37,877 research outputs found

    A Separable Model for Dynamic Networks

    Full text link
    Models of dynamic networks --- networks that evolve over time --- have manifold applications. We develop a discrete-time generative model for social network evolution that inherits the richness and flexibility of the class of exponential-family random graph models. The model --- a Separable Temporal ERGM (STERGM) --- facilitates separable modeling of the tie duration distributions and the structural dynamics of tie formation. We develop likelihood-based inference for the model, and provide computational algorithms for maximum likelihood estimation. We illustrate the interpretability of the model in analyzing a longitudinal network of friendship ties within a school.Comment: 28 pages (including a 4-page appendix); a substantial rewrite, with many corrections, changes in terminology, and a different analysis for the exampl

    Networks of Complements

    Get PDF
    We consider a network of sellers, each selling a single product, where the graph structure represents pair-wise complementarities between products. We study how the network structure affects revenue and social welfare of equilibria of the pricing game between the sellers. We prove positive and negative results, both of "Price of Anarchy" and of "Price of Stability" type, for special families of graphs (paths, cycles) as well as more general ones (trees, graphs). We describe best-reply dynamics that converge to non-trivial equilibrium in several families of graphs, and we use these dynamics to prove the existence of approximately-efficient equilibria.Comment: An extended abstract will appear in ICALP 201

    Infinite-Duration Bidding Games

    Full text link
    Two-player games on graphs are widely studied in formal methods as they model the interaction between a system and its environment. The game is played by moving a token throughout a graph to produce an infinite path. There are several common modes to determine how the players move the token through the graph; e.g., in turn-based games the players alternate turns in moving the token. We study the {\em bidding} mode of moving the token, which, to the best of our knowledge, has never been studied in infinite-duration games. The following bidding rule was previously defined and called Richman bidding. Both players have separate {\em budgets}, which sum up to 11. In each turn, a bidding takes place: Both players submit bids simultaneously, where a bid is legal if it does not exceed the available budget, and the higher bidder pays his bid to the other player and moves the token. The central question studied in bidding games is a necessary and sufficient initial budget for winning the game: a {\em threshold} budget in a vertex is a value t[0,1]t \in [0,1] such that if Player 11's budget exceeds tt, he can win the game, and if Player 22's budget exceeds 1t1-t, he can win the game. Threshold budgets were previously shown to exist in every vertex of a reachability game, which have an interesting connection with {\em random-turn} games -- a sub-class of simple stochastic games in which the player who moves is chosen randomly. We show the existence of threshold budgets for a qualitative class of infinite-duration games, namely parity games, and a quantitative class, namely mean-payoff games. The key component of the proof is a quantitative solution to strongly-connected mean-payoff bidding games in which we extend the connection with random-turn games to these games, and construct explicit optimal strategies for both players.Comment: A short version appeared in CONCUR 2017. The paper is accepted to JAC

    The Bursty Dynamics of the Twitter Information Network

    Full text link
    In online social media systems users are not only posting, consuming, and resharing content, but also creating new and destroying existing connections in the underlying social network. While each of these two types of dynamics has individually been studied in the past, much less is known about the connection between the two. How does user information posting and seeking behavior interact with the evolution of the underlying social network structure? Here, we study ways in which network structure reacts to users posting and sharing content. We examine the complete dynamics of the Twitter information network, where users post and reshare information while they also create and destroy connections. We find that the dynamics of network structure can be characterized by steady rates of change, interrupted by sudden bursts. Information diffusion in the form of cascades of post re-sharing often creates such sudden bursts of new connections, which significantly change users' local network structure. These bursts transform users' networks of followers to become structurally more cohesive as well as more homogenous in terms of follower interests. We also explore the effect of the information content on the dynamics of the network and find evidence that the appearance of new topics and real-world events can lead to significant changes in edge creations and deletions. Lastly, we develop a model that quantifies the dynamics of the network and the occurrence of these bursts as a function of the information spreading through the network. The model can successfully predict which information diffusion events will lead to bursts in network dynamics

    Optimal Worst-Case QoS Routing in Constrained AWGN Channel Network

    Get PDF
    In this paper, we extend the optimal worst-case QoS routing algorithm and metric definition given in [1]. We prove that in addition to the q-ary symmetric and q-ary erasure channel model, the necessary and sufficient conditions defined in [2] for the Generalized Dijkstra's Algorithm (GDA) can be used with a constrained non-negative-mean AWGN channel. The generalization allowed the computation of the worst-case QoS metric value for a given edge weight density. The worst-case value can then be used as the routing metric in networks where some nodes have error correcting capabilities. The result is an optimal worst-case QoS routing algorithm that uses the Generalized Dijkstra's Algorithm as a subroutine with a polynomial time complexity of O(V^3)

    An Alternative Approach to the Calculation and Analysis of Connectivity in the World City Network

    Full text link
    Empirical research on world cities often draws on Taylor's (2001) notion of an 'interlocking network model', in which office networks of globalized service firms are assumed to shape the spatialities of urban networks. In spite of its many merits, this approach is limited because the resultant adjacency matrices are not really fit for network-analytic calculations. We therefore propose a fresh analytical approach using a primary linkage algorithm that produces a one-mode directed graph based on Taylor's two-mode city/firm network data. The procedure has the advantage of creating less dense networks when compared to the interlocking network model, while nonetheless retaining the network structure apparent in the initial dataset. We randomize the empirical network with a bootstrapping simulation approach, and compare the simulated parameters of this null-model with our empirical network parameter (i.e. betweenness centrality). We find that our approach produces results that are comparable to those of the standard interlocking network model. However, because our approach is based on an actual graph representation and network analysis, we are able to assess cities' position in the network at large. For instance, we find that cities such as Tokyo, Sydney, Melbourne, Almaty and Karachi hold more strategic and valuable positions than suggested in the interlocking networks as they play a bridging role in connecting cities across regions. In general, we argue that our graph representation allows for further and deeper analysis of the original data, further extending world city network research into a theory-based empirical research approach.Comment: 18 pages, 9 figures, 2 table

    Spanning Trees with Many Leaves in Graphs without Diamonds and Blossoms

    Full text link
    It is known that graphs on n vertices with minimum degree at least 3 have spanning trees with at least n/4+2 leaves and that this can be improved to (n+4)/3 for cubic graphs without the diamond K_4-e as a subgraph. We generalize the second result by proving that every graph with minimum degree at least 3, without diamonds and certain subgraphs called blossoms, has a spanning tree with at least (n+4)/3 leaves, and generalize this further by allowing vertices of lower degree. We show that it is necessary to exclude blossoms in order to obtain a bound of the form n/3+c. We use the new bound to obtain a simple FPT algorithm, which decides in O(m)+O^*(6.75^k) time whether a graph of size m has a spanning tree with at least k leaves. This improves the best known time complexity for MAX LEAF SPANNING TREE.Comment: 25 pages, 27 Figure
    corecore