741 research outputs found

    An integrated DC/DC converter with online monitoring of hot-carrier degradation

    Get PDF
    An integrated DC/DC converter with online monitoring of the degradation induced by hot-carrier stress (HCD) in new generation power LDMOS transistors is proposed. In particular, when a relatively high drain voltage is applied during on-state regime (switching phase), degradation mechanisms lead to an increase of the transistor on-resistance (RON). To this purpose, the converter is able to dynamically estimate the RON of the power LDMOS and to provide its value to the user during normal operation. The presented solution, developed in STMicroelectronics 90nm BCD technology, features a non-invasive current sensing and voltage sampling architecture, which is applied to a common DC/DC boost converter to evaluate the resistance of the power LDMOS. Without lack of generality, this specific sensing structure can be applied to any kind of converter, e.g. buck or buck-boost, as it does not require any change in the main conversion circuit

    Current Sensing for Automotive Electronics -- A Survey

    Get PDF
    Current sensing is widely used in power electronic applications such as dc-dc power converters and adjustable-speed motor drives. Such power converters are the basic building blocks of drivetrains in electric, hybrid, and plug-in hybrid electric vehicles. The performance and control of such vehicles depend on the accuracy, bandwidth, and efficiency of its sensors. Various current-sensing techniques based on different physical effects such as Faraday\u27s induction law, Ohm\u27s law, Lorentz force law, the magnetoresistance effect, and the magnetic saturation effect are described in this paper. Each technique is reviewed and examined. The current measurement methods are compared and analyzed based on their losslessness, simplicity, and ease of implementation

    Study of the generator/motor operation of induction machines in a high frequency link space power system

    Get PDF
    Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment

    Current measurement in power electronic and motor drive applications - a comprehensive study

    Get PDF
    Current measurement has many applications in power electronics and motor drives. Current measurement is used for control, protection, monitoring, and power management purposes. Parameters such as low cost, accuracy, high current measurement, isolation needs, broad frequency bandwidth, linearity and stability with temperature variations, high immunity to dv/dt, low realization effort, fast response time, and compatibility with integration process are required to ensure high performance of current sensors. Various current sensing techniques based on different physical effects such as Faraday\u27s induction law, Ohm\u27s law, Lorentz force law, magneto-resistance effect, and magnetic saturation are studied in this thesis. Review and examination of these current measurement methods are presented. The most common current sensing method is to insert a sensing resistor in the path of an unknown current. This method incurs significant power loss in a sense resistor at high output currents. Alternatives for accurate and lossless current measurement are presented in this thesis. Various current sensing techniques with self-tuning and self-calibration for accurate and continuous current measurement are also discussed. Isolation and large bandwidth from dc to several kilo-hertz or mega-hertz are the most difficult, but also most crucial characteristics of current measurement. Electromagnetic-based current sensing techniques, which are used to achieve these characteristics, are analyzed. Many applications require average current information for control purposes. Different average current sensing methods of measuring average current are also reviewed. --Abstract, page iii

    Modeling and control of a high power soft-switched bi-directional DC/DC converter for fuel cell applications

    Get PDF
    This work presents a new high power, bi-directional, isolated dc-dc converter for a fuel cell energy management system that will be fitted into a test vehicle being built by Ford Motor Company. The work includes two parts. The first part is to propose a new topology and analyze the principles of the circuits operation. Design guidelines with detailed circuit simulations are presented to verify the feasibility of the new circuit topology. Based on the conceptual understanding of the converter, the mathematical model is also derived to design a control system that achieves soft start up and meets the performance requirements. The second part is to fabricate a 1.6 kW prototype converter in the laboratory. Using the prototype, the steady state performance of the open loop system was tested to verify the analysis and simulation results. A dual half-bridge topology is presented to implement the required power rating using the minimum number of devices. Unified zero-voltage-switching (ZVS) is achieved in either direction of power flow to eliminate switching losses for all devices, increase the efficiency of the system and reduce the electromagnetic interference (EMI). Compared to the other soft-switched dc-dc converters, neither a voltage-clamping circuit nor extra switching devices and resonant components are required in the proposed circuit for soft-switching implementation. All these new features allow efficient power conversion and compact packaging. Different start-up schemes are proposed to successfully limit the in-rush current when the converter is started in the boost mode of operation. The full control system including the start-up scheme is developed and verified using simulation results based upon the average model. A 1.6 kW prototype of the converter has been built and successfully tested under full power. The experimental results of the converter\u27s steady-state operation confirm the simulation analysis

    DC-DC power converter research for Orbiter/Station power exchange

    Get PDF
    This project was to produce innovative DC-DC power converter concepts which are appropriate for the power exchange between the Orbiter and the Space Station Freedom (SSF). The new converters must interface three regulated power buses on SSF, which are at different voltages, with three fuel cell power buses on the Orbiter which can be at different voltages and should be tracked independently. Power exchange is to be bi-directional between the SSF and the Orbiter. The new converters must satisfy the above operational requirements with better weight, volume, efficiency, and reliability than is available from the present conventional technology. Two families of zero current DC-DC converters were developed and successfully adapted to this application. Most of the converters developed are new and are presented

    Double Resonant High-Frequency Converters for Wireless Power Transfer

    Get PDF
    This thesis describes novel techniques and developments in the design and implementation of a low power radio frequency (40kHz to 1MHz) wireless power transfer (WPT) system, with an application in the wireless charging of autonomous drones without physical connection to its on-board Battery Management System (BMS). The WPT system is developed around a matrix converter exploiting the benefits such as a small footprint (DC-link free), high efficiency and high power density. The overall WPT system topology discussed in this thesis is based on the current state-of-the-art found in literature, but enhancements are made through novel methods to further improve the converter’s stability, reduce control complexity and improve the wireless power efficiency. In this work, each part of the system is analysed and novel techniques are proposed to achieve improvements. The WPT system design methodology presented in this thesis commences with the use of a conventional full-bridge converter. For cost-efficiency and to improve the converters stability, a novel gate drive circuit is presented which provides self-generated negative bias such that a bipolar MOSFET drive can be driven without an additional voltage source or magnetic component. The switching control sequences for both a full-bridge and single phase to single phase matrix converter are analysed which show that the switching of a matrix converter can be considered to be the same as a full-bridge converter under certain conditions. A middleware is then presented that reduces the complexity of the control required for a matrix converter and enables control by a conventional full-bridge controller (i.e. linear controller or microcontroller). A novel technique that can maximise and maintain in real-time the WPT efficiency is presented using a maximum efficiency point tracking approach. A detailed study of potential issues that may affect the implementation of this novel approach are presented and new solutions are proposed. A novel wireless pseudo-synchronous sampling method is presented and implemented on a prototype system to realise the maximum efficiency point tracking approach. Finally, a new hybrid wireless phase-locked loop is presented and implemented to minimise the bandwidth requirements of the maximum efficiency point tracking approach. The performance and methods for implementation of the novel concepts introduced in this thesis are demonstrated through a number of prototypes that were built. These include a matrix converter and two full WPT systems with operating frequencies ranging from sub-megahertz to megahertz level. Moreover, the final prototype is applied to the charging of a quadcopter battery pack to successfully charge the pack wirelessly whilst actively balancing the cells. Hence, fast battery charging and cell balancing, which conventionally requires battery removal, can be achieved without re-balance the weight of the UAV

    High power high frequency DC-DC converter topologies for use in off-line power supplies

    Get PDF
    The development of a DC-DC converter for use in a proposed range of one to ten kilowatt off-line power supplies is presented. The converter makes good use of established design practices and recent technical advances. The thesis begins with a review of traditional design practices, which are used in the design of a 3kW, 48V output DC-DC converter, as a bench-mark for evaluation of recent technical advances. Advances evaluated include new converter circuits, control techniques, components, and magnetic component designs. Converter circuits using zero voltage switching (ZVS) transitions offer significant advantages for this application. Of the published converters which have ZVS transitions the phase shift controlled full bridge converter is the most suitable, and assessments of variations on this circuit are presented. During the course of the research it was realised that the ZVS range of one leg of the phase shift controlled full bridge converter could be extended by altering the switching pattern, and this new switching pattern is proposed. A detailed analysis of phase shift controlled full bridge converter operation uncovers a number of operational findings which give a better and more complete understanding of converter operation than hitherto published. Converter design equations and guidelines are presented and the effects of the new improvement are investigated by an approximate analysis. Computer simulations using PSPICE2 are carried out to predict converter performance. A prototype converter design, construction details and test results are given. The results obtained compare well to the predicted performance and confirm the advantages of the new switching pattern

    Design and analysis of current stress minimalisation controllers in multi-active bridge DC-DC converters.

    Get PDF
    Multi active bridge (MAB) DC-DC converters have attracted significant research attention in power conversion applications within DC microgrids, medium voltage DC and high voltage DC transmission systems. This is encouraged by MAB's several functionalities such as DC voltage stepping/matching, bidirectional power flow regulation and DC fault isolation. In that sense this family of DC-DC converters is similar to AC transformers in AC grids and are hence called DC transformers. However, DC transformers are generally less efficient compared to AC transformers, due to the introduction of power electronics. Moreover, the control scheme design is challenging in DC transformers, due to its nonlinear characteristics and multi degrees of freedom introduced by the phase shift control technique of the converter bridges. The main purpose of this research is to devise control techniques that enhance the conversion efficiency of DC transformers via the minimisation of current stresses. This is achieved by designing two generalised controllers that minimise current stresses in MAB DC transformers. The first controller is for a dual active bridge (DAB). This is the simplest form of MAB, where particle swarm optimisation (PSO) is implemented offline to obtain optimal triple phase shift (TPS) parameters, for minimising the RMS current. This is achieved by applying PSO on DAB steady-state model, with generic per unit expressions of converter AC RMS current and transferred power under all possible switching modes. Analysing the generic data pool generated by the offline PSO algorithm enabled the design of a generic real-time closed-loop PI-based controller. The proposed control scheme achieves bidirectional active power regulation in DAB over the 1 to -1 pu power range with minimum-RMS-current for buck/boost/unity modes, without the need for online optimisation or memory-consuming look-up tables. Extending the same controller design procedure for MAB was deemed not feasible, as it would involve a highly complex PSO exercise that is difficult to generalise for N number of bridges; it would therefore generate a massive data pool that would be quite cumbersome to analyse and generalise. For this reason, a second controller is developed for MAB converter without using a converter-based model, where current stress is minimised and active power is regulated. This is achieved through a new real-time minimum-current point-tracking (MCPT) algorithm, which realises iterative-based optimisation search using adaptive-step perturb and observe (P&O) method. Active power is regulated in each converter bridge using a new power decoupler algorithm. The proposed controller is generalised to MAB regardless of the number of ports, power level and values of DC voltage ratios between the different ports. Therefore, it does not require an extensive look-up table for implementation, the need for complex non-linear converter modelling and it is not circuit parameter-dependent. The main disadvantages of this proposed controller are the slightly slow transient response and the number of sensors it requires
    • …
    corecore