564 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Reinforcement learning in large state action spaces

    Get PDF
    Reinforcement learning (RL) is a promising framework for training intelligent agents which learn to optimize long term utility by directly interacting with the environment. Creating RL methods which scale to large state-action spaces is a critical problem towards ensuring real world deployment of RL systems. However, several challenges limit the applicability of RL to large scale settings. These include difficulties with exploration, low sample efficiency, computational intractability, task constraints like decentralization and lack of guarantees about important properties like performance, generalization and robustness in potentially unseen scenarios. This thesis is motivated towards bridging the aforementioned gap. We propose several principled algorithms and frameworks for studying and addressing the above challenges RL. The proposed methods cover a wide range of RL settings (single and multi-agent systems (MAS) with all the variations in the latter, prediction and control, model-based and model-free methods, value-based and policy-based methods). In this work we propose the first results on several different problems: e.g. tensorization of the Bellman equation which allows exponential sample efficiency gains (Chapter 4), provable suboptimality arising from structural constraints in MAS(Chapter 3), combinatorial generalization results in cooperative MAS(Chapter 5), generalization results on observation shifts(Chapter 7), learning deterministic policies in a probabilistic RL framework(Chapter 6). Our algorithms exhibit provably enhanced performance and sample efficiency along with better scalability. Additionally, we also shed light on generalization aspects of the agents under different frameworks. These properties have been been driven by the use of several advanced tools (e.g. statistical machine learning, state abstraction, variational inference, tensor theory). In summary, the contributions in this thesis significantly advance progress towards making RL agents ready for large scale, real world applications

    Point Cloud Processing for Environmental Analysis in Autonomous Driving using Deep Learning

    Get PDF
    Autonomous self-driving cars need a very precise perception system of their environment, working for every conceivable scenario. Therefore, different kinds of sensor types, such as lidar scanners, are in use. This thesis contributes highly efficient algorithms for 3D object recognition to the scientific community. It provides a Deep Neural Network with specific layers and a novel loss to safely localize and estimate the orientation of objects from point clouds originating from lidar sensors. First, a single-shot 3D object detector is developed that outputs dense predictions in only one forward pass. Next, this detector is refined by fusing complementary semantic features from cameras and joint probabilistic tracking to stabilize predictions and filter outliers. The last part presents an evaluation of data from automotive-grade lidar scanners. A Generative Adversarial Network is also being developed as an alternative for target-specific artificial data generation.One of the main objectives of leading automotive companies is autonomous self-driving cars. They need a very precise perception system of their environment, working for every conceivable scenario. Therefore, different kinds of sensor types are in use. Besides cameras, lidar scanners became very important. The development in that field is significant for future applications and system integration because lidar offers a more accurate depth representation, independent from environmental illumination. Especially algorithms and machine learning approaches, including Deep Learning and Artificial Intelligence based on raw laser scanner data, are very important due to the long range and three-dimensional resolution of the measured point clouds. Consequently, a broad field of research with many challenges and unsolved tasks has been established. This thesis aims to address this deficit and contribute highly efficient algorithms for 3D object recognition to the scientific community. It provides a Deep Neural Network with specific layers and a novel loss to safely localize and estimate the orientation of objects from point clouds. First, a single shot 3D object detector is developed that outputs dense predictions in only one forward pass. Next, this detector is refined by fusing complementary semantic features from cameras and a joint probabilistic tracking to stabilize predictions and filter outliers. In the last part, a concept for deployment into an existing test vehicle focuses on the semi-automated generation of a suitable dataset. Subsequently, an evaluation of data from automotive-grade lidar scanners is presented. A Generative Adversarial Network is also being developed as an alternative for target-specific artificial data generation. Experiments on the acquired application-specific and benchmark datasets show that the presented methods compete with a variety of state-of-the-art algorithms while being trimmed down to efficiency for use in self-driving cars. Furthermore, they include an extensive set of standard evaluation metrics and results to form a solid baseline for future research.Eines der Hauptziele führender Automobilhersteller sind autonome Fahrzeuge. Sie benötigen ein sehr präzises System für die Wahrnehmung der Umgebung, dass für jedes denkbare Szenario überall auf der Welt funktioniert. Daher sind verschiedene Arten von Sensoren im Einsatz, sodass neben Kameras u. a. auch Lidar Sensoren ein wichtiger Bestandteil sind. Die Entwicklung auf diesem Gebiet ist für künftige Anwendungen von höchster Bedeutung, da Lidare eine genauere, von der Umgebungsbeleuchtung unabhängige, Tiefendarstellung bieten. Insbesondere Algorithmen und maschinelle Lernansätze wie Deep Learning, die Rohdaten über Lernzprozesse direkt verarbeiten können, sind aufgrund der großen Reichweite und der dreidimensionalen Auflösung der gemessenen Punktwolken sehr wichtig. Somit hat sich ein weites Forschungsfeld mit vielen Herausforderungen und ungelösten Problemen etabliert. Diese Arbeit zielt darauf ab, dieses Defizit zu verringern und effiziente Algorithmen zur 3D-Objekterkennung zu entwickeln. Sie stellt ein tiefes Neuronales Netzwerk mit spezifischen Schichten und einer neuartigen Fehlerfunktion zur sicheren Lokalisierung und Schätzung der Orientierung von Objekten aus Punktwolken bereit. Zunächst wird ein 3D-Detektor entwickelt, der in nur einem Vorwärtsdurchlauf aus einer Punktwolke alle Objekte detektiert. Anschließend wird dieser Detektor durch die Fusion von komplementären semantischen Merkmalen aus Kamerabildern und einem gemeinsamen probabilistischen Tracking verfeinert, um die Detektionen zu stabilisieren und Ausreißer zu filtern. Im letzten Teil wird ein Konzept für den Einsatz in einem bestehenden Testfahrzeug vorgestellt, das sich auf die halbautomatische Generierung eines geeigneten Datensatzes konzentriert. Hierbei wird eine Auswertung auf Daten von Automotive-Lidaren vorgestellt. Als Alternative zur zielgerichteten künstlichen Datengenerierung wird ein weiteres generatives Neuronales Netzwerk untersucht. Experimente mit den erzeugten anwendungsspezifischen- und Benchmark-Datensätzen zeigen, dass sich die vorgestellten Methoden mit dem Stand der Technik messen können und gleichzeitig auf Effizienz für den Einsatz in selbstfahrenden Autos optimiert sind. Darüber hinaus enthalten sie einen umfangreichen Satz an Evaluierungsmetriken und -ergebnissen, die eine solide Grundlage für die zukünftige Forschung bilden

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Distributed Implementation of eXtended Reality Technologies over 5G Networks

    Get PDF
    Mención Internacional en el título de doctorThe revolution of Extended Reality (XR) has already started and is rapidly expanding as technology advances. Announcements such as Meta’s Metaverse have boosted the general interest in XR technologies, producing novel use cases. With the advent of the fifth generation of cellular networks (5G), XR technologies are expected to improve significantly by offloading heavy computational processes from the XR Head Mounted Display (HMD) to an edge server. XR offloading can rapidly boost XR technologies by considerably reducing the burden on the XR hardware, while improving the overall user experience by enabling smoother graphics and more realistic interactions. Overall, the combination of XR and 5G has the potential to revolutionize the way we interact with technology and experience the world around us. However, XR offloading is a complex task that requires state-of-the-art tools and solutions, as well as an advanced wireless network that can meet the demanding throughput, latency, and reliability requirements of XR. The definition of these requirements strongly depends on the use case and particular XR offloading implementations. Therefore, it is crucial to perform a thorough Key Performance Indicators (KPIs) analysis to ensure a successful design of any XR offloading solution. Additionally, distributed XR implementations can be intrincated systems with multiple processes running on different devices or virtual instances. All these agents must be well-handled and synchronized to achieve XR real-time requirements and ensure the expected user experience, guaranteeing a low processing overhead. XR offloading requires a carefully designed architecture which complies with the required KPIs while efficiently synchronizing and handling multiple heterogeneous devices. Offloading XR has become an essential use case for 5G and beyond 5G technologies. However, testing distributed XR implementations requires access to advanced 5G deployments that are often unavailable to most XR application developers. Conversely, the development of 5G technologies requires constant feedback from potential applications and use cases. Unfortunately, most 5G providers, engineers, or researchers lack access to cutting-edge XR hardware or applications, which can hinder the fast implementation and improvement of 5G’s most advanced features. Both technology fields require ongoing input and continuous development from each other to fully realize their potential. As a result, XR and 5G researchers and developers must have access to the necessary tools and knowledge to ensure the rapid and satisfactory development of both technology fields. In this thesis, we focus on these challenges providing knowledge, tools and solutiond towards the implementation of advanced offloading technologies, opening the door to more immersive, comfortable and accessible XR technologies. Our contributions to the field of XR offloading include a detailed study and description of the necessary network throughput and latency KPIs for XR offloading, an architecture for low latency XR offloading and our full end to end XR offloading implementation ready for a commercial XR HMD. Besides, we also present a set of tools which can facilitate the joint development of 5G networks and XR offloading technologies: our 5G RAN real-time emulator and a multi-scenario XR IP traffic dataset. Firstly, in this thesis, we thoroughly examine and explain the KPIs that are required to achieve the expected Quality of Experience (QoE) and enhanced immersiveness in XR offloading solutions. Our analysis focuses on individual XR algorithms, rather than potential use cases. Additionally, we provide an initial description of feasible 5G deployments that could fulfill some of the proposed KPIs for different offloading scenarios. We also present our low latency muti-modal XR offloading architecture, which has already been tested on a commercial XR device and advanced 5G deployments, such as millimeter-wave (mmW) technologies. Besides, we describe our full endto- end complex XR offloading system which relies on our offloading architecture to provide low latency communication between a commercial XR device and a server running a Machine Learning (ML) algorithm. To the best of our knowledge, this is one of the first successful XR offloading implementations for complex ML algorithms in a commercial device. With the goal of providing XR developers and researchers access to complex 5G deployments and accelerating the development of future XR technologies, we present FikoRE, our 5G RAN real-time emulator. FikoRE has been specifically designed not only to model the network with sufficient accuracy but also to support the emulation of a massive number of users and actual IP throughput. As FikoRE can handle actual IP traffic above 1 Gbps, it can directly be used to test distributed XR solutions. As we describe in the thesis, its emulation capabilities make FikoRE a potential candidate to become a reference testbed for distributed XR developers and researchers. Finally, we used our XR offloading tools to generate an XR IP traffic dataset which can accelerate the development of 5G technologies by providing a straightforward manner for testing novel 5G solutions using realistic XR data. This dataset is generated for two relevant XR offloading scenarios: split rendering, in which the rendering step is moved to an edge server, and heavy ML algorithm offloading. Besides, we derive the corresponding IP traffic models from the captured data, which can be used to generate realistic XR IP traffic. We also present the validation experiments performed on the derived models and their results.This work has received funding from the European Union (EU) Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie ETN TeamUp5G, grant agreement No. 813391.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Narciso García Santos.- Secretario: Fernando Díaz de María.- Vocal: Aryan Kaushi

    2022 Review of Data-Driven Plasma Science

    Get PDF
    Data-driven science and technology offer transformative tools and methods to science. This review article highlights the latest development and progress in the interdisciplinary field of data-driven plasma science (DDPS), i.e., plasma science whose progress is driven strongly by data and data analyses. Plasma is considered to be the most ubiquitous form of observable matter in the universe. Data associated with plasmas can, therefore, cover extremely large spatial and temporal scales, and often provide essential information for other scientific disciplines. Thanks to the latest technological developments, plasma experiments, observations, and computation now produce a large amount of data that can no longer be analyzed or interpreted manually. This trend now necessitates a highly sophisticated use of high-performance computers for data analyses, making artificial intelligence and machine learning vital components of DDPS. This article contains seven primary sections, in addition to the introduction and summary. Following an overview of fundamental data-driven science, five other sections cover widely studied topics of plasma science and technologies, i.e., basic plasma physics and laboratory experiments, magnetic confinement fusion, inertial confinement fusion and high-energy-density physics, space and astronomical plasmas, and plasma technologies for industrial and other applications. The final section before the summary discusses plasma-related databases that could significantly contribute to DDPS. Each primary section starts with a brief introduction to the topic, discusses the state-of-the-art developments in the use of data and/or data-scientific approaches, and presents the summary and outlook. Despite the recent impressive signs of progress, the DDPS is still in its infancy. This article attempts to offer a broad perspective on the development of this field and identify where further innovations are required

    Neural Network Guided Transfer Learning for Genetic Programming

    Get PDF
    Programming-by-Example, and code synthesis in general, is a field with many different sub-fields, involving many forms of machine learning and computational logic. With advantages and disadvantages to each, attempts to build effective hybrid solutions would seem to be a promising direction. Transfer Learning (TL) provides a good framework for this, as it allows one of the classic code synthesis techniques, Genetic Programming, to be augmented by past success, to target a particular code synthesis system to the problem domain it is facing. TL allows one type of machine learning algorithm, in this thesis a neural network, to support the core GP process, and combine the strengths of both. This thesis explores the concept of hybrid code synthesis approaches, and then brings the identified strongest elements of each approach together into a single neural network driven Transfer Learning system for Genetic Programming. The TL system operates autonomously, without any human intervention required after the problem set (in example only format) is presented to the system. The thesis first studies how to structure a training corpus for a neural network, across two different experiments, exploring how the constraints placed on a corpus can result in superior training. After this, it studies how GP processes can be guided, to ensure that a hypothetical NN guide would be useful if it could be created and how it can best assist the GP. Finally, it combines the previous studies together into the full end-to-end TL system and tests its performance across two separate problem domain
    corecore