146 research outputs found

    Hybrid Silicon-Photonic Circuits with Second-Order Optical Nonlinearities

    Get PDF
    Die integrierte Optik ermöglicht die Miniaturisierung diskreter photonischer oder elektro-optischer (EO) Komponenten und die Kombination dieser Bauelemente in komplexen photonischen integrierten Schaltungen (engl. photonic integrated circuit, PIC) auf kompakten Mikrochips. Die Silizium-Photonik (SiP) ist eine sehr attraktive Plattform für die photonische Integration, da sie ausgereifte Herstellungsprozesse aus der Mikroelektronik nutzen kann. Damit eröffnet die Silizium-Photonik die Möglichkeit zur kostengünstigen Massenproduktion von photonischen Chips mit hoher Ausbeute und Reproduzierbarkeit. Darüber hinaus erlaubt der große Brechungsindexkontrast zwischen dem als Wellenleiterkern dienendem Silizium (Si) und dem als Mantelmaterial verwendeten Siliziumdioxid die Herstellung von Wellenleitern mit kleinen Querschnitten und kleinen Krümmungsradien, was die Integrationsdichte im Vergleich zu anderen Materialplattformen erhöht. Die Silizium-Photonik hat jedoch einen entscheidenden Nachteil: Aufgrund seines inversionssymmetrischen Kristallgitters besitzt Silizium keine Nichtlinearität zweiter Ordnung. Folglich sind Bauelemente wie optische Frequenzkonverter, optische Logikgatter, verschränkte Photonenquellen und vor allem elektro-optische Modulatoren, welche auf dem Pockels-Effekt basieren, auf der SiP-Plattform nicht ohne Weiteres realisierbar. Die hybride Integration von Silzium-Nanowellenleitern mit anderen Materialien, die eine Nichtlinearität zweiter Ordnung aufweisen, ist daher für die Erweiterung des Portfolios von SiP-Bauelementen von entscheidender Bedeutung. In dieser Arbeit werden zwei Ansätze für die hybride Integration in SiP-Schaltungen untersucht. Der erste Ansatz stütz sich auf hocheffiziente organische EO Materialien, die mit siliziumphotonischen Wellenleiterstrukturen in einem Back-End-of-Line-Prozess kombiniert werden, um sogenannte Silicon-Organic Hybrid (SOH) EO Modulatoren zu realisieren. In dieser Arbeit werden SOH-Modulatoren demonstriert, die neue Rekorde in Bezug auf Modulationseffizienz, optische Einfügungsdämpfung und demonstrierte Datenrate definieren. Darüber hinaus wird die thermische Langzeitstabilität dieser Bauelemente bei 85 °C validiert. Der zweite Ansatz beruht auf neuartigen anorganischen Nanolaminat-Dünnfilmen, die durch Atomlagenabscheidung (ALD) gewachsen werden. Aufgrund des frühen Forschungsstadiums wurden diese Materialien nicht direkt auf SiP-Chips, sondern auf Glassubstraten gewachsen und durch die Erzeugung der zweiten Harmonischen (SHG) charakterisiert. In dieser Arbeit werden SHG-Charakterisierungstechniken für Nanolaminate untersucht und ein neues Nanolaminat vorgestellt. Perspektivisch könnte ALD allerdings auch für die Beschichtung von SiP-Chips verwendet werden. Das konforme ALD-Wachstum bietet sich hierbei an, um präzise definierte Schichtfolgen auch auf komplexen Wellenleiterstrukturen mit hoher Reproduzierbarkeit abzuscheiden. Diese beiden Ansätze werden in der vorliegenden Arbeit näher beschrieben. Kapitel 1 gibt eine Einführung in die integrierte Optik und erläutert die Notwendigkeit der Hybridintegration von optisch-nichtlinearen Materialien zweiter Ordnung in SiP-Schaltungen. Kapitel 2 fasst den theoretischen Hintergrund, führt die für diese Arbeit relevanten Aspekte der nichtlinearen Optik ein und gibt einen Überblick über verschiedene Klassen von nichtlinearen Materialien zweiter Ordnung. Darüber hinaus wird der Stand der Technik von Mach-Zehnder-Modulatoren auf der SiP-Plattform vorgestellt. In Kapitel 3 wird die sehr hohe Modulationseffizienz von SOH-Modulatoren demonstriert. Dabei wird ein Mach-Zehnder-Modulator diskutiert, bei dem das Produkt aus π-Spannung und Länge nur 0,32 Vmm beträgt. Im Vergleich zu modernsten SiP-Modulatoren stellt dieser Wert eine Verbesserung um mehr als eine Größenordnung dar. Diese hohe Effizienz ermöglicht eine optische Signalerzeugung mit einer Datenrate von 40 Gbit/s unter Verwendung sehr kleiner Peak-to-Peak Treiberspannungen von nur 140 mVpp_{\rm{pp}}. Kapitel 4 stellt einen kompakten SOH-Modulator mit einer optischen Dämpfung des Phasenschiebers von unter 1 dB vor – dies entspricht dem niedrigsten Wert der jemals für einen ultra-schnellen SiP-Modulator veröffentlicht wurde. Der Nutzen dieses Bauteils für schnelle und effiziente optische Datenübertragung wird in einem Experiment demonstriert, bei dem vierstufige Pulsamplitudenmodulations-Signale (PAM4) bei 100 GBd erzeugt werden. Die hierfür verwendeten Treiberspannungen sind kompatibel mit typischen Spannungspegeln, die von energieeffizienten und hochgradig skalierbaren Complementary Metal-Oxide-Semiconductor-(CMOS­)Bauteilen erzeugt werden können. Kapitel 5 demonstriert die thermische Langzeitstabilität von SOH-Modulatoren gemäß den Telcordia-Normen für die Lagerung bei hohen Temperaturen. Die Bauelemente werden bei 85 °C für insgesamt 2700 h gelagert, und es zeigt sich, dass die π-Spannung nach einem schnellen anfänglichen Anstieg auf ein konstantes langzeitstabiles Niveau konvergiert. Weiterhin wird gezeigt, dass die Lagerung bei 85 °C keinen negativen Einfluss auf die Leistungsfähigkeit der Bauteile bezüglich der optischen Datenübertragung hat. Dazu wurde eine optische Datenübertragung mit einem SOH-Bauteil durchgeführt, das zuvor für 2700 h bei 85 °C gelagert wurde. Mit dieser Demonstration wird eines der letzten verbleibenden Hindernisse auf dem Weg zum technischen Einsatz von SOH-Bauteilen adressiert: Die Stabilität der zugrundeliegenden organischen Materialien. In Kapitel 6 werden zwei verschiedene Techniken zur Messung von SHG von anorganischen Nanolaminaten und zur Bestimmung der zugehörigen Elemente des χ(2)\chi^{(2)}-Tensors untersucht. Die Vor- und Nachteile der beiden Methoden werden verglichen und die Quellen für Messfehler identifiziert. Kapitel 7 stellt ein neuartiges binäres Nanolaminatmaterial vor, das auf abwechselnden Schichten aus Zinkoxid und Aluminiumoxid basiert. Die ermittelte Nichtlinearität zweiter Ordnung ist mehr als dreimal so groß wie bei zuvor veröffentlichten ternären Nanolaminaten. Kapitel 8 fasst die Themen dieser Arbeit zusammen und gibt einen Ausblick auf zukünftige Arbeiten zu SOH-Modulatoren und Nanolaminat-Dünnfilmen

    Efficient resonantly enhanced Mach-Zehnder optical modulator on lithium niobate

    Get PDF
    Photonic links have been proposed to transport radio frequency (RF) signals over optical fiber. External optical modulation is commonly used in high performance RF-photonic links. The practical use of optical fiber to transport RF signals is still limited due to high RF signal loss. In order to reduce the RF signal loss, highly efficient modulators are needed. For many applications, modulators with broad bandwidths are required. However, there are applications that require only a narrow bandwidth. For these narrow-band applications, the modulation efficiency can be improved through the resonant enhancement technique at the expense of reduced bandwidth. The aim of this thesis is to investigate highly efficient Mach-Zehnder optical modulators (MZMs) on Lithium Niobate (LiNbO3) with resonant enhancement techniques for narrow-band RF-photonic applications. This work focuses in particular on analyzing the factors that affect the modulation efficiency through resonant enhancement so that the modulator electrode structure can be optimized for maximum modulation efficiency. A parameter study of the effects of the electrode characteristics on the modulation efficiency of resonantly enhanced modulators (RE-MZM) is provided. From this study, optimum design objectives are identified. Numerical optimization is employed to explore the design trade-offs so that optimal configurations can be found. A sensitivity analysis is carried out to assess the performance of optimal RE-MZMs with respect to the variations of fabrication conditions. The results of these investigations indicate that the RE-MZM with a large electrode gap is the optimal design since it provides high modulation efficiency although the inherent switching voltage is high, and is the most tolerant to the fabrication fluctuations. A highly efficient RE-MZM on X-cut LiNbO3 is practically demonstrated with the resonant enhancement factor of 5 dB when comparing to the unenhanced modulator with the same electrode structure and effective switching voltage of 2 V at 1.8 GHz. The performance of the RF-photonic link using the fabr icated RE-MZM is evaluated. Optimization of RE-MZMs for operating at millimeter-wave frequencies is also reported. Factors that limit the modulation efficiency of an RE-MZM at millimeter-wave frequencies are identified. Novel resonant structures that can overcome these limitations are proposed. Preliminary designs indicate that greatly improved modulation efficiency could be expected

    Electro-optically Tunable Microring Resonators for Non-Linear Frequency Modulated Waveform Generation

    Get PDF
    Microring resonators are a fundamental building block for integrated optical filters, and have both modulation and waveform generation applications. A hybrid chalcogenide (As2S3) on titanium diffused (Ti:LiNbO3) waveguide platform has been developed to realize tunable microring resonators on a lithium niobate (LiNbO3) substrate. The use of a LiNbO3 substrate allows for electro-optic tuning, which is demonstrated for the first time on an As2S3 guided optical mode. While optical modes confined in diffused waveguides are commonly electro-optically tuned, the use of a rib waveguide external to the substrate poses new design challenges. Simulation work to determine the optimum electrode design was carried out, while also taking into account the limitations of working with a low melting temperature chalcogenide material. The tuning of this hybrid As2S3 on Ti:LiNbO3 device structure is demonstrated with fabricated Mach-Zehnder interferometers and ring resonators. Electro-optic tuning of the TM polarization utilizing the r13 LiNbO3 tuning coefficient is shown, yielding results that show an improvement over previous tunable LiNbO3 microring resonators. Simulations are also carried out to show the waveform generating capabilities of this hybrid device platform

    Design and characterization of InP based Mach-Zehnder modulators at 2μm wavelength

    Get PDF
    The Mach-Zehnder modulators (MZMs) based on InP are the key building blocks of photonic integrated circuits (PICs) due to low drive voltage and higher electro-optic (EO) bandwidth. They are the most suitable candidates to replace the widely deployed large footprint Lithium Niobate (LiNbO3) based MZMs. This thesis is focused on the design and development of travelling wave InP MZMs operating in the conventional optical C-band and also at 2000 nm which is one of the newly proposed possible alternatives for optical transmission to avoid highly anticipated ‘Capacity Crunch‘in the currently deployed standard single mode fiber (SSMF) in the next decade. InP MZMs working around the 1550 nm wavelength range were developed and characterised under DC and high frequency in order to validate the optimal electrode design. The highlight of presented work is the development of the first InP MZMs for operation around 2000 nm wavelengths for used in future optical transmission systems. To make the operation feasible around 2000 nm wavelength, compressively strained InGaAs QWs are used in the optical waveguide. The developed modulators exhibit a 3-dB EO bandwidth of 9 GHz with switching voltage as low as 3.2 V for a 3 mm long electrode. It is also shown that maximizing the electro-optical overlap by increasing the number of quantum wells can significantly reduce the Vπ, hence the modulator driving conditions for higher order modulation formats, without sacrificing the modulation bandwidth and device dimensions. Further, the devices are packaged using specially designed RF interposer to be used in an efficient, high-capacity WDM transmitter for communication over 1.15 km hollow-core photonic bandgap fiber (HC-PBGF) at 2 μm wavelength. A WDM capacity of 40 Gb/s is accomplished by using four 10 Gb/s NRZ-OOK externally modulated channels for the first time and transmission performance is evaluated using a direct detection receiver

    Silicon-organic hybrid (SOH) electro-optic modulators for high-speed and power-efficient communications

    Get PDF
    Silicon-organic hybrid (SOH) modulators add a highly efficient nonlinear organic electro-optic cladding material to the silicon photonic platform, thereby enabling efficient electro-optic modulation. In this book, the application potential of SOH modulators is investigated. Proof-of-principle experiments show that they can be used for high-speed communications at symbol rates up to 100 GBd and operated directly from a field-programmable gate array (FPGA) without additional driver amplifiers

    Thin-film Lithium Niobate Photonics for Electro-optics, Nonlinear Optics, and Quantum Optics on Silicon

    Get PDF
    Ion-sliced thin-film lithium niobate (LN) compact waveguide technology has facilitated the resurgence of integrated photonics based on lithium niobate. These thin-film LN waveguides offer over an order of magnitude improvement in optical confinement, and about two orders of magnitude reduction in waveguide bending radius, compared to conventional LN waveguides. Harnessing the improved confinement, a variety of miniaturized and efficient photonic devices are demonstrated in this work. First, two types of compact electrooptic modulators are presented – microring modulators, and Mach-Zehnder modulators. Next, two distinct approaches to nonlinear optical frequency converters are implemented – periodically poled lithium niobate, and mode shape modulation (grating assisted quasi-phase matching). Following this, stochastic variations are added to the mode shape modulation approach to demonstrate random quasi-phase matching. Afterward, broadband photon-pair generation is demonstrated in the miniaturized periodically poled lithium niobate, and spectral correlations of the biphoton spectrum are reported. Finally, extensions of the aforementioned results suitable for future work are discussed

    Integral Optics: Lecture Notes

    Get PDF
    An introduction is given to the principles of integrated optics and optical guided-wave devices. The characteristics of dielectric waveguides are summarized and methods for their fabrication are described. An illustration is given of recent work on devices including directional couplers, filters, modulators, light deflectors, and lasers. The textbook reflects the latest achievements in the field of integrated optics, which have had a significant impact on the development of communication technology and methods for transmitting and processing information
    corecore