580 research outputs found

    Lossy stochastic game abstraction with bounds

    Full text link

    Imperfect-Recall Abstractions with Bounds in Games

    Full text link
    Imperfect-recall abstraction has emerged as the leading paradigm for practical large-scale equilibrium computation in incomplete-information games. However, imperfect-recall abstractions are poorly understood, and only weak algorithm-specific guarantees on solution quality are known. In this paper, we show the first general, algorithm-agnostic, solution quality guarantees for Nash equilibria and approximate self-trembling equilibria computed in imperfect-recall abstractions, when implemented in the original (perfect-recall) game. Our results are for a class of games that generalizes the only previously known class of imperfect-recall abstractions where any results had been obtained. Further, our analysis is tighter in two ways, each of which can lead to an exponential reduction in the solution quality error bound. We then show that for extensive-form games that satisfy certain properties, the problem of computing a bound-minimizing abstraction for a single level of the game reduces to a clustering problem, where the increase in our bound is the distance function. This reduction leads to the first imperfect-recall abstraction algorithm with solution quality bounds. We proceed to show a divide in the class of abstraction problems. If payoffs are at the same scale at all information sets considered for abstraction, the input forms a metric space. Conversely, if this condition is not satisfied, we show that the input does not form a metric space. Finally, we use these results to experimentally investigate the quality of our bound for single-level abstraction

    Theoretical and Practical Advances on Smoothing for Extensive-Form Games

    Full text link
    Sparse iterative methods, in particular first-order methods, are known to be among the most effective in solving large-scale two-player zero-sum extensive-form games. The convergence rates of these methods depend heavily on the properties of the distance-generating function that they are based on. We investigate the acceleration of first-order methods for solving extensive-form games through better design of the dilated entropy function---a class of distance-generating functions related to the domains associated with the extensive-form games. By introducing a new weighting scheme for the dilated entropy function, we develop the first distance-generating function for the strategy spaces of sequential games that has no dependence on the branching factor of the player. This result improves the convergence rate of several first-order methods by a factor of Ī©(bdd)\Omega(b^dd), where bb is the branching factor of the player, and dd is the depth of the game tree. Thus far, counterfactual regret minimization methods have been faster in practice, and more popular, than first-order methods despite their theoretically inferior convergence rates. Using our new weighting scheme and practical tuning we show that, for the first time, the excessive gap technique can be made faster than the fastest counterfactual regret minimization algorithm, CFR+, in practice

    Formal analysis techniques for gossiping protocols

    Get PDF
    We give a survey of formal verification techniques that can be used to corroborate existing experimental results for gossiping protocols in a rigorous manner. We present properties of interest for gossiping protocols and discuss how various formal evaluation techniques can be employed to predict them

    Automated Abstractions for Patrolling Security Games

    Get PDF
    Recently, there has been a significant interest in studying security games to provide tools for addressing resource allocation problems in security applications. Patrolling security games (PSGs) constitute a special class of security games wherein the resources are mobile. One of the most relevant open problems in security games is the design of scalable algorithms to tackle realistic scenarios. While the literature mainly focuses on heuristics and decomposition techniques (e.g., double oracle), in this paper we provide, to the best of our knowledge, the first study on the use of abstractions in security games (specifically for PSGs) to design scalable algorithms. We define some classes of abstractions and we provide parametric algorithms to automatically generate abstractions. We show that abstractions allow one to relax the constraint of patrolling strategies' Markovianity (customary in PSGs) and to solve large game instances. We additionally pose the problem to search for the optimal abstraction and we develop an anytime algorithm to find it

    Extensive-form game abstraction with bounds

    Full text link

    10031 Abstracts Collection -- Quantitative Models: Expressiveness and Analysis

    Get PDF
    From Jan 18 to Jan 22, 2010, the Dagstuhl Seminar 10031 ``Quantitative Models: Expressiveness and Analysis \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • ā€¦
    corecore