the ith subcarrier. Hence,

Equation (4.6) can be rewritten as:

SINR (dB) = 10 log10

N∑
i=1

Pi

P
(i)
s −Gi +BiN0

, (4.7)

where Bi denotes the subcarrier bandwidth after spreading. For equal spreading

gain scenario, Gi becomes a constant, so does Bi. Equation (4.7) works for primary

users with interference tolerance greater than zero. For zero-interference tolerance,

the band is totally inaccessible when primary users are present in this band.

It is noticed that the SINR is inversely proportional to the spreading gainGi for

the ith subcarrier, increasing spreading gain will improve the SINR significantly.
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However, as discussed previously, time domain spreading of the sounding signal

violates the cross-correlation property of the original signal. Hence, the channel

sounding performance degrades. Moreover, direct sequence spreading increases

DAC sampling rate by Mm times, which substantially increases overall system

cost.

4.3 Simulation Results and Analysis

In this section, both STDCC and MC-DS-STDCC systems are simulated. Sim-

ulation results are compared in terms of channel sounding performance. Due to

structure differences between the two systems, some simulation parameters could

be different for fair comparisons. For example, the baseband data rate for the

MC-DS-STDCC system is reduced according to the spreading gain to maintain

the same chip rate (after spreading) as the STDCC system. Both systems use the

same modulation and demodulation schemes, i.e., BPSK, the same PRBS gener-

ator except the data rate for the m-sequence generators are different to ensure

the channel environment has the same impact on both signals, and the channel

environments for both systems are identical.

4.3.1 Simulation Setup

The simulation parameters are listed in Table (4.1). The multipath fading

channel contains five multipath components with each path attenuation a zero

complex Gaussian random variable. The channel is also assumed to be a frequency

nonselective slow fading channel, meaning that the channel is flat over all the

subcarriers and the channel is changing slowly over time compared to one symbol

duration.
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Table 4.1. Simulation parameters.

Parameters STDCC MC-DS-STDCC

Modulation BPSK BPSK

m-sequence length(chips) 255-2047 255-2047

Baseband bandwidth (MHz) 10 varying

Number of subcarriers 1 16-128

Number of multipath components 5 5

Maximum delay spread (ns) 500 500

Average attenuation (dB) 0 -5 -12 -16 -21 0 -5 -12 -16 -21

SNR (dB) 0-30 0-30

Since the MC-DS-STDCC system copies the PRBS signal onto each subcarrier,

the data rate is maintained before spreading. After spreading, the m-sequence

data rate R0 is upconverted to a higher chip rate Rc. Finally, parallel streams are

serialized, which means the chip rate is increased by a factor of the total number

of subcarriers N . To ensure the signals for both systems experience the same

channel environment, the baseband data rate for the MC-DS-STDCC has to be

NRc/R0 times slower than the one in STDCC. In addition, the m-sequence length

for both systems remains the same.

4.3.2 STDCC Simulation Results

Figures 4.9, 4.10, 4.11, and 4.12 show the simulated channel impulse responses

for a Rayleigh fading channel with five multipath components. Each multipath

component is modeled as a complex Gaussian random process with zero mean

and average attenuation for each path as the variance. It is clear to see that the

dynamic range increases as the m-sequence length gets longer, which matches the
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Figure 4.9. Simulated channel impulse response. SNR=0 dB; path
delay={100,190,320,430,500} ns; average attenuation={0,-5,-12,-16,-
21} dB, respectively; m-sequence length = 255.

theoretical analysis. This feature is especially essential for DSA networks where

the transmit power is limited, because larger dynamic range allows weaker channel

impulse response to be detected.

It is also noticed that the dynamic range performance degrades dramatically

as the channel environment becomes complicated (e.g., multipath fading). The

ideal dynamic range can be referred to in Table 3.1. For instance, the ideal

dynamic range for an m-sequence length of 255 is 48.1 dB, but the simulation

results show that the weakest detectable signal is roughly 30 dB lower than the

strongest. In this set of simulations, the chip rate is set to 100 chips/s to ensure

that two adjacent delay paths are resolvable. As discussed in the previous chapter,

the maximum delay spread that can be measured by the system is: m/Rc, take
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Figure 4.10. Simulated channel impulse response. SNR=0 dB; path
delay={100,190,320,430,500} ns; average attenuation={0,-5,-12,-16,-
21} dB, respectively; m-sequence length = 511.
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Figure 4.11. Simulated channel impulse response. SNR=0 dB; path
delay={100,190,320,430,500} ns; average attenuation={0,-5,-12,-16,-
21} dB, respectively; m-sequence length = 1023.

64



0 0.2 0.4 0.6 0.8 1

x 10
−6

−70

−60

−50

−40

−30

−20

−10

0

10

Delay (s)

R
e

la
ti
v
e

 P
o

w
e

r 
(d

B
)

Figure 4.12. Simulated channel impulse response. SNR=0 dB; path
delay={100,190,320,430,500} ns; average attenuation={0,-5,-12,-16,-
21} dB, respectively; m-sequence length = 2047.

m = 255 for example:

τmax =
255

80 MHz
= 3.1875 µs. (4.8)

In Equation (4.8), the original signal is upsampled to 80 MHz, i.e., there are eight

samples per chip instead of one sample per chip for a better resolution. The

maximum path delay set in the simulation is 0.5 µs, which means the system is

capable of measuring all the path delays.

To validate the simulation model and the causes of the dynamic range degra-

dation, the following simulations were conducted:

• AWGN channel: SNR = 0 dB, 10 dB, 30 dB, 100 dB (negligible amount of

white noise) .
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Figure 4.13. Dynamic range degradation due to white noise without
ISI with 511-bit m-sequence. Path delay={100,190,320,430,500} ns;
average attenuation={0,-5,-12,-16,-21} dB, respectively; SNR=0dB.

• Multipath channel environment: no ISI, with ISI.

In Figures 4.13, 4.14, 4.15 and 4.16, the dynamic range is directly related to

the noise power, which is represented as SNR in decibels. With a nearly perfect

channel (100 dB), the dynamic range is close to the ideal value for a 511-bit

m-sequence, which is 54.2 dB. As the SNR value decreases, the dynamic range

degrades. In this case, the channel is assumed to be no ISI, meaning that the

attenuation for each path is applied to the entire sequence for one transmission

cycle, and only the signal power is attenuated. Phase shift and frequency offset is

not considered.

Figures 4.17, 4.18, 4.19 and 4.20 demonstrate the dynamic range degradation

due to ISI. In this scenario, the dynamic range does not degrade as much as it does

for the AWGN channel since the intersymbol interference power level is dominating
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Figure 4.14. Dynamic range degradation due to white noise without
ISI with 511-bit m-sequence. Path delay={100,190,320,430,500} ns;
average attenuation={0,-5,-12,-16,-21} dB, respectively; SNR=10dB.
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Figure 4.15. Dynamic range degradation due to white noise without
ISI with 511-bit m-sequence. Path delay={100,190,320,430,500} ns;
average attenuation={0,-5,-12,-16,-21} dB, respectively; SNR=30dB.
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Figure 4.16. Dynamic range degradation due to white noise without
ISI with 511-bit m-sequence. Path delay={100,190,320,430,500} ns;
average attenuation={0,-5,-12,-16,-21} dB, respectively; SNR=100dB.

over the noise power. Comparing Figure 4.17 with 4.13, it is found that the ISI

introduces approximately 10 dB degradation in dynamic range. This analysis is

intuitive, although the intersymbol interference power could be quantified in terms

of frequency error [64], which will not be discussed in detail here.
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Figure 4.17. Dynamic range degradation caused by ISI. 511-bit m-
sequence; path delay= {100,190,320,430,500} ns; average attenuation
= {0,-5,-12,-16,-21} dB; SNR= 0 dB.
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Figure 4.18. Dynamic range degradation caused by ISI. 511-bit m-
sequence; path delay= {100,190,320,430,500} ns; average attenuation
= {0,-5,-12,-16,-21} dB; SNR= 10 dB.
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Figure 4.19. Dynamic range degradation caused by ISI. 511-bit m-
sequence; path delay= {100,190,320,430,500} ns; average attenuation
= {0,-5,-12,-16,-21} dB; SNR= 30 dB.
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Figure 4.20. Dynamic range degradation caused by ISI. 511-bit m-
sequence; path delay= {100,190,320,430,500} ns; average attenuation
= {0,-5,-12,-16,-21} dB; SNR=100 dB.
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Figure 4.21. Power spectral density of MC-DS-STDCC signal with
16 subcarriers and total transmission bandwidth of 30 MHz.

4.3.3 MC-DS-STDCC Simulation Results

The simulation setup is basically the same as the STDCC system, except the

chip rate is different. It is also assumed that the channel is flat over subcarriers.

One of the advantages of MC-DS-STDCC systems, as discussed before, is the

ability to be operated at different center frequencies with various transmit powers.

An example can be seen from Figure 4.21, where the dashed line represents the

transmit power limits, and solid curves are the signal spectrum. Each curve is a

sinc(·) function. It is easy to notice that the bandwidth of each subcarrier is the

same but the power is different. In some of the Ultra-Wideband (UWB) appli-

cations, pulse shaping is used to ensure the ultra-wideband signal spectrum fits,

for instance the FCC mask [39]. The multicarrier modulation technique provides

a more adaptive way of spectrum control. In addition, digital signal processing

techniques, such as windowing and sidelobe cancellation can also be applied to
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Figure 4.22. SC-DS-STDCC with 16-bit spreading sequence vs.
STDCC. The delay of each path is 100,200,300,400,500 ns, and the
average attenuation of each path is 0,-10,-15,-20,-25 dB, respectively.

the transmitted and received sounding signals to improve the performance as well

as to reduce the spectral efficiency [70–72].

To validate the MC-DS-STDCC simulation model, we started with a single-

carrier direct sequence STDCC (SC-DS-STDCC) system, comparing the simula-

tion result with the STDCC system. Since there is only one subcarrier in the

MC-DS-STDCC system, the copier, P/S, S/P, IFFT, and FFT can be treated

as redundant blocks, which do not change the data sequence, except spreading

and despreading. Figure 4.22 shows the estimated channel impulse response. The

performances of both SC-DS-STDCC and STDCC systems are identical, except

that the error floor of the SC-DS-STDCC is about 12 dB (10 log10(16), spreading

sequence length is 16) lower than the STDCC system. This is because of the

processing gain introduced by the time domain spreading process.
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Figure 4.23. MC-DS-STDCC simulation results with 16 subcarriers
and 511-bit m-sequence. The delay of each path is 100,190,320,430,500
ns, and the average attenuation of each path is 0,-5,-12,-16,-21 dB,
respectively.

Figure 4.23 shows an estimated channel impulse response of a 16-subcarrier

MC-DS-STDCC system in presence of a flat fading channel. The power is normal-

ized with respect to the first multipath component, and it is flat over subcarriers.

For the rest of the multipath components, the power level is varying over subcar-

riers, which is due to Gaussian white noise.

4.3.4 Mean Squared Error of the CIR Estimation

In this section, the MC-DS-STDCC channel sounder performance is evaluated

by introducing the mean squared error of the estimated CIRs for various cases.
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The MSE of the estimated CIRs is defined as the following:

MSE(t) = E
[
(Pĉi (τ)− Pci (τ))2] , (4.9)

where Pĉi (τ) and Pci (τ) represent the the power levels associated with each chan-

nel impulse response at delay τ for the estimated CIR, and actual CIR, respec-

tively. The MSE is estimated by averaging the CIR over a time period of T . The

m-sequence length varies from 127 to 511 chips, number of subcarriers chosen are

16, 32 and 64, and the spreading sequence length for m-sequence spreading and

OVSF code spreading is {15, 16} and {31, 32}, respectively. The MSE perfor-

mance is compared with different system parameter combinations.
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Figure 4.24. MC-DS-STDCC MSE performance. L = {127, 511};
N = {16, 32, 64}; Mm={15}.

Figure 4.24 compares the MSE performance between m-sequence and OVSF

code spreading with spreading sequence length of 15 and 16, respectively. The
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Figure 4.25. MC-DS-STDCC MSE performance. L = {127, 511};
N = {16, 32, 64}; Mm={31}.
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Figure 4.26. MC-DS-STDCC MSE performance. L = {127}; N =
{16, 32, 64}; Mm={15, 31}.
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Figure 4.27. MC-DS-STDCC MSE performance. L = {255}; N =
{16, 32, 64}; Mm={15, 31}.
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Figure 4.28. MC-DS-STDCC MSE performance. L = {511}; N =
{16, 32, 64}; Mm={15, 31}.
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sounding m-sequence length is L={127, 511}, and the number of subcarriers are

16, 32 and 64. As the length of the sounding sequence increases, the MSE er-

ror floor decreases. This is because a longer m-sequence provides more inherent

processing gain. It is also noticed that 64-subcarrier case results in a worse MSE

performance than 32 and 16 subcarriers. Since increasing the number of subcar-

riers also broadens the noise bandwidth, hence the SNR decreases, which is what

causes the MSE error floor to rise.

Comparing Figure 4.25 with Figure 4.24, doubling the length of the spreading

sequence reduces the MSE error floor by approximately 6 dB for the combination

of {L = 511, N = 64}. In this case, 32- and 64-subcarrier systems almost perform

the same when the SNR is greater than -10 dB. 16-subcarrier system outperforms

the other two when the channel SNR value is greater than -10 dB. As discussed

previously, a larger number of subcarriers delivers a more frequency-agile channel

sounder, since the subcarrier power can be fine tuned to fit the transmit power

restriction. However, it does not perform as well as less subcarrier systems in

terms of CIR estimation accuracy due to the extra noise introduced.

Figures 4.26, 4.27 and 4.28 demonstrate the MSE performance with fixed

sounding sequence length L with various N and Mm combinations. They share

the same trend as analyzed before, that is, longer spreading sequence provides

more processing gain, and hence the MSE error floor decreases. Systems with a

larger number of subcarriers introduce wider noise bandwidth, which lower the

channel SNR, and hence the MSE performance degrades.

Observe that there appears an irreducible error floor in each figure, which is

caused by multi-carrier interference. Qinghua and Coulson have provided detailed

BER error floor analysis in [73,74] for MC-CDMA and OFDM systems. Although
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the BER error floor analysis does not apply directly to the MSE floor, the cause

of the error floor is the same. Considering an MC-CDMA system, we define Pe as

the average error floor among all subcarriers, and it is given by [73]:

Pe =
1

N

N∑
i=1

Pe,i, (4.10)

where Pe,i is the unconditional error floor of the ith subcarrier, and K denotes

the total number of subcarriers. Equation (4.10) indicates that the larger the

number of subcarriers, the higher the irreducible error floor. The same conclusion

can be drawn from Figures 4.24 through 4.28. In addition to the MC-CDMA

system, direct-sequence spreading provides inherent processing gain for the MSE

performance. Assume that Gi is the spreading gain for the ith subcarrier, then

Equation (4.10) becomes:

Pe =
1

N

N∑
i=1

(Pe,i −Gi) . (4.11)

When N = 1, the system simplifies to a single carrier direct-sequence CDMA

system, and the error floor analysis can be found in [75].

Overall, one can change the MC-DS-STDCC channel sounder parameters de-

pending on the system requirements, channel sounding accuracy, interference level,

etc. When designing a channel sounding system for DSA networks, many factors

such as, hardware complexity, interference level, and channel sounding perfor-

mance, need to be considered. This leads to a multi-objective problem, and a

tradeoff has to be made before design.
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4.4 Chapter Summary

In this chapter, the MC-DS-STDCC channel sounding technique was explained

in detail. System schematics and its mathematical expression of the signal were

presented. The system parameters were strengthened. In the end, the chapter

is concluded by simulation results and analysis. A sanity check of the proposed

technique was done by simulating a Single-Carrier DS-STDCC system and com-

pared with the STDCC simulation result in order to validate the simulation model.

A simple 16-subcarrier MC-DS-STDCC system was also simulated with flat fad-

ing channel. Further simulations on frequency selective and non equal subcarrier

power systems needs to be conducted. On the performance analysis, the mean

squared error metric is introduced in measuring the channel sounding performance

with various system parameter combinations. The MSE performance is evaluated

from different aspects. They are, MSE versus number of subcarriers, MSE versus

m-sequence length, and MSE versus spreading sequence length. Depending on the

channel sounding measurement requirements, the simulation results can be used

as a system design guideline.

The most important feature of the MC-DS-STDCC technique is interference

awareness. However, direct sequence spread spectrum requires large bandwidth,

which results in high sampling rate. In the next chapter, an alternative solution

that is based on the OFDM system will be discussed. This solution does not

require a high sampling rate compared to the MC-DS-STDCC technique, and

hence, the implementation is simple. Moreover, the OFDM-based sounder ex-

tracts channel information from the user transmit data such that no sounding

signal generation is required.
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Chapter 5

OFDM-Based Channel Sounder

5.1 Ultra Wideband Channel Sounder

An ultra-wideband (UWB) channel sounder can perform channel sounding

across a very wide bandwidth of up to gigahertz. However, it has several poten-

tial problems when the FCC regulations are applied. A UWB channel sounder

generates an extremely narrow pulse (i.e., nanoseconds) in the time domain, such

as a Gaussian monocycle pulse [76], to record the reflected paths of the mo-

bile radio channel. Although a UWB sounder can achieve high multipath delay

resolution and spectrum utilization efficiency, narrow pulses suffer from the peak-

to-average power (PAPR) problem, which requires large power amplifier dynamic

range. Moreover, studies have shown that the UWB systems could cause interfer-

ence with other systems [77,78]. Hence, pulse shaping must be applied to the pulse

before being transmitted. However, to fit the transmitted signal spectrum under

the FCC mask, sophisticated pulse shaping algorithms are required. Furthermore,

when the UWB channel sounder is operated in the DSA network environment,

where primary and secondary users are sharing the spectrum resource, more re-
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striction, such as frequency band availability, will be added in addition to the

FCC regulations, which could make pulse shaping infeasible or, at the cost of long

computation time.

5.2 OFDM Systems Overview
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Figure 5.1. OFDM transceiver architecture.

OFDM systems use the spectrum resource more efficiently by transmitting

data using orthogonal subcarriers. As shown in Figure 5.1, the serial data s [n]

stream is first converted to N parallel streams, where N is the number of sub-

carriers, each parallel data stream is modulated onto a different subcarrier. The

mathematical expression is defined as the following:

s(t) =
N−1∑
k=0

Xke
j2πkt/T , 0 ≤ t < T, (5.1)
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where Xk are the data symbols, T is the OFDM symbol time. The subcarrier

spacing is defined as 1/T , which makes them orthogonal over one symbol period.

The modulated parallel streams are transmitted after parallel to serial con-

version. The receiver performs the reverse operation to recover the signal. The

OFDM signal bandwidth is a function of the number of subcarriers as well as the

subcarrier bandwidth. For example, an OFDM system of 1024 subcarriers with

subcarrier bandwidth of 200 KHz will generate a total bandwidth of 200 MHz

spectrum. If a UWB system is used to generate a 200 MHz bandwidth signal, it

would require a 5 ns pulse in the time domain. The theoretical spectrum of an

OFDM system is shown in Figure 5.2(a).

OFDM is considered as one of the major candidates for the DSA technology

because of its spectrum efficiency and spectral robustness. In other words, the

OFDM system can achieve spectrum shaping by adjusting the power level of cer-

tain subcarriers. In Figure 5.2(b), the relative transmit power level of an OFDM

system is limited to 0, -20, -10, -5 dB across the restricted band respectively. To

achieve OFDM spectrum shaping, the most straightforward way is to attenuate

certain subcarrier power level. However, this approach requires prior informa-

tion of the radio channel, which is feasible for the policy-based1 DSA network.

In an environment where spectrum accessibility and transmit power are totally

determined by the user, a more agile approach is needed.

It can also be observed that the sidelobe power level exceeds the FCC limit.

However, this can reduced by applying a sidelobe cancellation algorithm [79],

which is beyond the scope of this work.

1The DSA networks are generally categorized into policy-based and nonpolicy-based, where
the former requires full knowledge of the channel environment to function, and the latter does
not.
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(a) Theoretical OFDM signal spectrum with 256 subcarriers.
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Figure 5.2. OFDM signal spectrum.
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Considering the design perspective of a wideband channel sounder for the DSA

network, the spectral robustness and efficiency feature of the OFDM system can be

adapted. As mentioned in Chapter 4, the channel sounder operating in the DSA

network has to introduce minimum amount of interference to the other users while

maintaining sounding performance. Complexity in both hardware and software

design is also critical. In the following section, an OFDM-based channel sounder

will be discussed with focus on the aforementioned design considerations.

5.3 OFDM-Based Channel Sounder for Cognitive Radios

The motivation of designing an ideal channel sounder for the DSA network

environment falls back to the basic principle of channel sounding, which is theo-

retically simple and easy to achieve. Hence, the question becomes how to approach

the simple solution by not increasing the hardware complexity as well as software

processing. Given a cognitive radio transceiver, the ideal design of such a sounder

is to use the CR transceiver as a sounder, which is at no cost in terms of hardware

and software design. Generally, the CR transceiver is not designed for such a

purpose, which leads to the question of minimizing the modification of an existing

CR transceiver.

As shown previously in Figure 2.4, the radio channel characteristics are closely

related to each other. For example, the channel frequency correlation function and

the power delay profile are a Fourier Transform pair, so are the Doppler power

spectrum and the time correlation function. For the OFDM system, the baseband

signal is generally considered as a “frequency domain” signal before the IFFT and

after the FFT at the transmitter and receiver respectively. The signal is converted

back and forth between the time and frequency domains during the entire trans-
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Figure 5.3. OFDM-based sounder transceiver architecture.

mission and reception. This feature provides a way of obtaining the time domain

characteristic of the radio channel if the frequency domain characteristic can be

captured by the OFDM transceiver. Ideally, the channel sounding device trans-

mits an impulse to excite the radio channel, and the distorted signal is received

at the receiver so that the multipath components are resolved.

Figure 5.3 demonstrates the system architecture for the OFDM-based channel

sounder. For an OFDM transmitter, the serial data stream is converted into N

parallel substreams and passed to the OFDM modulator. OFDM modulation is

generally done by the IFFT [64], the signal before and after the IFFT is considered

as frequency domain and time domain signal, respectively. The IFFT converts a

frequency domain signal into time domain so that it can be used as the sounding

signal. Theoretically, the inverse Fourier Transform of a band unlimited constant
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amplitude signal is a delta function (impulse), which is impossible to achieve

practically. However, a band limited signal with fairly large bandwidth in the

frequency domain will provide a narrow pulse in the time domain. For example,

a rectangular window with bandwidth of 100 MHz in the frequency domain is

equivalent to a 10 ns pulse in the time domain. If this narrow pulse is transmitted

over a multipath channel, it will provide a delay resolution of 10 ns. On each

subcarrier, the power level is controlled by a tunable gain gi before the signal is

serialized and transmitted. The advantage of using tunable gain to adjust the

power level of each subcarrier is simplicity compared to spreading for the MC-

DS-STDCC system. However, a small power level will result in a CIR estimation

degradation for the OFDM-based sounder.

At the receiver, the received signal is again converted into N substreams and

demodulated with FFT, which transforms the time domain signal into frequency

domain. The output of the FFT block is an estimation of the frequency correlation

function. The time domain characteristics of the radio channel can be obtained by

transforming the the output signal of the FFT block into the time domain using

inverse Fourier Transform and time shifting.

Comparing Figures 5.1 and 5.3, the only addition to the OFDM transmitter

is the tunable gain. On the receive side, the output of the FFT block is first

extracted and stored on the computer, both the IFFT and postprocessing can

be done off-line. Furthermore, the MC-DS-STDCC receiver also requires knowl-

edge of the spreading sequence length used on each subcarrier in order to perform

despreading, while the OFDM-based channel sounder does not perform such in-

formation exchange between the transmitter and the receiver.
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5.3.1 System Parameters

In general, the OFDM-based channel sounding system parameters are mini-

mum delay resolution, maximum detectable delay, dynamic range and processing

time.

• Delay Resolution ∆τ .

Similar to the conventional channel sounding systems, the minimum delay

resolution is determined by the baseband sampling rate of the system. In

this case, since the sounding signal is one OFDM symbol, the minimum delay

resolution is equal to the inverse of the OFDM system baseband bandwidth,

that is:

∆τ =
1

Bs

. (5.2)

• Maximum Detectable Delay τmax.

The maximum detectable delay is equivalent to one OFDM symbol period

Ts. In a time-variant channel, where channel condition changes frequently,

channel sounding has to be performed frequently in order to keep the channel

information up-to-date.

• Dynamic Range D.

Channel sounding performance is mainly affected by the dynamic range,

the larger the dynamic range, lower the threshold can be set. The dynamic

range of a sliding correlator based channel sounder is proportional to the

m-sequence length, where the dynamic range is determined by the DFT size

N for the OFDM-based channel sounder. The Discrete Fourier Transform
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(DFT) is defined as:

Xk =
N−1∑
n=0

xne
−2πi
N

nk, k = 0, . . . , N − 1, (5.3)

where xn is the time domain discrete signal. If xn = 1, ∀n, the amplitude

of Xk = N . Hence, the dynamic range in decibels is calculated as:

DdB = 10 log10N. (5.4)

Note that the contribution to the dynamic range only comes from the non-

zero data points, if the sounding signal contains zeros, the dynamic range

will be degraded, and hence Equation (5.4) becomes:

D′dB = 10 log10N
′. (5.5)

More details on sounding singal design will be discussed in the following

section.

• Processing Time.

The processing time defines how long it takes for the system to complete

the channel impulse response computation. Sliding correlator based channel

sounder’s processing time is a function of the m-sequence length M and the

chip rate Rc. For example, a 4095-chip (212 − 1) m-sequence at chip rate of

32 Mcps needs 4095× 4095/32e6 ≈ 0.5 (s) to compute the channel impulse

response across all phases of the entire m-sequence. Since the OFDM-based

channel sounder does not require cross-correlation process at the receiver,

the processing time is determined by the FFT algorithm. It is known that
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the FFT reduces the number of operations from O (N2) for the DFT to

O (N logN). For example, the USRP uses Altera CycloneTMFPGA. If the

FPGA is running at 250 MHz, the processing time for a 4096-point DFT

is equal to 40962/250e6 ≈ 0.067 (s), which is significantly shorter than the

sliding correlator based channel sounder.

5.4 Sounding Signal and Performance

As discussed in the previous section, in order to design a suboptimal sounding

signal, one has to transmit a constant envelop signal across one OFDM symbol,

which is an ideal scenario for a unlicensed user. However, this approach is subject

to subband availability and signal power level restrictions. Furthermore, dedicat-

ing transmission slots to the sounding signal reduces the user overall throughput

and also increases the PAPR for the system. Our research shows that one can use

the user data as the sounding signal to minimize the system overhead. Given a

fixed bandwidth, the channel sounding accuracy, in terms of MSE, is a function

of the number of subcarriers as well as the correlation factor of the user transmit

data. In this section, the impact on the channel sounding accuracy caused by

impairment of the sounding signal and using user data as sounding signal will be

discussed, and a tradeoff study is conducted to identify the confidence of channel

sounding accuracy.

5.4.1 Guaranteed Spectrum Availability

The channel sounding accuracy is limited by the signal transmit power or

signal-to-noise (SNR) ratio when the spectrum availability is guaranteed. STDCC

and MC-DS-STDCC channel sounder are promised to work under a low SNR

89



condition because of the inherent processing gain provided by the cross correlation

and direct sequence spreading respectively. For the OFDM-based channel sounder,

the signal reception only depends on the radio channel SNR.2

Transmitting a highly correlated sequence (i.e., N “1” s) increases the OFDM

system peak-to-average power ratio [80]. This problem is more severe when fre-

quent channel sounding is required. However, this approach gives the best perfor-

mance in terms of sounding accuracy, and will be used as the baseline performance

for comparison purposes. This drawback leads to a demand for another channel

sounding signal design.

The properties of Fourier Transform as well as the resulting functions of certain

time domain signals provide the solution. As mentioned previously, the FT of an

infinite number of ones is an impulse in the frequency domain with zero width

and infinite amount of energy. In practice, the energy can also be stored within

a fairly short bandwidth if the time domain signal is long enough, which leads

to a optimal sounding signal. Given certain number of subcarriers, N , the more

number of ones transformed, the better the sounding signal and vice versa. On

the other hand, if a certain OFDM symbol contains zeros, the magnitude of the

resulting OFDM modulator output is a sinc-like function. Note that the definition

of DFT is [64]:

Xk =
N−1∑
n=0

xne
−2πj
N

kn, k = 0, . . . , N − 1. (5.6)

For a rectangular function xn with total number of sample M ≤ N , and assuming

2In general, the signal quality is also affected by the interference. For simplicity, it is assume
that the sounding signal is not interfered with by other signals.
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that M is odd:

xn =

 1, |n| ≤ M − 1

2

0, otherwise
,

the Fourier Transform Xk is:

Xk =
N−1∑
n=0

xne
−2πj
N

kn

=
sin (ωM/2)

M sin (ω/2)

≈ sin (πfM)

πf
,

where ω = 2πk/N and f = k/N . From the equation above, the sinc(·) function

mainlobe width is 2 · 2π/M radian, which is inversely proportional to the time

domain number of samples M . We can define the sidelobe width ΩM , 2π/M , as

M gets larger, the mainlobe width narrows, which improves the frequency resolu-

tion. However, the window size M has no effect on sidelobe level, it only changes

the location of the zero-crossing points. The sidelobe height is instead a result of

the abruptness of the window’s transition from 1 to 0 in the time domain. This is

the same thing as the so-called Gibbs phenomenon [64] seen in truncated Fourier

series expansions of periodic waveforms. The mainlobe magnitude is always ap-

proximately 13 dB higher than the first sidelobe magnitude. The peak magnitude

difference between the mainlobe and the first side lobe determines the dynamic

range when channel sounding is performed with this signal. Hence the dynamic

range for such a signal is 13 dB. However, the dynamic range can be improved

by applying different window functions. The choice of window functions depends
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on the system requirement such as channel SNR, channel sounding accuracy, etc.

Another method for improving the dynamic range is pulse shaping. Pulse shaping

is usually done by applying a raised-cosine filter on the input signal to reduce

spectral leakage of the signal. Figure 5.4 compares the impulse response of a

raised-cosine filter with different roll-off factors. The impulse response is a time

domain parameter, but we desire a frequency response that is sinc function like.

Since FFT and IFFT operations are reversible, the transforms themselves are

identical except one is the time-shifted version of another, so the characteristics

discussed here in one domain can also be projected to another. As can be seen,

the sidelobe peak level decreases with the increase of the roll-off factor.

Another system parameter is the delay resolution. As discussed previously,

the mainlobe width of the sinc function is equal to 2ΩM radian. For an N -point
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Figure 5.4. Impulse responses of a raised-cosine filter with roll-off
factors of {0, 0.4, 0.8, 1}.
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FFT with input chip rate of Rc, the delay resolution ∆τ is defined as:

∆τ =
2π

M
· N
Rc

. (5.7)

For example, considering a time domain signal with a sampling rate of 32 Mcps,

FFT size of 1024, and windows size M = 512, the minimum delay resolution is

calculated as follows:

∆τ =
2π

M
· N
Rc

≈ 6.28× 1024

512× 32e6

≈ 39 µs.

Equation (5.7) contains a fraction N/M , and min{N
M
} = 1. This indicates that

the minimum delay resolution is only achieved when the fraction is equal to one.

When the window size is equal to N , the window function is sampled at exactly

all of it’s zero-crossings, which gives the impression of an infinitely long sinusoidal

sequence, hence the delay resolution is reduced to 2π/Rc.

5.4.2 Non-Contiguous Band

A non-contiguous band generally refers to the subbands that do not share

common borders. In other words, the target frequency band is divided into con-

tiguous subbands due to frequency availability, transmit power restrictions, and

spectrum owner restrictions. An illustration of a non-contiguous band is shown

in Figure 5.5. For example, the measurement show that there is a strong signal

appears between 400 MHz and 500 MHz band. If this band is to be used for chan-
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nel sounding, the sounding signal has to avoid the frequency where the primary

user appears. Non-contiguous bands introduce a new challenge for the sounding

signal design, since the channel sounding needs to be done accurately as well as

“quietly.” As described previously, if the user data can be used as the sounding

signal, no additional interference will be introduced to other users. Moreover,

channel sounding can be performed more frequently (per OFDM signal period).

5.4.3 Sounding Signal Performance Analysis and Simulation Results

Based on Fourier Transform theory, if a given signal x(t) = x(t+T ) is periodic

(temporal period T ), its spectrum X[n] is discrete (Fourier series with interval

ω0 = 2π/T ). If a given signal x[m] is discrete (with temporal interval t0 between
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Figure 5.5. Spectrum occupancy measurements from 9 kHz to 1
GHz (8/31/2005, Lawrence, KS, USA).
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samples), its spectrum X(f) is periodic (frequency period Ω = 2π/t0). If a given

signal is both periodic and discrete, its spectrum is periodic and discrete. In this

case, the user data is used as the sounding signal, which is discrete but aperiodic,

and we define ρ to be the percentage of “0”s in one OFDM symbol period, that

is:

ρ =
N ′

N
. (5.8)

In order to investigate how channel sounding accuracy reacts when ρ changes, we

define the Mean Squared Error (MSE) of the estimated channel impulse response

as:

MSE(t) = E
[
(Pĉi (τ)− Pci (τ))2] , (5.9)

where Pĉi (τ) and Pci (τ) are the estimated and actual power of the channel impulse

responses respectively. In Equation (5.9), (Pĉi (τ)−Pci (τ)) is defined as residual,

or estimated error εi, which is the difference between the observed data and fitted

model. In an ideal case, where the estimated error is only caused by the channel

noise, the MSE is a function of the channel SNR and the dynamic range. Assuming

BPSK modulation, εi can be represented by the complementary error function:

εi =
1

2
erfc

(√
Eb
N0

)
, (5.10)

and hence, Equation (5.9) can be rewritten as:

MSE = −(DR + SNR). (5.11)

For a multipath fading channel, both power attenuation and multipath delay

distribution will affect the accuracy of the CIR estimation. Furthermore, the
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error estimation accuracy also depends on how the threshold is chosen. Higher

threshold will limit the amount of noise during the estimation process. However,

the multipath component with weak signal strength might be left out, which

degrades the accuracy. Assume that all the multipath components can be resolved

for a given threshold R, and the envelop of the channel impulse response has a

Rayleigh probability density function:

fR(r) =
r

σ2
e−r

2/(2σ2), (5.12)

where σ2 denotes the time-average power of the received signal. The probabil-

ity that the received signal does not exceed a specified value R is given by the

corresponding cumulative distribution function (CDF) [45]:

P (R) = Pr(r ≤ R) =

∫ R

0

p(r)dr = 1− e−R2/(2σ2). (5.13)

Let γ̄ be the average Eb/N0 for a Rayleigh fading channel, and γ̄ is defined as [81]:

γ̄ =
Eb
N0

[
a2 + 2σ2

]
, (5.14)

where a2 + 2σ2 is the average power of the signal envelop. Based on Equa-

tion (5.14), the MSE for a Rayleigh fading channel is given by:

MSE = −(DR + γ̄). (5.15)

Figures 5.6 and 5.7 show a set of snapshots of the estimated channel impulse

responses versus the actual channel impulse responses generated by the simula-
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Figure 5.6. Snapshot of an estimated CIR versus actual impulse
response. ρ = 0.8; SNR=20 dB; path delays = {0.5, 0.7, 0.85, 1} µs;
N={512,1024}.
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Figure 5.7. Snapshot of an estimated CIR versus actual impulse
response. ρ = 0.8; SNR=20 dB; path delays = {0.5, 0.7, 0.85, 1} µs;
N={128,256}.
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tor. The simulation results are collected under the following system parameters:

SNR = 20 dB, ρ = 0.8, N = {1024, 512, 256, 128}, channel path delays = {0.5,

0.7, 0.85, 1} µs. The actual delays are displayed instead of considering the first

path delay to be zero. Comparing the estimated channel impulse responses for

different N values, it is obvious that under the same channel condition, larger N

value delivers greater dynamic range. For N = {1024, 512}, the first three mul-

tipath components delays are clearly resolved but the amplitudes are off. This is

because a large ρ value is used. The last multipath component is not detected

since the noise power is dominating over it at this time instance. In Figure 5.6(b),

the first three multipath delay components are identified. However, a false alarm

may occur due to the presence of the data point between the first and the second

multipath delay. For N = 128, the estimated CIRs are too close to the noise floor

to be clearly identified. Moreover, the baseband bandwidth B and noise power

spectral density N0 are identical for all cases, hence the noise floor rises as the

number of subcarriers reduces, which results in poor estimation in terms of mul-

tipath component identification. For instance, the noise floor rises approximately

2 to 3 dB when comparing Figure 5.6(a) with 5.7(b).

Assume that the minimum delay of the multipath fading channel is greater

than the OFDM channel sounder delay resolution ∆τ , and the maximum delay

τmax is less than one OFDM symbol period. Based on this assumption, given an

ideal sounding signal (impulse), the MSE should hold a linear relationship with the

SNR. Simulation results (i.e., Figure 5.8) reveal the relationship between channel

sounding accuracy and ρ. The simulations were conducted under identical system

parameters and channel conditions for each ρ value, each curve is averaged over 40

random realizations, and the system parameters are summarized in Table (5.1).
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Table 5.1. OFDM sounder simulation parameters.

Chip rate (Rc) 100 Mcps

Number of subcarriers (N) 1024

Channel type Rayleigh fading channel

Maximum Doppler shift 100 Hz

Multipath delays 0, 100, 200, 400 ns

Average attenuation (dB) 0, −3, −8, −12 dB

SNR (dB) −10 to 20 dB

ρ 0, 0.2, 0.4, 0.6, 0.8

As shown in the figure, the MSE performance decreases as ρ increases for almost

the entire SNR range. At small SNR values (−10 to −5 dB), the noise power

is dominating, the curves are close to each other. As SNR increases, the MSE

curves start to split. It is noticed that when ρ is equal to 0, the MSE performance

improves linearly as SNR(dB) increases, which matches the analysis.

The same trends can be observed from Figures 5.9, 5.10, and 5.11. The MSE

curves reach a certain error floor for all ρ values except for ρ = 0, and the error

floor increases as N decreases. This is because the dynamic range reduces as the

number of subcarriers gets smaller.

Figure 5.12 compares the theoretical MSE with the simulation results for dif-

ferent N values. It is clearly seen that all four curves are almost parallel to each

other, which proves the fact that the MSE performance degrades as the num-

ber of subcarriers decreases for a given SNR value (i.e., Figures 5.6 and 5.7).

For SNR equal to 10 dB, the MSEs for N = {128, 1024} are −28.93 dB and

−40.01 dB, respectively, and the difference is approximately 11 dB. Analytically,

the performance degradation caused by the dynamic range reduction is equal to
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Figure 5.8. OFDM sounder Mean Squared Error (MSE) perfor-
mance. N = 1024, ρ = {0, 0.2, 0.4, 0.6, 0.8}.
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Figure 5.9. OFDM sounder Mean Squared Error (MSE) perfor-
mance. N = 512, ρ = {0, 0.2, 0.4, 0.6, 0.8}.
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Figure 5.10. OFDM sounder Mean Squared Error (MSE) perfor-
mance. N = 256, ρ = {0, 0.2, 0.4, 0.6, 0.8}.
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Figure 5.11. OFDM sounder Mean Squared Error (MSE) perfor-
mance. N = 128, ρ = {0, 0.2, 0.4, 0.6, 0.8}.
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Figure 5.12. OFDM sounder Mean Squared Error (MSE) perfor-
mance. N = {128, 256, 512, 1024}, ρ = 0.

10 log10(1024)− 10 log10(128) ≈ 9 dB. The 2 dB difference is caused by the noise

floor raise for different N values as discussed previously. Figure 5.12 is a better

demonstration of the linear relationship between the MSE of the estimated CIR

and the signal-to-noise ratio. The MSE for N = 1024 is observed to be −20 dB at

SNR of −10 dB, which decreases to roughly −50 dB when the SNR increases to

20 dB. Note that with larger N values, e.g., N = 1024, the simulation results are

almost identical to the theoretical results. This is because larger N value provides

better delay resolution than smaller N values, and hence, the error is primarily

caused by the noise.
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5.5 Chapter Summary

In this chapter, a novel channel sounding technique based on OFDM transceiver

architecture is presented. The proposed OFDM channel sounder is specifically

designed for cognitive radios and dynamic spectrum access network environment.

The OFDM channel sounder achieves interference awareness by taking advantage

of the multicarrier modulation techniques. It utilizes user transmission data as

the sounding signal, hence, no extra interference is introduced to other users by

performing channel sounding. Furthermore, a signal processing algorithm that ex-

tracts the multipath channel characteristics is developed. This algorithm’s target

is minimizing system complexity as well as maintaining channel sounding per-

formance. Channel sounding performance is studied analytically, and simulation

results are provided in supporting the analysis. The proposed technique is also

evaluated for the future use in different channel environments. A tradeoff study be-

tween channel sounding performance and system complexity is conducted, which

can be used as system design guideline.
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Chapter 6

Implementation of STDCC

Channel Sounder

In this section, several implementation issues will be discussed in detail. Both

the STDCC and the OFDM-based channel sounder implementations were exe-

cuted on the Universal Software Radio Peripheral (USRP) [12] hardware platform.

The signal processing and postprocessing functionality blocks are implemented in

the GNU Radio [82] software, an open source software radio.

6.1 USRP Hardware Prototyping Platform

The USRP, shown in Figure 6.1, is developed by Ettus Research LLC. It

allows us to create a software radio using any computer with USB 2.0 and Gigabit

ethernet ports. The operation center frequency can be changed by switching

different daughter boards, in our case, the RFX 2400 daughter board is used.

This daughter board offers a center frequency range from 2.3 GHz to 2.9 GHz

with maximum output power of 50 mW (17 dBm). The USRP mother board
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Figure 6.1. Universal Software Radio Peripheral mother board
equipped with four of daughter boards.

contains an Altera Cyclone EP1C12 Field Programmable Gate Array (FPGA). It

has four high-speed analog to digital converters (ADCs), each running at 12 bits

per sample, which is 64 MSamples/sec, and also four high-speed digital to analog

converters (DACs), each at 14 bits per sample, 128 MSamples/sec.

Figure 6.2(a) and 6.2(b)1 show the block diagrams of the transmit and receive

path for RFX 2400 daughter board used by this measurement. For complete

specifications of the RFX 2400 daughter board, see [12]. As we notice, there exists

1Block diagrams shown here are modified based on the original ones due to typos, original
diagrams can be found [83].
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a bandpass filter on both the transmit and receive path between the antenna and

the Low Noise Amplifier (LNA), which limit the center frequency range to 2.4 to

2.4835 GHz. Hence, all experiments were conducted within this center frequency

range. The maximum baseband bandwidth is about 20 MHz, because of the usage

of a 20 MHz lowpass filter. The maximum bandwidth that the USRP supports is

256 Mbps; this is because the USB 2.0 is sustained to this value. This indicates

that 8-bit samples can provide 16 MHz bandwidth, while 4-bit samples will provide

a bandwidth of 32 MHz, if a complex signal is used, each I and Q signal occupies

half of the whole USB bandwidth. Practically, this bandwidth is not ideal for

the implementation of the proposed channel sounder, since the maximum delay

resolution that can be provided is equal to:

2

32× 106
= 62.5 ns,

which requires a minimum separation between the transmitter and receiver to

be 62.5 × 10−9 × 3 × 108 = 18.75 (m) in order to resolve the minimum delay.

Saleh and Valenzuela reported the results for indoor propagation measurements

in [84]. They reported a maximum multipath delay spread of 100 ns to 200 ns

within rooms of a building, and 300 ns in hallways without line-of-sight path

between the transmitter and the receiver. The measured rms delay spread within

rooms had a median of 25 ns and a maximum of 50 ns, which is shorter than the

minimum delay resolution provided by the USRP sounder. It was also reported

that the large-scale path loss obeys a log-distance power law [45], which is:

PL(dB) = PL(d0) + 10n log

(
d

d0

)
, (6.1)
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where n is the path loss exponent which indicates the rate at which the path loss

increases with distance, d0 is the close in reference distance which is determined

from measurements close to the transmitter, and d is the transmitter-receiver

separation distance. For in building line-of-sight (LOS), n varies from 1.6 to 1.8,

and for obstructed in building environment, n is equal to 4 to 6. If we assume

that the reference distance d0 is 1 meter, and the measured power at d0 is equal

to the equivalent isotropically radiated power (EIRP), then the path loss PL with

transmitter-receiver separation of 18.75 meters is approximately equal to 2 and 5

dB for LOS and non-LOS, respectively.

6.1.1 Signal Processing

The USRP is in charge of the RF front end, Intermediate Frequency (IF) pro-

cessing, such as decimation, interpolation, etc. Once the signal is in the baseband

domain, it is processed by the FPGA running GNU Radio software. GNU Radio

is a free software development toolkit that provides the signal processing run-

time and processing blocks to implement software radios using readily-available,

low-cost external RF hardware and commodity processors [82]. Specifically, all

performance-critical signal processing functionalities are written in C++, and sys-

tem level applications are done in Python programming language. In our case,

since all the required signal processing functions are already written by researchers

and GNU Radio contributors, only Python programming is needed. In addition to

the GNU Radio software, MATLAB is used for most of the post signal processing,

graphing and Graphical User Interface (GUI) design.

The onboard baseband filter (20 MHz bandwidth) is enabled by default, which

reduces the delay resolution performance by 37.5%. In order to perform channel
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sounding measurement across the entire 32 MHz bandwidth, researchers have

developed a custom FPGA bitstream that is able to generate and receive a sounder

waveform across a full 32 MHz wide bandwidth. The waveform generation and

impulse response processing occur in logic in the USRP FPGA and not in the

host PC. This avoids the USB throughput bottleneck entirely as well as bypassing

the baseband filter. However, the OFDM-based channel sounder implementation

does not have the ability to bypass the USB throughput bottleneck. Hence, the

maximum bandwidth is limited to 20 MHz instead of 32 MHz.

6.2 Implementations of STDCC

In this section, the details of the implementations of the STDCC will be pre-

sented and experiment results will be analyzed. As discussed in Chapter 4, the

MC-DS-STDCC channel sounder requires a much higher sampling rate than what

the USRP can offer. Hence, the implementation becomes infeasible on the USRP

hardware platform. Moreover, the USRP transmitter and receiver clock synchro-

nization are not implemented by the designer of the USRP, which results in a ran-

dom time shift when the received m-sequence is cross-correlated with the locally

generated m-sequence. This issue causes inaccurate absolute multipath delays,

but relative delay estimations are still valid as far as the channel impulse response

is concerned. If we can assume that the first multipath component always con-

tains the most power, one can time shift the correlated sequence to reserve a zero

lag for the first multipath component.

Since we discovered that the clock synchronization may affect the sounding

results, we need to validate that the sounding sequences are transmitted contin-

uously without any unwanted bits between the sequences. To do this, we con-
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Figure 6.3. Channel impulse responses of a loopback test with 4095-
chip m-sequence.

ducted two simple loopback tests. The first loopback test was conducted within

one USRP, an m-sequence is transmitted and routed back directly without going

through any other function blocks, then the loopback sequence is cross-correlated

with itself (autocorrelation). Intuitively, the resulting cross-correlation function

should contain a set of impulses with separation of 2m − 1 chips, where m is the

degree of the m-sequence. Figure 6.3 shows an output of the cross-correlator with

7 cycles. Each m-sequence occupies approximately 128 µs. As can be seen from

the data tips in the figure, the delay between the second and the third impulse is

exactly 128 µs. This test verifies that the same m-sequence is transmitted con-

tinuously over time. However, the appearance of the first impulse is random as

discussed previously. This test also validates that the buffer is long enough to

handle the entire process.
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Figure 6.4. Estimated channel impulse responses between two US-
RPs with 1023-chip m-sequence.

The second test was conducted between two USRP boards, the daughter

boards used were BasicTX and RX for the purpose of simplicity and avoiding

unnecessary interference. For this test, two daughter board antennas are con-

nected directly using a SMA-SMA RF cable, and a 40 dB attenuator is inserted

to avoid the receive power from exceeding the maximum value. Detailed specifica-

tions of this operation can be found in [12]. The test result is shown in Figure 6.4.

From the close-up figure we can see that the impulse separation remains the same

as the sequence length. It is also noticed that, the magnitudes are fluctuating for

each cycle, where the magnitude is constant for each cycle in Figure 6.3. More-

over, noise is present in this case since a real channel is added. The magnitude

fluctuation is caused by summation of the background noise, insertion loss of the

device including daughter boards, RF cable, etc.
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6.2.1 In Building Setup and Measurements

In this section, we will discuss the channel impulse response measurements by

using the STDCC. All measurements were conducted inside Nichols Hall at the

University of Kansas, Lawrence, KS, USA. We consider both LOS case and non-

LOS case in our study. As discussed previously, due to the synchronization issue,

the CIR measurements need to be time-shifted in order to recover the real CIR.

This is only feasible only for the LOS case, since we cal always assume that the

first path has the strongest power. For the non-LOS case, the strongest path may

arrive with longer delays, and the time-shifting technique does not work any more.

In this case, only the relative delay between multipath components will be studied.

The measurements were conducted on the second floor of Nichols Hall, both the

transmitter and receiver are stationary, and the transmitter is set up in room 240

on the east side of the building, and the receiver is located on the opposite side

in the hallway. The transmitter and receiver separation is approximately 164 feet

(50 meters) so that the minimum delay resolution is guaranteed. Both transmitter

and receiver use an RFX 2400 daughter board and 2400 to 2480 MHz ISM band

vertical omni-directional antenna with 7 dBi gain [12]. The center frequency is

tuned to 2.44 GHz in order to fit the antenna and the bandpass frequency range.

As mentioned before, the bandpass filter limits our operation center frequency

range to 2.4 to 2.483 GHz, to prove that the filter is affecting the measurement

results, Figures 6.5 and 6.6 show the sounding signal spectrum at 2.4 and 2.5 GHz

respectively, and the signal bandwidth is equal to 32 MHz. As we can see, the

spectrum within the filter range has a higher power level than the portion that is

outside the filter range. There exists a way to bypass the filter by modifying the

RFX 2400 daughter board. However, this approach is not considered due to the
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Figure 6.5. Sounding signal spectrum at center frequency of 2.4
GHz

risk of damaging the board.
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Figure 6.6. Sounding signal spectrum at center frequency of 2.5
GHz
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Figure 6.7 demonstrates the channel impulse response measurement model as

well as the possible paths. Note that the radio channel not only contains LOS

path, but also reflected paths from the walls around the transmitter and receiver.

For an indoor environment, a transmitted signal may be reflected multiple times

before it arrives at the receiver. The signal strength will be weakened but still

strong enough to be resolved by the receiver, and each reflected path has a delay

associated with it. Analytically, due to the inherent processing gain provided

by the STDCC channel sounder, more multipath components should be observed

with relatively short delays and small variations in terms of signal strengths. The

system parameters are summarized in Table (6.1):

Table 6.1. STDCC channel sounding measurement parameters.

Baseband bandwidth 8 - 32 MHz

Modulation BPSK

m-sequence length 255 - 4095 chips

Daughter board RFX 2400

Antenna ISM band vertical omni-directional

Center frequency 2.44 GHz

DAC output level 4096 - 32000

GNU Radio software version 3.1.2

Operating system Fedora 8 and Mac OS X

Radio channel type In-building

Scenario 1 50 meters with LOS (Fig. 6.7)

Scenario 2 56 meters without LOS (Fig. 6.7)

Figures 6.8 to 6.16 show the measured channel power spectrum of the USRP

channel sounder with various DAC output levels.
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Figure 6.8. Measured channel sounding signal power with RFX2400
daughter board; amplitude=256.

Figure 6.9. Measured channel sounding signal power with RFX2400
daughter board; amplitude=512.
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Figure 6.10. Measured channel sounding signal power with
RFX2400 daughter board; amplitude=1024.

Figure 6.11. Measured channel sounding signal power with
RFX2400 daughter board; amplitude=2048.
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Figure 6.12. Measured channel sounding signal power with
RFX2400 daughter board; amplitude=4096.

Figure 6.13. Measured channel sounding signal power with
RFX2400 daughter board; amplitude=5000.
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Figure 6.14. Measured channel sounding signal power with
RFX2400 daughter board; amplitude=6000.

Figure 6.15. Measured channel sounding signal power with
RFX2400 daughter board; amplitude=7000.
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Figure 6.16. Measured channel sounding signal power with
RFX2400 daughter board; amplitude=8000.

As we can see from the figures above, the signal sidelobe power level starts

to increase once the DAC output power level exceeds 4096, which is half of the

full DAC range. Performing channel sounding at such a power level will generate

unacceptable interference to the adjacent channel. Furthermore, the noise level

is also increased when boosting the signal power level. Besides interference, the

power amplifier nonlineararity also comes into play when the DAC is overdriven.

Figure 6.17 indicates that the channel power starts to saturate when the DAC

output level exceeds 4096. Overall, we chose a DAC output power level of 4096

to avoid unintended interference to the adjacent channel, as well as nonlineararity

distortion.

Figure 6.18 shows a comparison between the channel power and the DAC

output level for an m-sequence length varying from 512 to 4096. The measured

122



256 512 1,024 2,048 4096 6K 8K
−40

−35

−30

−25

−20

−15

−10

−5

0

5

DAC Output level

P
o
w

er
 (

d
B

m
)

 

 

Channel Power
Power @ f

c

Figure 6.17. Relationship between the DAC output level and the
measured output power.

channel power for different sequence lengths is relatively close. The power at center

frequency behaves randomly comparing with the channel power consistency. This

is because the video averaging was turned off during measurement for accuracy. It

is also noticed that the actual output power for the channel sounding application

does not match the theoretical maximum output power for the RFX 2400 daughter

board. This can be caused by many factors, such as signal bandwidth, insertion

loss, other losses on the board, RF cable loss, measurement equipment loss, etc.

One example is the RF cable; the RG-58/U type cable has about 20 dB loss at

frequency higher than 1 GHz. The measured channel power is −32.86 and −1.2

dBm for DAC output level of 4096 respectively with RG-58/U and minibend W-8

cable.

In order to achieve the optimal SNR, the receiver gain needs to be tuned to
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the optimal value for a certain environment. Figures 6.19 to 6.23 illustrate the

maximum received channel impulse response power to noise power ratio versus

the receiver gain. The channel sounding sequence length is equal to 1023 chips,

and chip rate is 8 Mcps in this case. Each CIR takes approximately 0.13 second

to compute, and the total number of CIR set collected is equal to 100, hence, the

overall CIR calculation time is 13 seconds for each parameter set. The reason why

a 1023-chip m-sequence is chosen is because longer chip sequence requires much

longer calculation time. In addition, the multipath delay for indoor environment

is much shorter compared with the maximum delay that a long m-sequence can

offer. The rms delay spread for the indoor channel is on the order of nanoseconds,

while the maximum delay spread a 1023-chip m-sequence can detect is on the order

of microseconds for 8 Mcps.
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The experiments were conducted between 10:00 AM to 12:00 PM on a business

day in the hallway located on the second floor of Nichols Hall. The USRP channel

sounder receiver features a tunable gain from 0 to 90 dB. Larger gain not only will

boost the signal power, but also the noise power as long as the power amplifier is

operated within its linear range. The blue dotted lines with circle markers in the

figures represent the ratio of the maximum power and the noise power. This ratio

reflects the dynamic range of the channel sounder. At small gain levels (e.g., 0

to 30), the signal is dominated by the noise, hence the ratio does not exist. For

larger gain levels, the ratio first increases as the receiver gain increases, and peaks

at a certain gain and the noise power becomes dominant again, hence the ratio

starts to decrease. Each DAC output level represents a fraction of the full DAC

output range. For the RFX 2400 daughter board, the full DAC output range is 2

volts peak-to-peak, which is 0.707 Vrms, hence, the maximum output power is 10

dBm with 50 ohm input impedance.

As we can see from the ratio graphs, a DAC output level of 6000 gives the

highest maximum to noise power ratio at 60 dB receiver gain. It is important to

notice that the measured signal power not only depends on the transmit power, it

depends more on the channel condition where and when the measurements were

taken, since the carrier frequency is within one of the IEEE 802.11b channels,2

hence the interference from the WiFi access point and users varies over time and

location. Overall, the ratio charts can be used as a configuration guideline for

various parameter combinations. Figures 6.19 to 6.23 also provide a transmit

power level operation guideline for the channel sounding experiment with each

figure demonstrating the optimal receiver gain under unlimited transmit power

2The channel sounding is operated at center frequency of 2.442 GHz, which overlaps with
the IEEE 802.11b channel 7 operation center frequency.
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Figure 6.19. Ratio of maximum received channel impulse response
power and noise power; DAC output level=6000.

6.2.2 CIR Measurement Results and Analysis

The channel impulse response measurement results discussed in this section

were collected using the optimal parameters for the indoor environment, for which

the output DAC level is equal to 6000, and the receiver gain is set to be 60 dB.

Both line-of-sight and nonline-of-sight cases were measured at location one shown

in Figure 6.7. The LOS measurements were taken at location 1 and the non-LOS

measurements were taken at location 2 (see Figure 6.7). The m-sequence length is

{1023, 4095} chips, chip rate is {8, 32} Mcps for both cases; the minimum delay

resolution is equal to {125, 31.25} ns respectively, and the maximum detectable

delay is approximately 128 µs for both sets. The total number of CIR snapshots
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Figure 6.20. Ratio of maximum received channel impulse response
power and noise power; DAC output level=8000.
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Figure 6.21. Ratio of maximum received channel impulse response
power and noise power; DAC output level=10000.

127



0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

Receiver Gain (dB)

R
a
ti

o
 o

f 
M

a
x

im
u

m
 P

o
w

e
r 

a
n

d
 N

o
is

e
 P

o
w

e
r

 

 

50*P
max

P
m

/N
0

Figure 6.22. Ratio of maximum received channel impulse response
power and noise power; DAC output level=20000.
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Figure 6.23. Ratio of maximum received channel impulse response
power and noise power; DAC output level=30000.
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collected is 100, which allows us to generate an average power delay profile across

a time window width of 0.13 and 0.5 second for each sequence length. The mea-

surements will be conducted at two different chip rates; the slower chip rate is

essentially limited by the USB 2.0 throughput limitation (32 MB/s), as well as the

lowpass filter. The higher chip rate version uses a custom FPGA bitstream file to

bypass the USB 2.0 port when recording the channel impulse response measure-

ment data. In addition, the received data is not filtered by the 20 MHz baseband

filter, hence the maximum possible bandwidth is achieved.

6.2.2.1 Indoor Channel Measurement

Figures 6.24 and 6.25 display the measured channel impulse response for an

indoor environment at two different locations. Figure 6.24 clearly shows three

multipath channel components. The first path contains the most power. Notice

that the power of the second multipath component is not significantly smaller

than the first path. This is due to the fact that the measurement was conducted

in the hallway, where the reflected signal strength is not weakened dramatically.

However, if the signal is reflected multiple times before it reaches the receiver, the

signal strength can be undetectable. Although only three multipath components

were captured by the receiver, there might be more delay paths that fall in between

two delay paths, since the minimum delay resolution of the channel sounder is only

62.5 ns. As discussed previously, the delay for an indoor channel can be as small

as several nano seconds, which requires a channel sounder operating at 100 Mcps

or higher.

Figure 6.25 illustrates a channel impulse response measurement for a non-

LOS scenario. For this scenario, the first path that arrives at the reciever does
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Figure 6.24. Measured channel impulse response with LOS; m-
sequence length = 4095; chip rate = 32 Mcps.

not contain the strongest signal strength, because the signal is attenuated when

transmitting through obstacles, such as doors, walls, etc. The delay component

with the strongest signal strength usually takes a longer route where less obstacles

are in the path, hence the signal strength does not suffer from attenuation as much

as the first path. However, signal reflection can also cause signal strength reduc-

tion, which explains the reason why the magnitude is lower than in Figure 6.24.

Moreover, the signal magnitudes shown in those two figures are instantaneous,

which varies from one time instance to another. A better illustration will be the

power delay profile, which shows the average channel impulse response over a

period of measurement time.

Figures 6.26 and 6.27 demonstrate the power delay profile measurements for

the same indoor channel as Figures 6.24 and 6.25. The power delay profile is

obtained by averaging 100 CIR snapshots, which is approximately over a time
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Figure 6.25. Measured channel impulse response without LOS; m-
sequence length = 4095; chip rate = 32 Mcps.

window of 50 seconds. As we can see from Figure 6.26, the power delay profile

reflects a similar multipath component distribution. The strong path arrives with

shorter delay, and the signal strength decreases as the delay increases. Comparing

Figures 6.26 and 6.24, the first clear multipath appears in the power delay profile

figure has a short delay associated with it. This is the result from averaging

over a relatively long period of time. In addition to the averaging process, signal

fluctuation at a certain delay also causes a minor time shift. In Figure 6.27, the

power delay profile almost looks like a triangle followed by a small chunk of signal.

As explained previously, for the non-LOS case, the first arriving signal may not

contain the strongest signal path, which is also validated in the power delay profile

graph. The path with the strongest signal strength is located roughly at 1 µs,

which is consistent with Figure 6.25. It is also noticed that the average signal

magnitude of the non-LOS case is smaller than the LOS one. Again, this is due to
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Figure 6.26. Power delay profile of the indoor channel with LOS;
Number of CIR snapshots = 100.

the fact that the non-LOS signal suffers more attenuation than the LOS signal.

The dynamic range for the LOS power delay profile is approximately 15 dB,

where it is 20 dB for the non-LOS case. Intuitively, the LOS signal strength

should be stronger than the non-LOS signal, and hence the dynamic range is

wider. However, this is true for the channel impulse response at a given time

instance, see Figure 6.24 and 6.25 for example, because the power delay profile is

the average of the CIRs over a period of measurement time so the dynamic range

varies from one measurement to another.

Moreover, during the measurement period, the USRP underrun may happen

randomly. USRP underrun happens if not enough samples are ready to send to

the USRP sink, while the USB is still reading in data, which causes undesired

data to be recorded. To overcome this issue, a mechanism that marks the channel

sounding cycle when USRP underrun happens is implemented, and hence, the
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Figure 6.27. Power delay profile of the indoor channel without LOS;
Number of CIR snapshots = 100.
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Figure 6.28. Example of the output of the correlator when USRP
underrun happens.

133



recored data can be neglected during post processing. This issue is more notice-

able for the 8 Mcps sounder, since the cross-correlation is performed by the end

terminal (computer), not the FPGA. Figure 6.28 shows an example of the output

of the correlator when the USRP underrun happens. It is seen from the graph

that the output shows channel impulse response on the order of 10−4 second,

which is unlikely to happen for indoor environment. After an investigation of the

received signal, the output appears to be the correlation between the m-sequence

and random data, which contains out-of-order m-sequences.

6.2.2.2 Timing Offset Issue

The synchronization of TX and RX is a key problem for wireless channel

sounding. It is required to establish synchronization in frequency and time at

a TX and RX that can be separated by distances up to several kilometers. The

presence of multipath propagation makes this task even more difficult. For outdoor

environments, the Global Positioning System (GPS) offers a way of establishing

common time and frequency references [60]. However, this approach requires

a direct line of sight connection to GPS satellites which is rarely fullfilled in

microcellular scenarios. For the indoor channel sounding, distances up to about

10 meters, coaxial cable can be used to synchronize the TX and the RX. For larger

distances, fiber-optic cables are preferable.

As mentioned previously, time synchronization is not implemented for the

USRP, which will not only result in a time shift in the recorded channel impulse

response, but also a timing offset between the TX and RX local clock. Minor

timing offset will not affect the entire record of the CIR, however, high timing

offset will. The sounder works by transmitting a PN sequence, then correlating

134



the received sequence against the original at all possible offsets. However, to do

so, it collects an entire PN sequence and does the multiply and accumulate across

it for each lag in the impulse response. Thus, if the PN sequence period is N

chips, it takes N2 chips to calculate a single impulse response. For example, the

4095-chip sequence will take 16769025 chips to complete a single IR record. At 8

Mcps, this is approximately 2 seconds per record, and 0.5 second per record at 32

Mcps.

The crystal oscillator used by the USRP has an offset of ±50 ppm (parts per

million) between the transmitter and receiver. At 8 Mcps, during the course of 2

seconds, the receiver clock will differ from the transmit clock by:

2× 50× 10−6 × 86 = 800 chips, (6.2)

which is equivalent to 6400 clocks. At 32 Mcps, the timing offset between the TX

and RX is the same as 8 Mcps. Hence, the next peak in the correlation will arrive

800 chips earlier at 50 ppm, which results in a compressed correlation bin. To

prove the effect of timing offset between TX and RX, Fgure 6.29 shows a record

of the channel impulse resopnse with compressed correlation bin size.

Figure 6.29(a) is generated by using a 4095-chip PN sequence, the correlation

peak separation should be 4095 chips with perfect timing synchronization. How-

ever, due to timing offset, the correlation peak offset becomes 800 chips. Both

Figures 6.29(a) and 6.29(b) show a compressed correlation bin size of 800 chips.

For both cases, the correlation bin size is compressed to 800 chips, so the frequency

offset of the crystal oscillator is 50 ppm.

Based on the analysis, the sounder will not work for a PN sequence length
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(a) 32 Mcps timing offset.
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Figure 6.29. Compressed correlation bin size for 8 and 32 Mcps; PN
sequence length is 4095 and 1023 chips for 32 and 8 Mcps respectively.
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Figure 6.30. Sounding signal spectrum; Amplitude = 256; sequence
length = 2047.

less than 1023 chips, since the next usable sequence length is 29 − 1 = 511 chips.

However, the channel impulse response records for PN sequence degree greater

than 10 still represent the actual channel impulse response with the same time

period according to the sequence length.

Figures 6.30 through 6.39 show the signal power spectrum and channel power

for each case. Depending on the maximum transmit power limit and interference

restriction, one can choose the appropriate parameter combination to perform

channel sounding.
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Figure 6.31. Sounding signal spectrum; Amplitude = 512; sequence
length = 2047.

Figure 6.32. Sounding signal spectrum; Amplitude = 1024; se-
quence length = 2047.
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Figure 6.33. Sounding signal spectrum; Amplitude = 2048; se-
quence length = 2047.

Figure 6.34. Sounding signal spectrum; Amplitude = 4096; se-
quence length = 2047.
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Figure 6.35. Sounding signal spectrum; Amplitude = 256; sequence
length = 1023.

Figure 6.36. Sounding signal spectrum; Amplitude = 512; sequence
length = 1023.
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Figure 6.37. Sounding signal spectrum; Amplitude = 1024; se-
quence length = 1023.

Figure 6.38. Sounding signal spectrum; Amplitude = 2048; se-
quence length = 1023.
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Figure 6.39. Sounding signal spectrum; Amplitude = 4096; se-
quence length = 1023.

6.2.2.3 Interference Measurement

Interference introduced by the sounding signal is a critical criteria when op-

erating in a DSA network environment. In this dissertation, since the channel

sounding measurement center frequency overlaps with the WiFi band, it is im-

portant to analyze the interference introduced to the WiFi user when performing

channel sounding. The Received Signal Strength Indicator (RSSI) is used to evalu-

ate the impact on the WiFi signal. The RSSI is represented in terms of percentage

of the maximum received signal strength, which is −51 dBm. The full range of

RSSI is between −113 to −51 dBm and it is measured versus different DAC output

levels. The measurements were conducted in a laboratory; the distance separa-

tion between the USRP and a laptop is 5 meters. The WiFi signal selected has

an average RSSI between 60% to 70% (−76 to −70 dBm), and the average noise
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Figure 6.40. Impact on the RSSI of a WiFi signal during channel
sounding measurement.

level for this location is −111.2 dBm, which is equivalent to 4% of the maximum

RSSI.

Figure 6.40 shows a comparison between the impact on the RSSI for a DAC

output level of 512, 1024, and 8000. The X-axis denotes the RSSI measurement

sample index, where, theY-axis is the RSSI in percentage. The RSSI is measured

during a period in which the channel sounder is turned on and off and turned on

again. As we can observe from the figure, when the channel sounder is transmitting

at the highest power (refer to Figure 6.16), the the RSSI increases about 40%

from interference to interference-free.3 For lower sounding signal power levels, the

RSSI drop is approximately 12% and 15% for DAC output levels of 512 and 1024,

respectively.

3We only consider interference from the sounding signal. Other interference sources are not
discussed here.
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Figure 6.41 demonstrates the impact on the RSSI for USRP DAC output

power level of {1024, 2048, 4096}. The DAC output level of 4096 almost has

the same impact on the WiFi signal as output level of 8000 does. This is due

to the fact that the USRP output signal starts to saturate once the DAC output

level exceeds 4096. This observation indicates that performing channel sounding

by transmitting at the highest transmit power level without signal distortion will

introduce significant amount of interference to the user within the same frequency

band.
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Figure 6.41. Impact on the RSSI of a WiFi signal during channel
sounding measurement; DAC output level = {1024, 2048, 4096}.

Figure 6.42 reveals the relationship between the RSSI drop and the USRP

DAC output level. DAC output level less than 2048 yields RSSI drop within 20%,

where values greater than 2048 will result in a RSSI drop higher than 30%.
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Figure 6.42. RSSI drop vs. USRP DAC output level.

6.3 Discussion on Outdoor Measurements

Ideally, the USRP channel sounder should also be able to perform measurement

in an outdoor environment. However, the receiver failed to detect the transmitted

signal. The measurements were conducted outside of Nichols Hall. The transmit-

ter is located in front of the front door of the building, and the receiver is placed

approximately 70 meters from the transmitter. System parameters are identical

to the indoor measurement. The receiver failed to perform baseband operation,

rather, the only signal observed was the carrier. This could be caused by the

insufficient transmit power as well as the free space loss factor increase. It is

known that the free space loss factor changes from 2 to 4 when the environment

changes from indoor to outdoor [45]. Furthermore, for the indoor measurement,
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the propagation channel can be considered as a tunnel, where the reflected signals

are bounded within the tunnel. For outdoor environment, since onmi-directional

antenna is used, the signal is emitted in all directions, which can cause weak signal

strength at the receiver.

Based on the analysis, some suggestions can be made for ourdoor measure-

ments.

• Directional Antenna: Directional antennas can limit the radiation to a nar-

row angle so that the signal strength is enhanced. As mentioned previously,

for indoor channels, the signal is traversing through a relatively narrow space

comparing with outdoor channels. The signal might be reflected multiple

times before it is received by the receiver. The outcome is a channel impulse

response with a large number of multipath components compacted together.

• Carrier Synchronization: Carrier Synchronization plays a more important

role in outdoor channels because of greater Doppler shift. Large transmitter

and receiver carrier frequency offset can result in signal reception failure. It

is more severe for the sliding correlator based channel sounding, because the

receiver is very likely to correlate with an undesired signal.

• Gain: In general, for an outdoor radio channel, signal distortion is more

severe than for an indoor channel. This is because the objects in the channel

are more scattered, and hence the signal attenuation and phase rotation are

worse than for an indoor channel.
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6.4 Chapter Summary

In this chapter, the implementation of the swept-time delay cross correlation

channel sounder is presented. The STDCC channel sounder is implemented based

on the USRP hardware platform with maximum bandwidth of 32 MHz, and an

m-sequence length of 4095 chips. To achieve the maximum available bandwidth,

a custom FPGA bitstream file is used in order to bypass the USB port band-

width limitation. The GNU radio software is used to build the transmitter and

receiver as well as the signal processing function blocks. Indoor channel sound-

ing measurements were conducted inside Nichols Hall. Both line-of-sight and

nonline-of-sight scenarios were studied, and measurement results were analyzed.

Interference measurements were also conducted by measuring the RSSI drop of a

nearby WiFi signal. The measurements show that the channel sounder will intro-

duce significant amount interference when transmitting at half of the maximum

power. However, this issue can be solved if the MC-DS-STDCC sounder is used.

The experiment is not intended to be used to study the indoor wireless channel

behavior because of it’s lack of bandwidth. It is rather a preliminary implemen-

tation and measurement for later research. Unlike most commercial products,

the GNU radio and USRP are still in the research stage, and many software and

hardware issues are to be discovered by researchers.
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Chapter 7

Conclusion

7.1 Research Achievements

Channel sounding plays a critical role in wireless system design. It provides

the designer knowledge of the radio channel in assisting system design in many

degrees. It also provides a route to study the characteristics of the radio channel,

which can be used in simulation and channel modeling. In this dissertation, the

challenges of designing a channel sounding technique for the dynamic spectrum

access network are presented. Due to the randomness of spectral and temporal

access of the DSA network, performing channel sounding consistently without

interfering with other users becomes the major design concern.

The major contributions of this dissertations are summarized as following:

• Characterized the user access randomness in both frequency and time do-

main. Explicitly, unlicensed users access the channel, depending more on

the channel availability and interference tolerance level compared to the li-

censed users. The licensed users can access the channel without realizing

the existence of the unlicensed users. Addressed challenges in designing the
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channel sounding system for the DSA network environment. Tasks need-

ing to be solved are how to perform channel sounding without interfering

with other users; how to perform channel sounding efficiently when frequent

frequency and time switching is required.

• A multicarrier direct sequence spreading based channel sounding system

framework combining with the STDCC channel sounder, also termed as

MC-DS-STDCC is presented. The MC-DS-STDCC utilizes direct sequence

spreading to minimize the interference to other users within the same fre-

quency band, and multicarrier modulation to achieve frequency agility. To

be more specific, each subcarrier is able to adjust the transmit power by

increasing or decreasing the spreading sequence length in order to satisfy

the power limit. Moreover, the use of spread spectrum also increases the

inherent processing gain of the system, and hence, the dynamic range of the

channel sounder is enlarged.

• In contrast to the MC-DS-STDCC channel sounding technique, the OFDM-

based channel sounding technique is focusing on reducing the system com-

plexity, mainly sampling rate. The OFDM-based channel sounder uses has

the ability to use the user data as the sounding signal, which eliminates

the sounding signal generator, and hence the system complexity is reduced.

However, the performance is directly related to the autocorrelation of the

user transmit data, that is, the optimal sounding signal is achieved when the

data across all subcarriers is equal to one. A tradeoff study is conducted in

interpolating the performance loss versus the randomness of the user data.

On the other hand, since the OFDM-based channel sounding technique uses
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user data as the sounding signal, no extra interference will be introduced as

long as the user has permission to the frequency band. However, the system

performance is traded off for the system complexity.

• Channel sounder is a measurement device, and hence, it is only useful if

implemented. In this dissertation, the implementation of the STDCC is

presented based on the USRP and GNU radio. The implementation of the

MC-DS-STDCC and OFDM-based channel sounder is out of the scope of this

dissertation because of the hardware and software limitation. The USRP

platform supports maximum bandwidth of 32 MHz by adopting a custom

FPGA bitstream file to bypass the bandpass filter built-in on the daughter

board. This bandwidth limitation is the major obstacle of implementing the

MC-DS-STDCC channel sounder, which requires a much higher bandwidth

in order to perform spread spectrum. Indoor experiments were conducted

inside Nichols Hall in Lawrence, KS. The experiment results were studied

and analyzed.

7.2 Future Work

There exists a number of topics that have resulted from this research that are

worth continuing:

• Towards the end of this research, the second version of the USRP became

available, which supports much higher baseband bandwidth and eliminates

the USB bottleneck completely by replacing it with a gigabyte Ethernet

interface. This improvement makes the implementation of the MC-DS-

STDCC and OFDM-based channel sounder become feasible. It would be
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interesting to implement both proposed systems on the USRP 2.

• The channel sounding measurements taken were for the static channel envi-

ronment, for most of the modern wireless communication system, the trans-

mitter and receiver are nonstatic, which means the study of the Doppler

shift is essential. Again, the USRP 2 allows us to upload the GNU radio

software onto the board, which makes the entire unit stand alone. This

makes the study of the Doppler shift doable.

• Due to the randomness of the DSA network, predicting the channel behavior

becomes difficult. A long term statistical analysis of the channel behavior

would be invaluable for both channel modeling and system design. This

work requires the development of a signal processing algorithm to process

the collected data.
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