277 research outputs found

    Lossy Kernels for Graph Contraction Problems

    Get PDF
    We study some well-known graph contraction problems in the recently introduced framework of lossy kernelization. In classical kernelization, given an instance (I,k) of a parameterized problem, we are interested in obtaining (in polynomial time) an equivalent instance (I\u27,k\u27) of the same problem whose size is bounded by a function in k. This notion however has a major limitation. Given an approximate solution to the instance (I\u27,k\u27), we can say nothing about the original instance (I,k). To handle this issue, among others, the framework of lossy kernelization was introduced. In this framework, for a constant alpha, given an instance (I,k) we obtain an instance (I\u27,k\u27) of the same problem such that, for every c>1, any c-approximate solution to (I\u27,k\u27) can be turned into a (c*alpha)-approximate solution to the original instance (I, k) in polynomial time. Naturally, we are interested in a polynomial time algorithm for this task, and further require that |I\u27| + k\u27 = k^{O(1)}. Akin to the notion of polynomial time approximation schemes in approximation algorithms, a parameterized problem is said to admit a polynomial size approximate kernelization scheme (PSAKS) if it admits a polynomial size alpha-approximate kernel for every approximation parameter alpha > 1. In this work, we design PSAKSs for Tree Contraction, Star Contraction, Out-Tree Contraction and Cactus Contraction problems. These problems do not admit polynomial kernels, and we show that each of them admit a PSAKS with running time k^{f(alpha)}|I|^{O(1)} that returns an instance of size k^{g(alpha)} where f(alpha) and g(alpha) are constants depending on alpha

    Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that approximating within any function of the studied parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree, but a PSAKS does not. We also prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.Comment: 23 pages, 6 figures An extended abstract appeared in proceedings of STACS 201

    Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

    Get PDF
    We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter

    p-Edge/vertex-connected vertex cover:Parameterized and approximation algorithms

    Get PDF
    We introduce and study two natural generalizations of the Connected Vertex Cover (VC) problem: the p-Edge-Connected and p-Vertex-Connected VC problem (where p≥2 is a fixed integer). We obtain an 2 O(pk)n O(1)-time algorithm for p-Edge-Connected VC and an 2 O(k 2) n O(1)-time algorithm for p-Vertex-Connected VC. Thus, like Connected VC, both constrained VC problems are FPT. Furthermore, like Connected VC, neither problem admits a polynomial kernel unless NP ⊆ coNP/poly, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. Finally, we describe a 2(p+1)-approximation algorithm for the p-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning p-vertex/edge-connected subgraphs of a p-vertex/edge-connected graph by Nishizeki and Poljak (1994) [30] and Nagamochi and Ibaraki (1992) [27].</p

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I′,k′)(I',k') to the same problem, such that ∣I′∣+k′≤kO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c≥1c \geq 1, a cc-approximate solution s′s' to the pre-processed instance (I′,k′)(I',k') can be turned in polynomial time into a (c⋅α)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NP⊆coNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α≥1\alpha \geq 1, unless NP⊆coNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    p-Edge/vertex-connected vertex cover:Parameterized and approximation algorithms

    Get PDF
    We introduce and study two natural generalizations of the Connected Vertex Cover (VC) problem: the p-Edge-Connected and p-Vertex-Connected VC problem (where p≥2 is a fixed integer). We obtain an 2 O(pk)n O(1)-time algorithm for p-Edge-Connected VC and an 2 O(k 2) n O(1)-time algorithm for p-Vertex-Connected VC. Thus, like Connected VC, both constrained VC problems are FPT. Furthermore, like Connected VC, neither problem admits a polynomial kernel unless NP ⊆ coNP/poly, which is highly unlikely. We prove however that both problems admit time efficient polynomial sized approximate kernelization schemes. Finally, we describe a 2(p+1)-approximation algorithm for the p-Edge-Connected VC. The proofs for the new VC problems require more sophisticated arguments than for Connected VC. In particular, for the approximation algorithm we use Gomory-Hu trees and for the approximate kernels a result on small-size spanning p-vertex/edge-connected subgraphs of a p-vertex/edge-connected graph by Nishizeki and Poljak (1994) [30] and Nagamochi and Ibaraki (1992) [27].</p

    Lossy Kernelization of Same-Size Clustering

    Get PDF
    In this work, we study the k-median clustering problem with an additional equal-size constraint on the clusters from the perspective of parameterized preprocessing. Our main result is the first lossy (2-approximate) polynomial kernel for this problem parameterized by the cost of clustering. We complement this result by establishing lower bounds for the problem that eliminate the existence of an (exact) kernel of polynomial size and a PTAS

    09511 Abstracts Collection -- Parameterized complexity and approximation algorithms

    Get PDF
    From 14. 12. 2009 to 17. 12. 2009., the Dagstuhl Seminar 09511 ``Parameterized complexity and approximation algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore