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Abstract

Recently, there has been a significant interest in studying se-
curity games to provide tools for addressing resource allo-
cation problems in security applications. Patrolling security
games (PSGs) constitute a special class of security games
wherein the resources are mobile. One of the most relevant
open problems in security games is the design of scalable
algorithms to tackle realistic scenarios. While the literature
mainly focuses on heuristics and decomposition techniques
(e.g., double oracle), in this paper we provide, to the best
of our knowledge, the first study on the use of abstractions
in security games (specifically for PSGs) to design scalable
algorithms. We define some classes of abstractions and we
provide parametric algorithms to automatically generate ab-
stractions. We show that abstractions allow one to relax the
constraint of patrolling strategies’ Markovianity (customary
in PSGs) and to solve large game instances. We additionally
pose the problem to search for the optimal abstraction and we
develop an anytime algorithm to find it.

Introduction

The use of algorithmic game theory for security applica-
tions is receiving more and more attention in the scientific
community. The key of its success resides in the modeling
of security problems as interactive situations between a de-
fender and an attacker wherein the attacker behaves opti-
mally, not being committed to follow any predefined tactics
as instead it is in non–game theoretic approaches. This al-
lows one to capture realistic situations and find effective de-
fensive strategies against rational attackers. The most known
results provide randomized resource allocation techniques
for problems wherein the defender uses resources to protect
some targets with values from an attacker, and the resources
are not sufficient to protect all the targets simultaneously,
see, e.g., ARMOR (Pita et al. 2008) and RANGER (Tsai et
al. 2010) systems.

Security games are customarily modeled as two–player
(i.e., the defender and the attacker) games where the play-
ers act simultaneously, but one player (the attacker) can ob-
serve the strategy of the opponent (the defender) before act-
ing, derive a correct belief over it, and act as best responder.
This puts security games into the class of leader–follower
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games wherein the defender is the leader and the attacker is
the follower. The appropriate solution concept is the leader–
follower equilibrium, whose computation can be formulated
as a multiple linear programming problem (Conitzer and
Sandholm 2006). Patrolling security games (PSGs) consti-
tute an interesting class of security games in which mobile
resources are used to secure the targets (Basilico, Gatti, and
Amigoni 2009). The peculiarity of PSGs resides in the game
model. Differently from (Pita et al. 2008), PSGs present
an extensive–form structure, the attacker being in the posi-
tion to act during the execution of the defender’s actions.
The extensive–form structure introduces complications in
the computation of the equilibrium that are commonly ad-
dressed by constraining the patrolling strategy to be Marko-
vian. This allows one to formulate the resolution of a PSG
as a multiple quadratic programming problem.

A crucial issue in the field of security games is the de-
sign of efficient algorithms capable to scale with realistic
scenarios. In several practical situations the number of ac-
tions available to players are combinatorial and/or the at-
tacker can be of different types having different preferences
over the targets. In both cases, the number of mathemati-
cal programming problems to be solved is exponential and
two approaches (i.e., heuristics and decomposition) are cur-
rently under investigation. Heuristic approaches are used to
find approximate solutions (Paruchuri et al. 2008). Decom-
position techniques, such as single and double oracle meth-
ods, are used to solve iteratively the game starting from a
reduced game and incrementally augmenting it (Tsai et al.
2010). These techniques provide impressive results with si-
multaneous actions games, but are not effective with PSGs.

In this paper, we provide, to the best of our knowledge,
the first study on abstractions for security games (specif-
ically for PSGs). The idea behind abstractions is simple:
given a game, a reduced abstract game is generated wherein
some actions are somehow clustered, the abstract game is
solved, and then the optimal agents’ strategies in the ab-
stract game are mapped onto the original one. Many works
on abstractions have been carried out for extensive–form
games, especially for poker (Gilpin and Sandholm 2007;
Gilpin, Sandholm, and Sørensen 2008), but none for secu-
rity games. We improve the state of the art as follows.

• We define different classes of abstractions for PSGs (i.e.,
with and without utility loss) and we provide automatic
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parametric tools to generate abstractions.

• We show that the exploitation of abstractions addresses
the two main crucial issues of PSGs: they relax the con-
straint of employing only Markovian strategies (allowing
algorithms to find better strategies) and allow algorithms
to scale better (solving realistic scenarios).

• We pose the problem to search for the best abstraction
(in terms of patroller’s utility) and we provide an anytime
algorithm to find it.

Patrolling Security Games

A PSG is a two–player game played on a graph–represented
environment by a patroller and by an intruder. The game de-
velops in turns at which both players act simultaneously.
Formally, a PSG can be represented by a directed graph
G = (V,A, c, T, vp, vi, d), where V is the set of n vertices
to be patrolled and A is the set of arcs connecting them.
The function c ∶ A → R

+ assigns each arc a weight. If
not differently specified, c(i, j) = 1 ∀(i, j) ∈ A. T ⊆ V
contains targets, i.e., vertices having some value for players
and where intrusions can occur. The functions vp ∶ T → R

+

and vi ∶ T → R
+ assign each target a value for the patroller

and for the intruder respectively; given a target t, vp(t) and
vi(t) can be, in principle, different, see, e.g., (Paruchuri et
al. 2007). The function d ∶ T → N ∖ {0} assigns each tar-
get t a penetration time d(t), namely the number of turns
that the intruder must spend to complete an intrusion in t.
At each turn, the patroller can move from its current ver-
tex i to an adjacent one (move(i,j) where (i, j) ∈ A) while
the intruder can decide either to wait outside the environ-
ment (wait) or to attack a target t (attack(t)). (We will refer
to arcs and patroller’s actions without distinction.) There are
three possible kinds of outcomes of this game:

• intruder–capture: the intruder plays action attack(t) at
turn k and the patroller detects it in target t in the time
interval [k + 1, k + d(t)]; agents’ utilities are defined as
up = ∑i∈T vp(i) and ui = −ε for the patroller and in-
truder, respectively (ε > 0 is a capture penalty);

• penetration–t: the intruder successfully completes the in-
trusion in target t; utilities are up = ∑i∈T∖{t} vp(i) and

ui = vi(t);

• no–attack: for every turn k the intruder plays the wait ac-
tion and never enters in the environment, in this case the
game does not end in a finite number of turns; utilities are
up = ∑i∈T vp(i) and ui = 0.

In a PSG, the intruder is assumed to stay hidden outside the
environment and observe the patroller’s actions, deriving a
correct belief over its strategy. Conversely, the patroller has
no knowledge about the intruder’s undertaken actions. This
scenario leads to the adoption of a leader–follower equilib-
rium as the proper solution concept to be applied. As shown
in (Basilico, Gatti, and Amigoni 2009) a PSG can be ex-
pressed in strategic form with the introduction of symme-
tries that force the patroller to repeat its strategy after a fi-
nite number of turns. More precisely, the history hi of pa-
troller’s last l = ∣hi∣ visits ending in vertex i is introduced

and the value of l is fixed. An action for the patroller is then
the set of probabilities {α(hi, j)} for all the possible histo-
ries of length l, where α(hi, j) corresponds, in the original
game representation, to the probability of playing move(i,j)
every time the history of visits is hi. An action for the in-
truder can be stay–out or enter–when(i,t). With respect to
the original game representation, these actions map to play-
ing wait forever and playing attack(t) as soon as the pa-
troller is in i, respectively. Once the reduction to strategic
form is performed, the leader–follower equilibrium can be
computed via quadratic programming. However, solving the
quadratic optimization problem presents a large computa-
tional cost. This drawback introduces two main limitations
on the problem instances that can be solved within a reason-
able time: (a) only Markovian strategies are tractable (l ≤ 1);
(b) even with Markovian strategies, only small environments
(i.e., with a small number of vertices and targets) can be
addressed efficiently. Indeed, the size of the problem’s in-
stances grows exponentially with respect to l and n.

A technique that showed good results in dealing with the
second limit is the removal of dominated actions, see (Basil-
ico et al. 2009) for details. For the patroller this means to
remove all those vertices that it will never visit. In our work,
we will assume that V is the set of non–dominated vertices.
For the intruder this means to discard all the enter–when(i,t)
actions that are not candidate best responses. We denote with
I the set of non dominated actions for the intruder. In what
follows, we propose a technique based on game theoretical
abstractions to address both limitations (a) and (b).

Abstraction Classes Definition

An abstraction algorithm is a technique that when applied to
a game produces a smaller version of it. The seminal work
on abstractions has been proposed in (Gilpin and Sandholm
2007), however since its application to PSG would not pro-
vide any reduction (PSG are general–sum games without
chance nodes) we define abstractions specifically for PSGs.
A PSG abstraction works on the patroller’s action space as
it is defined in the original representation of the game (i.e.,
the set of move(i,j) actions). The idea is to substitute sub-
sets of actions with macro actions, with the assumption that
playing a macro action means playing a fixed sequence of
all the actions in the corresponding subset. In doing so, the
vertices crossed during the execution of the macro actions
are not present in the abstraction.

Example 1 Consider Fig. 1. Ellipses are vertices of G
(black nodes are targets). Vertex 6 appears in the original
game, but not in the abstract game. Actions move(4,6) and
move(6,7) are replaced by macro action move–along(4,7)
and actions move(7,6) and move(6,4) are replaced by
macro action move–along(7,4).

Formally, a PSG abstraction can be represented with a set
of vertices X ⊆ V and a procedure, reported in Alg. 1, to
update G given X , where X is the subset of vertices of V
that are removed from G. We denote the abstract game as
GX and we refer to an abstraction by X .

When a PSG abstraction is applied, the number of vertices
of the abstract game is (by definition) always smaller than in
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Figure 1: An example of PSG abstraction.

the original one. This is not true, in general, for the number
of arcs (actions). However, to assure that an abstract game
is easier to be solved than the original one we need that also
the number of arcs decreases. We can do it by removing only
vertices with indegree and outdegree equal to two. We define
Λ = {x ∈ V ∖ T ∣ deg+(x) = deg−(x) = 2} as the set of can-
didates for X , assuming that X ⊆ Λ. The expected utilities
of the patroller at the leader–follower equilibrium in differ-
ent abstractions of the same game may be different. Thus,
given an abstraction X , we denote as abstraction’s value the
patroller’s expected utility and we denote it by ν(X). PSG
abstractions can cope with both limitations (a) and (b).

Algorithm 1: ABSTRACTING(G, X )

1 V ← V ∖X

2 for all x in X do

3 for all (p,x) ∈ A do

4 for all (x,s) ∈ A,s ≠ p do

5 A← A ∪ (p, s)
6 c(p,s) = c(p,x) + c(x,s)

7 A← A ∖ (p, x)

8 for all (x,s) ∈ A do

9 A← A ∖ (x,s)

On limitation (a): Markovian strategies in the abstract
game cannot be generally mapped onto a Markovian strategy
in the original game, but to strategies with a longer history.

Example 2 Consider action move–along(4,7) in Fig. 1. Its
actual realization cannot be obtained with a Markovian
strategy in the original action space: in vertex 6 the patroller
should consider also the previously visited vertex (4 or 7) to
distinguish between move–along(4,7) and move–along(7,4)
and, consequently, to decide where to move.

Thus, computing a Markovian equilibrium strategy in the
abstract game gives us, in general, a strategy in the original
game that is not Markovian and that, therefore, may provide
the patroller with larger utility.

On limitation (b): the problems to remove dominated
strategies and compute an equilibrium can be formulated
as in the non–abstract case, and the abstract game, having
less vertices and arcs, leads to a smaller mathematical pro-
gramming problem (in terms of variables and constraints)
and then easier to be solved.

We focus on the strategic equivalence between a game
G and its abstract version GX for some abstraction X . To
understand this we must consider how macro–actions affect
the interaction between players. Macro–actions can provide

the intruder with some advantage because playing fixed se-
quences of movements introduces predictability in the pa-
troller’s strategy. We capture this with the concept of dis-
placement sit of a vertex i for a target t.

Example 3 Consider Fig. 1 where the patroller is in target
4 and plays action move–along(4,7). As it moves in vertex
6 the intruder knows that the patroller moves toward 7 and
not back to 4. Therefore, the intruder knows that vertex 4

will not be visited by the patroller for the next two turns, this
is not the case in the original game.

Given a target t and a vertex i we define the displacement sit
as the shortest distance between t and i computed on GX . In
general, if sit > dist(i, t) (where dist(⋅, ⋅) is the shortest
distance on G) then the intruder could have a better revenue
when playing enter-when(i,t) in GX than in G. Given an
abstraction X , displacements {sit} can be easily computed
and their values define its abstraction class. There are three
classes: utility lossless, (potentially) utility loss, and inad-
missible abstractions. We describe them in increasing order
in the number of potential vertices they can remove from G.

Utility lossless abstractions. The abstractions X belong-
ing to this class are granted to have a value ν(X) non–
smaller than the value ν(∅) of the original game. We build
an abstraction X of this class such that the set of in-
truder’s non–dominated strategies is invariant w.r.t. the orig-
inal game. The conditions X must satisfy can be expressed
with a restriction on candidate abstract vertices Λ and with
a set of linear constraints on displacements sit. The set of
candidate abstract vertices is restricted as follows:

ΛLLA = Λ ∩ {{i ∈ V ∖ T ∣ ∀t ∈ T, enter–when(t, i) ∉ I} ∪

{t ∈ T ∣ ∀w ∈ T, enter–when(w, t) ∉ I and ∀i ∈ V ∖ T, enter–when(t, i) ∉ I}}

That is, a vertex i is eligible for removal if, for every t′,
the intruder’s action enter–when (t′, i) is dominated; a tar-
get t is eligible for removal if, for every i′, the intruder’s
action enter–when (t, i′) is dominated. Then, given a vector
(x1, x2, . . . , xn) ∈ {0,1}

n, abstraction X = {i ∈ V ∣ xi = 1}
is utility lossless if the following constraints are satisfied:

sit = dist(i, t) ∀i /∈ ΛLLA, t ∈ T (1)

sit ≥ dist(i, t) ∀i ∈ ΛLLA, t ∈ T (2)

sit ≤ dist(i, t) +nxi ∀i ∈ ΛLLA, t ∈ T (3)

sit ≤ sjt + 1 − n(1 − xi) ∀i ∈ ΛLLA, t ∈ T, j ∈ N(i, k), k ∈D(i, t) (4)

sit ≥ sjt + 1 + n(1 − xi) ∀i ∈ ΛLLA, t ∈ T, j ∈ N(i, k), k ∈D(i, t) (5)

sit ≤ dist(k, t) ∀i ∈ ΛLLA , t ∈ T, k ∈D(i, t) (6)

The set D(i, t) denotes the vertices j ∈ V such that
enter–when(t, j) ∈ I and this last action dominates
enter–when(t, i), while N(i, j) is the set of vertices adja-
cent to i in the shortest paths connecting i and j, such that
if k ∈ N(i, j) then dist(k, j) < dist(i, j). Constraints (1)
state that for every non–removable vertex the displacement
for a target should be equal to the shortest distance be-
tween the two in G (this is the minimum displacement); con-
straints (2) allow displacement for removable vertices to be
larger than the minimum value; constraints (3) assigns the
minimum value to displacements of non removed vertices;
constraints (4) and (5) define how to compute displacements
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given the set of removed vertices (notice that, since this for-
mulation operates on G, it considers unitary costs on the
arcs). Finally, constraints (6) set the upper bound for dis-
placements of removable vertices. For a vertex i and target t,
these values should not be greater than the distance between
the target and the vertex j that dominates i in an attack to t.

We provide a proof sketch for utility lossless abstrac-
tions’ properties. Constraints (6) avoid situations in which
the intruder, exploiting the displacement of a removed ver-
tex, finds a previously dominated action to be a possible best
response in the abstract game. Therefore, the intruder’s dom-
inated actions I inGX do not change with respect to G. Con-
sider Fig. 1 and the set of probabilities {αij} as the leader–
follower equilibrium of G. By assigning to macro–action
move–along(4,7) the probability α4,6 and to macro-action
move-along(7,4) the probability α7,6 we have that the prob-
ability for the patroller of reaching any target (i.e., the cap-
ture probability) from 4 or 7 when playing macro–actions is
not smaller than when acting in G’s action space. Vertex 6 is
not considered since it is, like every other removed vertex,
always dominated for the intruder (recall the definition of
ΛLLA). Therefore given a solution of G we can always find
a solution of GX which is not worse.

(Potentially) utility loss abstractions. The abstractions
X belonging to this class are not granted to have a value
ν(X) non–smaller than the value ν(∅) of the original game.
These abstractions guarantee only that, after their applica-
tion, no target is exposed in GX , namely that ∀i ∈ V, t ∈
T sit ≤ d(t). If a target t is exposed then there is some i such
that playing action enter–when(t,i) would result in a certain
successful intrusion. The set of intruder’s dominated actions
is not an invariant. Differently from what the previous ab-
straction class does, this class does not pose any constraint
on Λ, allowing for a larger number of removed vertices. For-
mally, the abstraction X = {i ∈ V ∣ xi = 1} is lossy if the
following linear constraints are satisfied:

constraints (1), (2), (3)

sit ≤ sjt + 1 − n(1 − xi) ∀i ∈ Λ, t ∈ T, j ∈ N(i, t) (7)

sit ≥ s,t + 1 + n(1 − xi) ∀i ∈ Λ, t ∈ T, j ∈ N(i, t) (8)

sit ≤ dist(i, t) + 1 − n(1 − xi)
∀i ∈ Λ, t ∈ T ∶ N(i, t) = ∅,

∃(i, k) ∈ A,dist(k, t) = dist(i, t)
(9)

sit ≥ dist(i, t) + 1 + n(1 − xi)
∀i ∈ Λ, t ∈ T ∶N(i, t) = ∅,

∃(i, k) ∈ A,dist(k, t) = dist(i, t)
(10)

sit = dist(i, t)
∀i ∈ Λ, t ∈ T ∶N(i, t) = ∅,

∀(i, k) ∈ A,dist(k, t) < dist(i, t)
(11)

sit ≤ d(t) ∀i ∈ Λ, t ∈ T (12)

Constraints (7), (8), and (12) relax the corresponding con-
straints (1), (2), and (6) of lossless abstractions considering
directly target t instead of the set D(i, t). Constraints (9),
(10), and (11) are analogous to (7) and (8), but they are ap-
plied when for a given vertex i and a target t there is not
any adjacent vertex toward t (i.e., N(i, t) = ∅). This hap-
pens in the presence of cycles and precisely when i is the
farthest vertex from t. Constraints (9) and (10) are applied
when there exists a vertex k that is as far as i from t, while
constraints (11) are applied when x is strictly the farthest.

No guarantee can be provided over these abstractions’ value.
Notice that this abstractions class entirely contains the utility
lossless abstractions class.

Inadmissible abstractions. An abstraction is inadmissi-
ble if for some i and t it holds that sit > d(t) (i.e., at least a
target t is exposed). The inadmissible and utility loss classes
are separate. Being these abstractions unsatisfactory, we will
not consider this class in what follows.

Abstractions Generation and Evaluation

Given a game G, our interest is in choosing the abstrac-
tion with the maximum value among all those that are com-
putable by a given deadline. However, the value and compu-
tational time can be known only ex post w.r.t. the resolution
of the abstract game and it is not possible to evaluate all
the abstractions, their number being exponential in the num-

ber of removable vertices (precisely, it is O(2∣ΛLLA ∣) for loss-

less abstractions and O(2∣Λ∣) for lossy abstractions). This
problem is well known in the community studying abstrac-
tions (Gilpin, Sandholm, and Sørensen 2008). To provide a
criterion to choose an abstraction we use two heuristics and
a parameter λ ∈ [0,1] that defines the tradeoff level between
the two heuristics. The first heuristic aims at minimizing the
computational time. The second heuristic aims at maximiz-
ing the value. With λ = 0 only the heuristic on value max-
imization is considered, while with λ = 1 vice versa. We
provide furthermore a preliminary experimental evaluation
to show how value and computational time vary with λ.

The heuristic for the computational time minimization is
based on the number of vertices of an abstraction. The larger
the number of removed vertices (it is reasonable to expect
that) the smaller the computational time. We call maximal
an abstraction that, among all the ones of its class, removes
the maximum number of vertices. Maximal utility lossless
and maximal lossy abstractions can be found with linear pro-
grams by maximizing∑i∈V xi under constraints (1), (2), (3),
(7), (8) for the lossless and constraints (1), (2), (3), (5) for the
lossy, respectively. Maximal abstractions provide the maxi-
mum potential saving in terms of computational time.

The definition of heuristics for the maximization of the
value is more involved. The basic idea is to find, among all
the abstractions with the same number of vertices, the one
with the largest value. We capture this by using as heuristic
the largest normalized displacement among those of all the
vertices (the normalization is accomplished with the lower
and upper bounds over the displacement of each vertex ac-
cording to the used abstraction class). The intuition is that,
since displacements introduce delays for the patroller in vis-
iting targets, the larger the maximum normalized displace-
ment the smaller the value. This heuristic can be formally
captured by posing constraints over the displacements.

Consider the class of utility lossless abstractions. For a
given λ we can find an abstraction as the result of the fol-
lowing linear program:

max∑
i∈V

xi s.t. constraints (1), (2), (3), (5)

sit ≤ (1 − λ)dist(i, t) + λdist(k, t) ∀i ∈ ΛLLA, t ∈ T, k ∈D(i, t) (13)

Constraints (13) generalize constraints (5) by making the up-
per bounds on displacements depending on λ. In particular
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with λ = 0 displacements are forced to assume the mini-
mum value and, consequently, the resolution of the above
program returns the original game. With λ = 1 displace-
ments can assume the maximum value allowed in a loss-
less abstraction and, maximizing the objective function, the
resolution returns the maximal lossless abstraction (indeed,
in this case constraints (13) coincide with constraints (5)).
For increasing values of λ the resulting abstraction tends
to remove more vertices and therefore to reduce the size of
the game. However, removing more vertices increases the
probability of obtaining macro actions prescribing long se-
quences of moves. This can worsen the performance since
fixing the patroller’s actions for long time intervals could in-
troduce disadvantages.

Let us consider the class of utility loss abstractions. For a
given λ we can find an abstraction as the result of the fol-
lowing linear program:

max ∑
i∈V

xi s.t. constraints (1), (2), (3), (7), (8), (9), (10), (11), (12)

sit ≤ (1 − λ)dist(i, t) + λd(t) ∀i ∈ Λ ∖ΛLLA, t ∈ T (14)

sit ≤ (1 −λ)dist(i, k) + λd(t) ∀i ∈ ΛLLA, t ∈ T, k ∈D(i, t) (15)

Constraints (14) apply the same principle of constraints (13)
to vertices that are exclusively removable in lossy abstrac-
tions; constraints (15) apply to all vertices that are removable
also in a lossless abstraction. For these vertices the minimum
value of displacements accounts for the distance dist(i, k)
where k ∈ D(i, t). Since we are considering lossy abstrac-
tions, the maximum displacement for each vertex is equal
to the penetration time of the associated target. With respect
to the game size, the parameter λ has the same meaning de-
scribed for lossless abstractions. However, the removal of
vertices introduces information loss increasing the probabil-
ity for the intruder of having new candidate best responses
with respect to the original game.

To evaluate how choosing an abstraction class and a value
for λ in that class, we consider 100 patrolling settings (i.e.,
instances of G) with a size of approximately 50 vertices and
a number of randomly located targets varying from 5% to
30% of the total number of vertices. For every setting we
compute lossless and lossy abstractions for every value of
λ with a resolution of 0.1 (by using AMPL and CPLEX),
we apply the found abstraction to the original game and we
compute the corresponding equilibrium (by using SNOPT)
with a UNIX computer with dual quad–core 2.33GHz CPU
and 8GB RAM. In Fig. 2 we report the averages of the ab-
straction values and of the computational time needed to find
the equilibria (included the time for computing the abstrac-
tions that demonstrated to be negligible in all our experi-
ments) as λ vary. Since values depend on the specific pay-
offs chosen in each patrolling setting, we normalize them in
order to obtain consistent averages. Under the curves of ab-
straction values we report the percentages of terminations by
a threshold of 30 m.

Initially, we observe that experimental results confirm the
intuition behind the heuristics. Let us focus on utility loss-
less abstractions. As we expected, lossless abstractions al-
ways provide a better utility than the original game. The
maximum value is at λ = 0.9 and the improvement w.r.t.
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Figure 2: Abstractions values and resolution times.

ν(∅) is about 100%. Therefore, utility lossless abstractions
allow one to drastically improve the effectiveness of the pa-
troller’s strategies. The computational time strictly reduces
with increasing value of λ, saving about 25% of the com-
putational time for the maximal abstraction. Notice that by
using abstractions with λ ≥ 0.6 we can solve many game
instances (25%) that would be not solvable without abstrac-
tions. Let us focus on utility loss abstractions. They can pro-
vide a utility both worse than ν(∅) (on average for λ ≥ 0.5,
when the abstraction is very coarse) and better (on average
for λ ≤ 0.4, when the abstraction is close to the lossless one).
The maximum value is at λ = 0 and the improvement w.r.t.
to ν(∅) is about 90%. The computational time strictly re-
duces with increasing values of λ, saving about 95% of the
computational time needed for the maximal abstraction. Fur-
thermore, by using abstractions with λ ≥ 0.2 we can solve
all the game instances. As the settings became larger (with
more than 50 vertices) the termination probability reduces
and only abstractions with λ close to 1 can be used (further
experiments showed that with these abstractions the limit is
at about 166 vertices and 5% of targets, usually due to ex-
cessive memory occupation). Therefore, utility loss abstrac-
tions allow one to solve much larger game instances than
those solvable without abstractions.

Anytime Search in the Abstractions Space

The fact that with realistic settings the termination percent-
age is very low except for values of λ close to one with lossy
abstractions pushes one to use λ = 1. Anyway, this choice
could prevent one to find better solutions computable by a
given deadline. Here, we pose the problem to search for the
abstraction with the maximum value among those solvable
in anytime fashion. The problem can be formulated as a vari-
ation of the optimization of a function in a continuous vari-
able (i.e., λ) whose values are evaluated by simulation. No
information on the function to optimize is available except
for the heuristic information derived from the previous ex-
perimental results. To address this problem, we develop an
algorithm inspired by (Vorobeychik and Wellman 2008) and
based on adaptive grids and local search.

We define λ′ ∈ [0,2] such that , if λ′ < 1, then lossless ab-
stractions are used with λ = λ′, otherwise lossy abstractions
are used with λ = λ′ − 1. We denote by X(λ′) the abstrac-
tion produced given λ′. In our algorithm, we have a tuple φ
that contains the samples λ′i ∈ [0,2] that have been evalu-
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ated and the corresponding value ν(X(λ′i)); it is defined as
φ = ⟨(λ′1, ν(X(λ′))), . . . , (λ′n, ν(X(λ′)))⟩. Elements in φ
are in increasing order in λ′i. Given a sample λ′ we denote
by λ′+ the smallest sample larger than λ′ among those in φ
and by λ′− the largest sample smaller than λ′ among those in
ψ. We have a tuple ψ that contains samples λ′i that have not
been evaluated yet. These sample are assigned an heuristic
value h(λ′i) and are ordered in ψ according to it. We have
finally two parameters: a temporal deadline ρ over the reso-
lution of each single abstraction and a temperature τ ∈ [0,1]
whose use is explained below.

In the initialization, our algorithm starts by evaluating
ν(⋅) at λ′ = 2 without imposing any temporal deadline and
then it adds (2, ν(X(2))) to φ and (0, h(0)) where h(0) =
ν(X(0)). Call Δ the time spent to evaluate ν(X(2)). From
here on, the algorithm runs until there is remaining time and
during its execution it stores the best abstraction found so

far. With probability 1 − τ , the first element in ψ, say λ
′
, is

removed and it is evaluated imposing a temporal deadline
ρ. To have a fine experimental evaluation, we normalize ρ
w.r.t. Δ as

ρ

Δ
. From here on, we consider ρ as a normal-

ized parameter. With probability τ a random element of ψ
is chosen. If the resolution terminates, then the element is

introduced in φ after that the heuristic value h(λ
′
) has been

replaced by the actual value ν(X(λ
′
)). In addition, two new

elements are added to ψ. The first (at right) is composed by

the sample λ
′
+

λ
′

+
−λ′

2
and h is

ν(X(λ′))+ν(X(λ′
+
))

2
. The sec-

ond (at left) is composed by the sample λ
′
−

λ
′−λ′

−

2
and h

is
ν(X(λ′))+ν(X(λ′

−
))

2
. Essentially, these two samples refine

the grain of the grid. If the evaluation of λ
′

exceeds ρ, λ
′

is

added to φ with a value equal to that λ
′
+ and only the right

sample is added to ψ. With opportune values of τ and ρ the
algorithm is granted to converge to the optimal solution, be-
ing essentially a simulated annealing algorithm.
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Figure 3: Anytime properties with different ρ at τ = 0.1.

Fig. 3 reports the values of the best found abstractions in
function of time for different values of normalized ρ, dif-
ferent sizes of settings (50, 75, 100, 125 vertices) and with
τ = 0.1 (when τ ≤ 0.05 and τ ≥ 0.2 the performance wors-
ens). Call D the available time. As we expected, the larger
the value of D/Δ the larger the value of the optimal ρ. From

our experimental results, the best parametrization of the nor-

malized ρ results ρ ≃ D
2.5Δ

.

Conclusions
In this paper, we studied the application of game theoret-
ical abstractions to Patrolling Security Games (PSG). We
defined significant classes of abstractions, discussing and
experimentally evaluating their impact on the resolution of
PSGs. We posed the problem of finding good abstractions
and we proposed an automated method, based on an any-
time search algorithm, to achieve this task. From our analy-
sis, abstractions turned out to be an effective technique for
simplifying the resolution of a PSG.

Future works include the study of new heuristics for ad-
dressing the limitations associated to the resolution of a
PSG and an extension of this approach to the more general
class of security games. In addition, more sophisticated tech-
niques can be used for the anytime algorithm, such as using
a time variable deadline on the resolution of the single ab-
straction.
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